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Abstract

In this paper, we describe the IBM Research system for
indexing, analysis, and retrieval of video as applied to the
TREC-2008 video retrieval benchmark. This year, focus
of the system improvement was on large-scale learning,
cross-domain detection, and interactive search.

A. High-level concept detection:

1. A_ibm.Baseline_5:
subspace bagging;

Baseline runs with random-

2. A_ibm.BaseSSL 4: Fusion of baseline runs and
principal component semi-supervised support vector

machines(PCS3V M);

3. A_ibm.BaseSSLText_3: Fusion of A_ibm.BaseSSL_4
and text search results;

4. C_ibm.CrossDomain_6: Learning on data from web
domain;

5. C_ibm.BNet_2: Multi-concept learning with base-
line, PCS®V M and web concepts;

6. C_ibm.BOR_I: Best overall runs by compiling the
best models based on heldout performance for each
concept.

Overall, almost all the individual components can
improve the mean average precision after fused with
the baseline results. To summarize, we have the fol-
lowing observations from our evaluation results: 1)
The baseline run using random-subspace bagging
offers a reasonable starting performance with a more
efficient learning process than standard SVMs; 2) By
learning on both feature space and unlabeled data,
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PCS3V M is able to improve the MAP by 12% af-
ter combined with baseline runs; 3) The additional
development data collected from the web domain are
shown to be informative on a number of the concepts,
although its average performance is not comparable
with baseline yet;

B. Interactive search:

1. I A_2_IBM.SearchTypeA_2: Type-A interactive run
with 20 semantic concepts targeted in the 2008 HLF
task.

2. I.C2_IBM.SearchTypeC_1: Type-C interactive run
with 96 semantic concepts, trained on additional
web data.

Different system analytics such as clustering and vi-
sual near-duplicates have notably helped, especially
in increasing recall. There were no significant dif-
ferent between the two interactive runs, which used
the same system setup except for number of semantic
concepts available.

Keywords—Multimedia indexing, content-based re-
trieval, Support Vector Machines, Model Vectors, Model-
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1 Introduction

This year the IBM team has participated in the TREC
Video Retrieval Track, and submitted results for the High-
Level Feature Detection and Interactive Search tasks.
This papers describe the IBM Research system and ex-
amine the approaches and results for both tasks.

The IBM team continues its investigation on high-level
feature detection along two main directions: large-scale



learning and cross-domain detection. First, we signif-
icantly increased the number of low-level feature types
from less than 10 to be around 100. To efficiently learn
from such a large pool of features, we generated the base-
line results using random subspace bagging, which fuses
an ensemble of SVMs learned on randomly selected fea-
ture subspace and bootstrapped data samples. Multiple
sampling and combination strategies have been tested. To
leverage the potential benefits of unlabeled data from dif-
ferent domains, we also evaluated a new semi-supervised
learning algorithm that merges feature space learning
and transfer concept detection into a unified framework.
Promising results have been observed. In addition, we
provided a Type-C baseline run to verify if training data
downloaded from WWW can be contributive to detect-
ing concepts in the news domain. Finally, the relation-
ship between the multimedia ontology had been utilized
to augment the detection performance of individual con-
cepts. The official evaluation results show that almost all
the individual components can bring in performance im-
provement, and as a result, our best run achieved 30%
improvement over the baseline run in terms of mean aver-
age precision.

We also conducted two interactive search runs with
identical system setup and different number of semantic
concepts. The system has four different types of visual
analytics and supports numerous types of user interac-
tion for aggregating, tagging, re-arranging and trimming
the result lists. The different analystics and system fea-
tures helps improve precision and recall, while there is no
marked different between the two sets of semantic con-
cepts in the 24 target queries.

2 Video Descriptors

2.1 Visual Features

All of the visual features are extracted from the repre-
sentative keyframes of each video shot. These keyframes
are provided by LIG[AQO07] and AT&T [LGZ'07]. Be-
cause learning on a rich set of low-level features has been
shown to be effective in improving the concept detection
performance, we have significantly increased the number
of feature types to be 98, by means of generating 13 dif-
ferent visual descriptors on 8 granularities (i.e., global,

center, cross, grid, horizontal parts, horizontal center, ver-
tical parts and vertical center)!. The relative performance
within a given feature modality (e.g., color histogram vs
color correlogram) is shown to be consistent across all
concepts/topics, but the relative importance of one feature
modality vs. another may change from one concept to the
other.

We apply cross validation on the development data to
evaluate the generalizability of each individual feature. In
the following, we have listed a sample set of descriptors
which had achieved the top overall performance for the
concept modeling task:

e Color Histogram (CH)—global color represented as
a 166-dimensional histogram in HSV color space.

e Color Correlogram (CC) — global color and struc-
ture represented as a 166-dimensional single-banded
auto-correlogram in HSV space using 8 radii depths.

e Color Moments (CM) — localized color extracted
from a 5x5 grid and represented by the first 3 mo-
ments for each grid region in Lab color space as a
normalized 225-dimensional vector.

e Wavelet Texture (WT)—Ilocalized texture extracted
from a 3x3 grid and represented by the normalized
108-dimensional vector of the normalized variances
in 12 Haar wavelet sub-bands for each grid region.

e Edge Histogram (EH)—global edge histograms with
8 edge direction bins and 8 edge magnitude bins,
based on a Sobel filter (64-dimensional).

