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Abstract

We prove the EXPTIME-hardness of the validity problem for the basic temporal logic
on Minkowski spacetime with more than one space dimension. We prove this result
for both the lightspeed-or-slower and the slower-than-light accessibility relations (and
for both the irreflexive and the reflexive versions of these relations). As an auxiliary
result, we prove the EXPTIME-hardness of validity on any frame for which there
exists an embedding of the infinite complete binary tree satisfying certain conditions.
The proof is by a reduction from the two-player corridor-tiling game.
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1 Introduction

Temporal logic has traditionally treated time as absolute, independent of other
aspects of state, such as position. However, special and general relativity tell us
that no absolute view of time reflects physical reality, and we must be content
with understanding space and time jointly in the form of a unified spacetime.
Thus the study of temporal logics of spacetime can be seen as a natural and
foundational topic in temporal logic.
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The frames we study in this paper are: Minkowski spacetime with lightspeed-
or-slower accessibility and Minkowski spacetime with slower-than-lightspeed
accessibility. Minkowski spacetime is the flat spacetime of special relativity,
where light travels in straight lines. Let m be the number of space dimensions.
Then Minkowski spacetime with (irreflexive) lightspeed-or-slower accessibility
can be realised as the Kripke frame (Rm+1, <) where

(x1, . . . , xm, t) < (y1, . . . , ym, t
′) ⇐⇒ t < t′ and

∑
i

(xi − yi)
2 ≤ (t′ − t)2.

(Here the order relation on the right-hand side is the usual ordering on the reals.)
Minkowski spacetime with (irreflexive) slower-than-lightspeed accessibility can
be realised as the frame (Rm+1,≺) where

(x1, . . . , xm, t) ≺ (y1, . . . , ym, t
′) ⇐⇒ t < t′ and

∑
i

(xi − yi)
2 < (t′ − t)2.

Depictions of these frames for m = 2 can be found in Figure 1.
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x2

t

x1
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t

Figure 1. Minkowski spacetime frames (R3, <) and (R3,≺)

One may also consider reflexive versions ≤ and ⪯ of these accessibility
relations, given by the reflexive closure of the respective irreflexive relations.
This distinction will not play an important role in this paper.

The language we use is the most classical temporal language, the language
of Prior’s tense logic [6]. Formulas are built from a countable supply p, q, . . . of
propositional variables using the standard propositional connectives ¬ and ∨
and the unary temporal operators F (‘at some time in the future’) and P (‘at
some time in the past’). We call the formulas of this language (F,P)-formulas.
Usual classical propositional abbreviations apply, and G := ¬F¬ and H := ¬P¬.
A modal formula is built using propositional connectives and F (but no P).

It is known that the modal validities of reflexive Minkowski spacetime with
m spatial dimensions are axiomatised by S4.2 (reflexive, transitive, confluent)
[3], regardless of choice of m ≥ 1, and regardless of whether speed-of-light is
allowed; hence the logic is PSPACE-complete [7]. For irreflexive spacetime,
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with slower-than-light accessibility the validities again do not depend on the
dimension, and are given by a logic called OI.2 (transitive, confluent, serial, two-
dense: Fp ∧ Fq → F(Fp ∧ Fq)) [9], which is also PSPACE-complete [7]. With
irreflexive lightspeed-or-slower accessibility, the logics depend on the dimension,
and there is a formula satisfiable with two spatial dimensions yet not with only
one spatial dimension [3]. By a simple reduction from the reflexive cases it
is clear that the modal logic of irreflexive lightspeed-or-slower accessibility is
PSPACE-hard in all cases m ≥ 1, though we could not find a proof in the
literature that in all cases the logic is in PSPACE.

For temporal validities, (i.e. valid (F,P)-formulas) over two-dimensional
Minkowski spacetime with lightspeed-or-slower accessibility, that is, either
(R2, <) or (R2,≤), validity is PSPACE-complete [5], and the same is true for
slower-than-light accessibility [4]. 3 However, little is known about the logics
of the higher-dimensional frames, except that they differ from those in two
dimensions [5]. In the problem (5) at the conclusion of [5], Hirsch and Reynolds
ask for the decidability of the (R3, <) validities and conjecture undecidability.

In this paper, we make a small amount of progress towards identifying
the complexity of the validity problem in higher dimensions, by proving an
EXPTIME lower bound (with any of the four accessibility relations: lightspeed-
or-slower or slower-than-light and reflexive or irreflexive). We do this by reducing
the two-person corridor-tiling game to satisfiability in our higher-dimensional
frames. We describe this tiling game, which is known to be EXPTIME-complete
[2], in the following section. In Section 3 we carry out the reduction, giving a
general EXPTIME-hardness result (Theorem 3.1), and in Section 4 we apply
this theorem to Minkowski spacetime frames (Theorem 4.2). Section 5 lists
open problems.

2 The two-person corridor-tiling game

In order that this paper be self contained, in this section we present the two-
person corridor-tiling game. Our version of the game is that found in [1, §6.8].

A Wang tile type, T , is a square with its sides labelled by colours left(T ),
right(T ), up(T ) and down(T ) [10]. From this presentation it is clear that tiles
are ‘fixed in orientation’, that is, what is obtained by rotating a tile by 90◦ is
considered distinct from the original tile type. Figure 2 shows the conventional
way of depicting a Wang tile.

Figure 2. Depiction of a Wang tile

3 A contrasting result is that with exactly lightspeed accessibility, validity is undecidable [8].
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Game instances. An instance of the two-player corridor-tiling game is a pair
((T0, . . . , Ts+1), (I1, . . . , In)), where (T0, . . . , Ts+1) is a sequence of tile types
and (I1, . . . , In) is a sequence of tiles drawn from {T0, . . . , Ts+1}.
The players and board. The game is played between two players—Eloise and
Abelard—on an n×ω grid—the ‘corridor’. There are walls to the left of the first
column and to the right of the nth column, which we consider to be columns 0
and n+ 1 respectively, and throughout the game both these columns are filled
entirely with instances of tile type T0. We assume this gives both walls the
same colour, white say. At the start of the game the first row of the corridor is
filled with the tiles (I1, . . . , In) in that order. (This is the only purpose of the
data (I1, . . . , In), beyond determining the value of n. 4 ) This initial position is
depicted in Figure 3.

T0

T0

T0

T0

T0

T0

I1 I2 In· · ·

Eloise plays next tile

Figure 3. Game instance ((T0, . . . , Ts+1), (I1, . . . , In)) at the start of play

The play. During play, the two players alternate, with Eloise playing first. To
make a legal move, a player must chose a tile type and place one instance of
that tile type on the board. The placement of the new tile is fixed: it is placed
in the leftmost available position in the first incomplete row. It is required that
the edge-colours of the placed tile match up with those of adjacent tiles already
on the board.

Winning conditions. If at any point during the play, tile type Ts+1 is placed in
the first column then the game ends and Eloise wins. In all other cases, Abelard
wins; there are two ways this can happen. Firstly, if Ts+1 has not yet been
placed in the first column, and the current player (Eloise or Abelard) is unable
to make a move then the game ends and Abelard wins. The other possible way
Abelard can win is if the play goes on infinitely long without Ts+1 being placed
in the first column, and where each player always makes a legal move.

Based on these rules, in order to have all relevant information about the
state of play it is sufficient to know the position (p, T̄ , i) consisting of:

(i) the player p ∈ {∃,∀} whose turn it is,

(ii) a sequence T̄ of n tiles, indicating the last tile placed in columns 1 to n,

4 Note though that the presence of (I1, . . . , In) in instance specification ensures the corridor
width is polynomial—not exponential—in the size of the input, matching the stipulation in
Chlebus’ original presentation that n be encoded in unary.
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(iii) a column index i, where 1 ≤ i ≤ n, indicating the column where the next
tile must be placed.

The game tree and strategy. Instances of the corridor-tiling game may analysed
via their game tree. Let I = ((T0, . . . , Ts+1), (I1, . . . , In)) be an instance. Let
p0 = (∃, (I1, . . . , In), 1) be the initial position in the game tree T (I). Each node
of T (I) is labelled by a position, and the root of T (I) is labelled by the initial
position p0. In any position there are at most s+2 possible moves (as there are
s+ 2 tile types). Each possible move determines the position of a child node.
Each branch is either a win for Eloise or Abelard, not both.

A strategy for Eloise is a subtree of the game tree including the root, all
children of included nodes where it is Abelard’s turn, and at least one child of
included nodes where it is Eloise’s turn. Such a strategy is a winning strategy
if all branches are wins for Eloise. Of course, whether such a winning strategy
exists depends on the instance. The decision problem associated to the two-
person corridor-tiling game is the set of instances for which Eloise has a winning
strategy.