2.2 Semantic Features

In order to expand the semantic coverage for the task of
interactive retrieval, we generate the model vector fea-
tures consisting of the detection confidences for each of
the 20 concept models in the official list, together with
the following:

e Web — a model vector consisting of concept scores of
200+ models trained on consumer and web images.

The final number of features is slightly smaller than expected be-
cause some of the visual descriptors are only generated on a selected set
of granularities
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Figure 1: Overview of the IBM 2008 TRECVID High-
level Feature Detection System.

3 High-level Feature Detection

Figure 1 illustrates the IBM high level feature detec-
tion system. Our current system includes multiple base
and meta-level learning algorithms such as random sub-
space bagging with SVMs, principal-component semi-
supervised support vector machines, cross-domain learn-
ing with web data, text search, and so on. It also con-
sists of different fusion strategies and cross-concept learn-
ing components for leveraging multi-modal and multi-
concept relationship. We continue improving the gen-
eral learning algorithms that have been proven to be
successful[NNTO5] to accommodate a much larger set of
visual features, and re-implement the learning algorithms
on a distributed learning system. The details of these com-
ponents are explained in details in the rest of this section.

3.1 Baseline:
with SVMs

Random-Subspace Bagging

This year two shared versions of annotations are officially
recommended by NIST, where one is from the collabora-
tive annotation forum organized by LIG [AQO7] and the
other is provided by the MCQ-ICT-CAS team [ea08]. In
view of the noticeable difference between these two an-
notations, we use their union to serve as the baseline rele-
vance judgment. In the learning process, the development
data are randomly partitioned into three collections: 60%
as the training set, 10% as the validation set, and 30%
as the held-out set. Most of our following algorithms are

learned on the training and validation data, while the fu-
sion strategies are determined based on the held-out data.

One of the major changes we made this year is to switch
the baseline methods from traditional SVMs to an en-
semble approach called “random subspace bagging” (RS-
Bag), which enjoys several advantages over SVMs such as
being highly efficient in learning/prediction, robustly per-
formed with theoretical guarantee, and easy to parallelize
on a distributed learning system [CHL*07]. The details
of the random subspace bagging approach is shown in Al-
gorithm 1, which contains multiple improvements over
the version we used last year. This algorithm first works
on the training collection. It learns F' - T' base models
using SVMs with the RBF kernel. Each model is con-
structed based on [V, balanced bootstrap samples from the
positive and the negative data, together with M1 random
samples from the feature dimensions for each type of vi-
sual features. Both sampling parameters are determined
by the input parameters. The default parameters for [V is
500 and ry is 1. Each model is associated with its 3-fold
cross validation performance, where average precision is
chosen in this case.

To minimize the sensitivity of the parameters for each
base model, we choose the SVM parameters based on a
grid search strategy. In our experiments, we build the
SVM models with different values on the RBF kernel
parameters, the relative cost factors of positive vs. neg-
ative examples, the feature normalization schemes, and
the weights between training error and margin. The op-
timal learning parameters are selected based on the per-
formance measure on the same 3-fold cross validation on
training data. For each low-level feature, we select one
optimal configuration to generate the concept model.

After all base models are generated, the algorithm iter-
ates over the base models with either Greedy or Combined
strategy, and incrementally combines them into a series of
composite classifiers. The greedy strategy simply ranks
the base models with a decreasing cross-validation perfor-
mance on training data. In contrast, the combined strategy
attempts to find the next base model that can achieve the
most improvement on validation data after combination.
Finally, it outputs the classifier with the highest perfor-
mance on the validation data. To generate the baseline
run, we compute multiple configurations of the RS-Bag
algorithm such as selecting greedy/combined strategies
and tuning data/feature sampling ratios. For each indi-



Algorithm 1 The random subspace bagging (RSBag) al-
gorithm for high-level feature detection.

Input: concept [, training data 7 : {x;,y;}i=1..n, val-
idation data V, maximum number of base models T" for
each feature type, number of feature types F', number of
sample data N, feature sampling ratio r(< 1).

1. Forf=1toF,
Fort=1to T,

(a) Take a bootstrap sample X’ from positive data
{x:}, | XL = Ng

(b) Take a bootstrap sample X! from negative data
{xi}, [ Xt = Na;

(c) Take a random sample F* from the feature f
with indices {1,..., M}, |Ft| = Mry;

(d) Learn a base model h/!(x) using X, X' and
F*. SVMs with RBF kernel are used and the

model parameters are chosen based on 3-fold
cross validation;

2. Forn=1to F-T,

(a) Select the n'"* base model h,(x) with either
Greedy or Combined strategy;

(b) F(x) « F'(x) + hp(x);

(c) Evaluate the composite classifier performance
on validation data.