The two-person corridor-tiling game was first presented in [2], where it was
called the rectangle tiling game and was proven to be EXPTIME-complete.

3 Reduction from corridor-tiling game

In this section we take an arbitrary instance I = ((T0, . . . , Ts+1), (I1, . . . , In))
of the two-person corridor-tiling game and compute an associated temporal
formula ϕI . Then we show that for any Kripke frame into which there is a
certain kind of embedding of a complete binary tree with no leaves, I is a
yes-instance if and only if ϕI is satisfiable in the frame.

The rough idea is that we can use the image of the embedded tree as a
scaffolding for drawing the game tree T (I) in the frame, simply by labelling
(images of) nodes using propositional variables. (We do however re-encode
T (I), with its finite branching factor, as a binary-branching tree, in order that
the embedding be easier to produce.) Then ϕI expresses that a given point is
the root of a game tree for which Eloise has a winning strategy.

We first introduce some propositional formulas and definable modalities, to
help express the formula ϕI .

In Minkowski spacetime we may express the universal modality ■ by

■φ := GHφ.

More generally, let (V,<) be any frame that is both transitive and confluent
(x < y, z implies there is w with y, z < w). Then ■ is ‘for all within the current
weakly connected component’ (of (V,<), viewed as a directed graph), which is
strong enough for our purposes. 5 Note that we will refer to elements of V as
points.

5 Technically this is not true if < is empty on a (necessarily singleton) connected component.
If this occurs in the frame then one can add a conjunct F⊤ to the ϕI we describe to prevent
the formula being satisfied at such a point.
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We will use the following propositional variables.

(i) f to denote a ‘forbidden set’ F .

(ii) index i, for 1 ≤ i ≤ n, to indicate a node of the tree at which the next tile
is to be played in column i. (If no index i holds at a point in V then the
point is not a node.)

Later, in the definition (1), we use F to help define a modality ♢ (see also
Figure 4).

The remaining variables give information only at nodes and have no signific-
ance elsewhere (where they may be assigned arbitrarily).

(iv) col i(T ), for all 0 ≤ i ≤ n+ 1 and all T ∈ {T0, . . . , Ts+1}, used to indicate
that the latest tile placed in column i was of type T .

(v) eloise, true if it is Eloise’s turn to play, false if Abelard’s.

(vi) win to indicate that if play continues from the current position, Eloise has
a winning strategy.

For the encoding of T (I) as a labelled binary tree B, the maximum number
of children of a node of T (I) is s + 2; let b = ⌈log2(s + 2)⌉. By duplicating
branches, we may assume that the branching factor of T (I) is always either 2b
or zero. We also assume b ≥ 3.

Let ∆ be a complete binary tree of depth b, whose nodes are strings over
{0, 1} of length at most b, and with edges (x, x0) and (x, x1) when x is a string
of length less than b. The root of ∆ is the empty string ε. Each node of ∆ has
a depth equal to the length of the bit-string, so the root has depth 0 and the
leaves have depth b.

For the tree structure of B, first take a forest consisting of copies ∆p of ∆
indexed by nodes of T (I), so a typical node will be (p, x) where p ∈ T (I) and
x ∈ ∆. Now for every non-leaf node p of T (I) choose a bijection θp between
the leaves of ∆p and those nodes q of T (I) where there is a move from p to q
in T (I) (each set has cardinality 2b). Now, for each non-leaf node p of T (I)
identify each leaf (p, x) of ∆p with (θp(p, x), ε). Finally, remove any leaf nodes
(precisely the nodes of depth b that were not identified). This defines the binary
tree structure of B. After this identification, the nodes are (p, x) where p is a
node of T (I), and the node x of ∆ has depth at most b− 1. The children of
(p, x) are (p, x0), (p, x1) when the depth of x is less than b− 1. When the depth
of x is b− 1 the children of (p, x) are (q, ε) where q can be one of two successor
positions of p in T (I). For the labelling of B, each node (p, x) is labelled by
the node p of T (I) and the depth of x.

We thus also have propositions

(vii) depthj , for 0 ≤ j ≤ b− 1, to indicate the depth of x in ∆.

Let

β(i, j) := index i ∧ depthj ,
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and

β :=
∨

1≤i≤n

index i.

Thus β is the proposition ‘is a node’.
Define a function + : [1, n]× [0, b− 1] → [1, n]× [0, b− 1] that updates the

column-index and depth by either incrementing the depth if less than b − 1
leaving column-index fixed, else updating the column-index and resetting depth
to 0. That is, for (i, j) ∈ [1, n]× [0, b− 1], let

(i, j)+ =

 (i, j + 1) j ≤ b− 2
(i+ 1, 0) j = b− 1, i < n
(1, 0) j = b− 1, i = n .

If (i, j) is the index and depth in an encoded version of the game where b levels
encode one move, then (i, j)+ is the index and depth of children in this encoded
game. Since b ≥ 3 we know that (i, j)++ ̸= (i, j) (this allows us to distinguish
the children from the parent of any node).

We will now define a pair of modalities ♢,2 that will express ‘possibly for
a child’ and ‘necessarily for children’ respectively, and thus will do most of
the heavy lifting in the formula ϕI . It may be helpful to know that for the
Minkowski frames, we will be embedding the binary tree into the (hyper)plane
t = 0. To give some intuition, Figure 4 illustrates a point where ♢φ holds.

We define ♢ and 2 as follows.

♢φ : =
∨

1≤i≤n, 0≤j≤b−1

β(i, j) ∧ F(P(β((i, j)+) ∧ φ) ∧H¬f) (1)

2φ : =
∧

1≤i≤n, 0≤j≤b−1

β(i, j) → G(H¬f → H(β((i, j)+) → φ))

Note that 2φ is indeed Kt-equivalent to ¬♢¬φ, and that Kt ⊢ (2φ ∧2ψ) →
2(φ ∧ ψ). 6

Now is a good time to state our main theorem.

Theorem 3.1 Let (V,<) be any transitive and confluent Kripke frame, and
let B be the infinite complete binary tree. (We view the edges, E(B), of B as
directed from parent to child.) Suppose there is a map ′ : B → V and a subset
F ⊆ V such that the following condition holds for all distinct x, y ∈ B.

(x, y) ∈ E(B) ∨ (y, x) ∈ E(B)
⇐⇒

∃z ∈ V (z > x′ ∧ z > y′ ∧ ∀w(w < z =⇒ w /∈ F ))

(2)

Then the satisfiability of (F,P)-formulas over (V,<) is EXPTIME-hard.

6 Recall that Kt is the temporal analogue of modal K, that is, the set of temporal formulas
valid on all frames.



498 EXPTIME-hardness of higher-dimensional Minkowski spacetime

t

x1

x2

•p

•
♢φ •

φ β(i, j)+¬f

P(β(i, j)+ ∧ φ) ∧H¬f

β(i, j)

Figure 4. The formula ♢φ holds at a point if some β(i, j) holds there, and a point p
in the future sees a point in its past where φ ∧ β(i, j)+ holds, but no point satisfying
f is in the past of p. In particular, f must not hold at any point in the shaded disc
where the past of p intersects the spatial plane.

Note that the map ′ of Theorem 3.1 is necessarily injective, since if x′1 = x′2
then condition (2) implies x1 and x2 have (excluding each other) the same
neighbours in B.

As mentioned previously, given an instance I = ((T0, . . . , Ts+1), (I1, . . . , In))
of the two-person corridor-tiling game, we construct a formula ϕI that is
satisfiable in (V,<) if and only if Eloise has a winning strategy for T (I). The
formula ϕI will state that the initial position is a winning position for Eloise.

The formula ϕI is the conjunction of all the conditions I–XX we are about
to lay out. We follow the structure of the presentation of the reduction to PDL
satisfiability given on pages 398–401 of [1]. That reduction originates from
[2]. Most of the conditions have the ■ modality in outermost position, so that
what is inside this modality holds throughout the play. We omit the phrase
‘Throughout the play. . . ’ from the textual descriptions of these conditions.

I Position and depth at start of play:

eloise ∧ β(1, 0) ∧ col0(T0) ∧ col1(I1) ∧ . . . ∧ coln(In) ∧ coln+1(T0).

II Nodes have a unique index:

■
∧

1≤i,j≤n; i ̸=j

(index i → ¬index j)

III Nodes have a unique depth:

■
∧

0≤i,j≤b−1; i ̸=j

(depthi → ¬depthj)

IV The depths partition the same set as the indexes:

■(β ↔
∨

0≤j≤b−1

depthj)

V In every column i, at least one tile type was previously placed:

■(β →
∧

0≤i≤n+1

(col i(T0) ∨ . . . ∨ col i(Ts+1))).
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VI In every column i, at most one tile type was last placed:

■(col i(Tu) → ¬col i(Tv)) (0 ≤ i ≤ n+ 1 and 0 ≤ u ̸= v ≤ s+ 1).

VII Tile T0 is already placed in columns 0 and n+ 1:

■(β → (col0(T0) ∧ coln+1(T0))).

With these preliminaries behind us, we can now describe the structure of the
game tree.

VIII No change in game position when depth is less than b− 1:

■(β ∧ ¬depthb−1 → (eloise → 2eloise) ∧ (¬eloise → 2¬eloise))

and for 1 ≤ i ≤ n and 0 ≤ u ≤ s+ 1

■(β ∧ ¬depthb−1 → (col i(Tu) → 2col i(Tu) ∧ (¬col i(Tu) → 2¬col i(Tu))).

IX In columns where no tile is placed, nothing changes when a move is made:
for all 1 ≤ i, j ≤ n with j ̸= i and all 0 ≤ u ≤ s+ 1

■(β(i, b− 1) → (col j(Tu) → 2col j(Tu)) ∧ (¬col j(Tu) → 2¬col j(Tu)))

X Players alternate:

■(depthb−1 → (eloise → 2¬eloise) ∧ (¬eloise → 2eloise)).

Next, both players make legal moves; that is, they only place tiles that correctly
match adjacent tiles. It will be helpful to define the following ternary relation
of ‘compatibility’ between tile types:

C(T ′, T, T ′′) ⇐⇒ right(T ′) = left(T ) and down(T ) = up(T ′′).

That is, C(T ′, T, T ′′) holds if and only if the tile T can be placed to the right
of tile T ′ and above tile T ′′. With the aid of this relation we can formulate the
first constraint on tile placement as follows.

XI Adjacencies: for all 1 ≤ i ≤ n and all tile types T ′ and T ′′,

■(β(i, b− 1) ∧ col i−1(T
′) ∧ col i(T

′′) → 2
∨

{col i(T ) | C(T ′, T, T ′′)}).

(Here, by convention,
∨
∅ = ⊥.)

The previous constraint only ensures matching to the left and downwards. We
also need to ensure that tiles placed in column n match the white wall tile to
their right.

XII Match white on right in column n:

■(β →
∨

{coln(T ) | right(T ) = white}).
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XIII All possible Abelard moves are included: for all 1 ≤ i < n,

■(¬eloise ∧ depthb−1 ∧ col i(T
′′) ∧ col i−1(T

′) →
∧

{♢col i(T ) | C(T ′, T, T ′′)}),

(Here, by convention,
∧
∅ = ⊤).

This completes the description of the game tree. The remaining conditions
ensure Eloise has a winning strategy.

XIV The initial position is a winning position for Eloise:

win.

XV Recursive conditions:

■(win → (col1(Ts+1) ∨ (¬eloise ∧ ♢⊤ ∧2win) ∨ (eloise ∧ ♢win))).

To bound the length of the game, first define N = 2n(s+ 2)n. If the game goes
on for N plays, then the position has repeated, 7 which does not help Eloise:
if she can win, she can do so in fewer than N moves. Let L be the number of
binary digits necessary to write N . We introduce new propositions q1, . . . , qL
to denote the sequence of bits from the least to the most significant digit of a
counter .

XVI Counter is initially 0:
¬qL ∧ . . . ∧ ¬q1.

XVII Counter does not change when 1 ≤ j ≤ b− 1:

■(β ∧ ¬depthb−1 →
L∧

k=1

((qk → 2qk) ∧ (¬qk → 2¬qk)).

XVIII Incrementation of counter when least-significant digit is 0:

■(depthb−1 ∧ ¬q1 → 2q1 ∧
L∧

k=2

((qk → 2qk) ∧ (¬qk → 2¬qk))).

XIX Incrementation of counter when least-significant digit is 1: for 1 ≤ k < L,

■(depthb−1 ∧ ¬qk+1 ∧
k∧

l=1

ql →

2(qk+1 ∧
k∧

l=1

¬ql) ∧
L∧

l=k+2

((ql → 2ql) ∧ (¬ql → 2¬ql))).

XX If the counter reaches N then the game has gone on too long and Abelard
wins:

■(β ∧ (counter = N) → ¬win).

7 Including the initial position, 2n(s+ 2)n + 1 positions have occurred.
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This concludes the definition of ϕI . We are now in a position to prove
Theorem 3.1.

Proof We argue that whenever (V,<) satisfies conditions of the theorem (i.e.
there is ′, F satisfying (2)), then the derivation of ϕI from I is a correct,
polynomial-time reduction of the two-player corridor-tiling problem to satisfiab-
ility of (F,P)-formulas over (V,<). Since the two-player corridor-tiling problem
is EXPTIME-hard [2], it follows that satisfiability of (F,P)-formulas over (V,<)
is too.

First note that the length of ϕI is polynomial in s and n, at which point it
is clear that ϕI can be calculated from I in time polynomial in the size of (the
encoding) of I. We now argue that the reduction is correct.

Formula is satisfiable implies Eloise has a winning strategy: Suppose v is a
valuation and r ∈ V with (V,<), v, r |= ϕI . Define a tree rooted at r by setting
the children of a node x satisfying β(i, j) to be

{y |= β(i, j)+ | ∃z : z > x ∧ z > y ∧ ∀w(w < z =⇒ w ̸|= f)}.

By the construction of ϕI , this determines a labelled tree B encoding a portion
the game tree T (I) sufficient for defining a strategy. If this B is not technically
a tree because there is some unwanted sharing of descendants, then unwind it
into the tree of paths in this directed graph that depart from r. Note also that
there is no particular reason for B to be binary. The formula ϕI further ensures
that the initial position is a position from which Eloise can force a win. Hence
Eloise has a winning strategy.

Eloise has a winning strategy implies formula is satisfiable: Assume the
condition in the statement of Theorem 3.1. Let T (I) be a labelled game tree
for the instance ((T0, . . . , Ts+1), (I1, . . . , In)). As we saw, we can encode T (I)
as a labelled binary tree B in which each node has a position and depth, and by
the hypothesis of the theorem, there is an embedding ′ of B as B′ ⊆ V together
with a subset F of V satisfying condition (2).

Define a propositional valuation v : Prop → ℘(V ) by:

• v(f) = F ,

• v(index i) = {b′ ∈ B′ | b has column-index i},
• v(depthj) = {b′ ∈ B′ | b has depth j},
• v(eloise) consists of points in B′ where it is Eloise’s turn,

• v(col i(T )) = {b′ ∈ B′ | T was last placed in column i at b}.
We may define v(qi) for 1 ≤ i ≤ L so that the qis that hold at b′ encode, as
a binary number, the minimum of 2L − 1 and the number of edges on a path
from b to the root r of T (I). Let win hold at all points in the range of ′ where
Eloise has a winning strategy and the counter is less than N , but nowhere else.

Let b be any node of the binary tree B, say b′ |= β(i, j) (some i, j). Then
b is adjacent to two child nodes c1, c2 and perhaps to its parent, but no other
node, and β(i, j)+ holds at c′1 and at c′2. By (1) and (2), if φ holds at c′1 or
at c′2 then ♢φ holds at b′. Conversely, if ♢φ holds at b′ then by (1) and (2),
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we know that β(i, j)+ ∧ φ must hold where a node adjacent to b in B embeds.
However, β(i, j)+ does not hold where the parent of b embeds, so φ must hold
at c′1 or at c′2.

By the assumption that Eloise has a winning strategy, r′ |= win; other
conjuncts of ϕI are now easily verified. Thus (V,<), v, r′ |= ϕI , as required. 2

4 Minkowski spacetime frames

In this section we apply Theorem 3.1 to our target frames, thereby proving
EXPTIME lower bounds.

Lemma 4.1 Let a, b, c, d be points on a circle C, in that order, as you go
round the circle (clockwise or anticlockwise). Every disc containing a and c also
contains b or d.

Proof For contradiction, suppose D is a disc containing a and c but neither b
nor d. Since b ̸∈ D, but a ∈ D, the boundary of D must cross C between a and
b. Similarly, the boundary of D meets C three more times, between b and c,
between c and d, and between d and a. Since a, c ∈ D and b, d ̸∈ D, the four
points in C on the boundary of D must be distinct. But two circles intersecting
more than twice must be identical, contradicting a, c ∈ D and b, d ̸∈ D. 2

Theorem 4.2 Validity of temporal formulas over (m+1)-dimensional Minkow-
ski spacetime is EXPTIME-hard for m ≥ 2 with ‘lightspeed-or-slower’ or with
‘slower-than-lightspeed’ accessibility, either the reflexive or irreflexive versions.

Proof Let (V,<) be any of the frames in the Theorem; clearly the frame is
transitive and confluent. To apply Theorem 3.1, we need to find an embedding
′ from the complete binary tree B of depth ω into V together with a subset
F ⊆ V , in such a way that condition (2) is satisfied. To do this, we will
embed B in a two-dimensional spacelike plane P perpendicular to the time axis
and select F ⊆ P . We could, for example, assume P is the plane defined by
x3 = x4 = · · · = xm = t = 0. Points in P are determined by a pair (x, y) of
real coordinates with respect to some fixed choice of orthonormal basis for P
(equipped with the standard inner product). Intersections of past light cones
with P are discs (closed or open depending on whether lightspeed is included in
<). In the following, D will range over all discs of the appropriate type—closed
if lightspeed is included, open otherwise.

To apply Theorem 3.1, we need to establish condition (2), which is equivalent
to the following, for all p ̸= q ∈ B,

(p, q) ∈ E(B) ∨ (q, p) ∈ E(B) ⇐⇒ ∃D(p′, q′ ∈ D ∧ (D ∩ F = ∅)) (3)

For p′, q′ let p′ ∼ q′ ⇐⇒ ∃D(p′, q′ ∈ D ∧ (D ∩ F = ∅)). An embedding ′ and
forbidden set F satisfying (3) is shown in Figure 5.

The nodes of B may be written as finite strings of bits, and the two children
of string s are obtained by appending 0 or 1 to the end of s. For the embedding,
map string s = (b0b1 . . . bk−1) to

∑
i<k, bi=0 2

−i(1, 0) +
∑

i<k, bi=1 2
−i(0, 1), so

the root (the empty string) maps to (0, 0), its two children 0 and 1 map to (1, 0)
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Root 0
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F FF

F

F

F
Root 0

1

11

10

F FF

F

F

F

Figure 5. Embedding of complete binary tree B, and forbidden set F in a plane, to
scale. Left: parent ∼ child; a disc containing root and child, disjoint from F . Right:
grandparent ̸∼ grandchild; a circle through (0, 0), ( 1

2
, 1
2
), and (− 3

4
, 5
4
); nodes 11, 10

and descendants are outside the circle, between the two circled forbidden nodes.

and (0, 1) respectively, its grandchildren 00, 01, 10, and 11 map to ( 32 , 0), (1,
1
2 ),

( 12 , 1), and (0, 32 ) respectively, and so on; see Figure 5.
The lines y = x − 2 and y = x + 2 are included in F . Also, if µ is the

midpoint in P of (the images of) a pair of siblings, every point at or above/right
of µ on the line y = x+ c passing through µ, is contained in F . Nothing else is
included in F . These forbidden lines are shown as diagonal lines or half-lines in
Figure 5.

For the left-to-right implication of (3), first suppose p is the root of B.
Consider the open disc O 2

3
(− 1

4 ,
1
2 ) shown on the left of Figure 5 (to scale), and

first observe that the root and its child 1 map into the disc, since
√
5
4 < 2

3 . Then
observe that all forbidden points are outside the closure of the disc, since the

nearest point on the line y = x+2 is (− 7
8 ,

9
8 ) at a distance 5

√
2

8 , and the nearest
points in F on the lines y = x+1 and y = x are the endpoints ( 14 ,

5
4 ) and ( 12 ,

1
2 )

at distances
√
13
4 and 3

4 , respectively. Similarly, the root and its other child,
0, map into a disc disjoint from F . Cases where p is not the root are treated
shortly.

For the right-to-left implication of (3), suppose D avoids forbidden nodes,
and p′ ̸= q′ ∈ D. By convexity of D all points on the line segment from p′

to q′ belong to D, which is disjoint from F . The midpoint of (the images of)
two siblings is in F , so p and q cannot be siblings. Moreover, if p and q are
descendants of two distinct siblings then there is a point on the line segment
between p′ and q′ that is forbidden, so this case cannot happen either. So either
p is a descendant of q, or q is a descendant of p.

We claim that p and q cannot be more than one generation apart. Again,
we first prove this claim when p is the root, which embeds to (0, 0); thus q is a
descendent of the root (i.e. any node of the tree). The circle C√

49+529
32

(− 7
32 ,

23
32 )

meets y = x+ 2 tangentially at (− 3
4 ,

5
4 ) and passes through the node at (0, 0)

and the forbidden point ( 12 ,
1
2 ). This is pictured in the right-hand diagram of
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Figure 5. The forbidden point at ( 14 ,
5
4 ) happens to lie inside the circle; we

make no use it here, but note this point only makes it harder to find discs
avoiding forbidden nodes. Here we use the forbidden points (− 3

4 ,
5
4 ) and ( 12 ,

1
2 ).

All descendants of 11, at (0, 32 ), or of 10, at (
1
2 , 1), lie, from the point of view

of (0, 0), between these two forbidden nodes and are outside the circle, since√
49+625
32 ,

√
529+81
32 >

√
529+48
32 . (Reading glasses may be needed to see that 10 is

outside the circle in Figure 5.) Thus every disc containing (0, 0) and avoiding
forbidden nodes, excludes 11, 10, and their descendants, else by convexity the
disk would also contain a point c on C√

49+529
32

(− 7
32 ,

23
32 ), such that (0, 0), (− 3

4 ,
5
4 ),

c, ( 12 ,
1
2 ) is the clockwise order, contradicting Lemma 4.1. So q is none of 11, 10,

or their descendants. By a symmetric argument, we see that q cannot be 00, 01,
or their descendants. It follows that q must be a child, either 0 or 1, of the root,
proving the right-to-left implication in (3), for the case where p is the root.

To generalise to arbitrary p, we now define a P -similarity. Recall that P ⊆
V = Rm+1 is a two-dimensional spatial plane, the image of ′ : B → V is included
in P , and F ⊆ V . Let B′ = {p′ | p ∈ B} and E′ = {(p′, q′) | (p, q) ∈ E(B)}. A
P -similarity σ : P → P is a similarity of P with respect to the Euclidean metric
over P ⊆ Rm+1, such that

• p′ ∈ B′ =⇒ σ(p′) ∈ B′ (‘nodes map to nodes’),

• (p′, q′) ∈ E′ =⇒ (σ(p′), σ(q′)) ∈ E′ (‘edges map to edges’),

• σ(P \ F ) ⊆ P \ F (‘permitted points map to permitted points’).

for all p, q ∈ B. Observe that if σ is a P -similarity and p′ ∈ D for some disc
D disjoint from F , then σ[D] is a disc disjoint from F containing σ(p′). The
map (x, y) 7→ (1 + x

2 ,
y
2 ) is a P -similarity mapping (0, 0) to (1, 0) (= 0′), and

likewise for all p ∈ B there is a P -similarity mapping (0, 0) to p′. Hence the
left-to-right implication of (3) holds for all p ∈ B. The proof of the right-to-
left implication of (3) goes through when p is not the root, since there is a
P -similarity mapping (0, 0) to p′ carrying the forbidden points (− 3

4 ,
5
4 ) and

( 12 ,
1
2 ) to forbidden points. 2

5 Open problems

(1) Our main result is the EXPTIME-hardness of the temporal validity problem
over the Minkowski spacetimes (Rn,≤), (Rn, <), (Rn,≺), (Rn,⪯), for n ≥ 3,
but we have no upper bound on the complexity of these frames; we do not
know if the logic of any of these frames is decidable, nor even if they are
recursively enumerable. For n = 2 (only one spatial dimension) we know
that all four validity problems are PSPACE-complete [5,4]. Find more
precise bounds on the complexity of the validities of (Rn, <), for n ≥ 3.

(2) There are purely modal formulas satisfiable in (R3, <) but not in (R2, <)
[3], and there are temporal formulas satisfiable in (R3,≤) but not in (R2,≤)
[5]. Are there temporal formulas that distinguish (R3, <) from (R4, <)?

(3) Find sound and complete axioms for the temporal validities of any of these
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Minkowski frames. (These are open even with one spatial dimension.)
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