3. Output the best classifier on validation data.

vidual concept, we select the models with the best config-
uration on the held-out data to produce baseline detection
results.

3.2 Text search

For the text-based concept detection, we leveraged our
speech-based retrieval system [CHLT07] to generate
search-based results for each concept. Specifically, we
manually created text-based queries for each concept
based on interactive search results on the development
set. We used the automatic query expansion and word
suggestion capabilities of our interactive system to iden-
tify relevant keywords for each concept and to optimize

the performance of the retrieval system. The queries were
then applied automatically on the test set and the search
results were used as our text-based concept detection run.

3.3 Principle Component Semi-Supervised
SVM

Small sample learning is one of the central issues in
semantic concept classification of images/videos. The
amount of available unlabeled testing data is large and
growing, but the amount of labeled training data remains
relatively small. Furthermore, the dimensionality of the
low-level feature space is generally very high, the desired
classifiers are complex and, thus, small sample learning
problems emerge.

There are two primary techniques for tackling the
above issues. Semi-supervised learning is a potent
method to incorporate knowledge about unlabeled test
data into the training process so that the learned classifier
can be better leveraged for classifying test data [ZhuO5].
Feature subspace learning is a popular approach to learn
a good feature subspace for capturing the underlying data
manifold and achieving better classification performance
[SSK98].

We address both issues of feature subspace learning
and semi-supervised classification. We propose an al-
gorithm, namely Principle Component Semi-Supervised
SVM (PCS3VM), to jointly learn an optimal feature sub-
space as well as a large margin SVM classifier in a semi-
supervised manner. A joint cost function is optimized to
find a discriminative feature subspace as well as an SVM
classifier in the learned feature subspace. The following
highlight some aspects of the proposed algorithm:

1. The target of PCS®VM is both feature subspace
learning and semi-supervised classification. A fea-
ture subspace is jointly optimized with an SVM clas-
sifier so that in the learned feature subspace the la-
beled data can be better classified to have optimal
margin, and the variance of both labeled and unla-
beled data can be preserved.

2. PCS3VM can naturally extend to classifying novel
unseen test examples, and can be learned in the
original feature space or in a Reproducing Kernel
Hilbert Space (RKHS). In other words, we formulate



a kernel-based PCS3*VM which permits the method
to handle real applications where nonlinear classifi-
cation may be necessary.

In terms of speed, our algorithm is fast in the test-
ing stage, with complexity similar to that of the standard
SVM classification. In the training stage, two-step itera-
tive optimization process is a little time consuming: the
generalized eigenvalue problem in step 1 has a time com-
plexity of O(n?) (where n is the total number of labeled
and unlabeled data). It can be further reduced by exploit-
ing the sparse implementation. For the SVM learning in
step 2, the standard quadratic programming optimization
for an SVM is O(n? ) (where n? is the number of labeled
training data).

3.4 Learning from Web Domain

This year, our main emphasis was on leveraging targeted
downloads from various web resources. Online channels
provide rich sources for multimedia training data. User-
generated and user-tagged multimedia content can help us
understand the visual semantics through crowdsourcing,
and improve the process of high-level feature detection in
terms of cross-domain applicability and robustness.

How well can a semantic classifier perform, if only tex-
tual definition of a visual concept is available, no knowl-
edge of the training or the testing data? People tag their
image and photo collections based on the perceived se-
mantics. Given the specific text query (i.e. “Hand”),
web search engines give us the best text match. Using
TRECVID high-level feature description, we formulated
2-5 queries per each topic, and retrieved web images from
various user sites. Concept “Hand” is defined as “015
Hand: a close-up view of one or more human hands,
where the hand is the primary focus of the shot.” We for-
mulated 5 text queries: (1) hand, (2) hand gesture, (3)
hand in hand, (4) wave goodbye, and (5) handshake, and
downloaded top 100-200 images from 2 sites for each of
the queries. We repeated the process for all topics and
ended up with 30000 images to annotate for 20 topics.
Team members annotated sets for training for each con-
cept from this pool of web images.

How well the semantic concepts defined by a web user
match TRECVID semantic concepts? We have used the
training set to select the best normalization and fusion

(MAX, AND, OR) of the visual semantic concepts trained
solely on the web data. This helped us solve the ambigu-
ities not captured by the textual definition of a concept.
The best performance for an Emergency Vehicle concept
was a definition as a land vehicle, more specifically Am-
bulance Vehicle or Fire Truck or Police Vehicle. Individ-
ual concepts were trained the same as the Type A con-
cepts.

How much are we learning the semantics of the train-
ing data, and how much we are leaning the crowdsourced
semantics? TREVID 2008 training and testing data are
different domain than the web images. Concept of a “dog”
trained on the training set, learned the dog from the com-
mercial that happen to appear in the testing set. For the
concepts where the system was learning the semantics in
terms of the domain and application, web-train classifiers
did not perform well. On a more universal set of concepts,
models trained exclusively on the external data performed
better than the baseline, as show in Table 1.

The additional development data collected from the
web domain are shown to be informative on a num-
ber of the concepts, although its average performance is
not comparable with baseline. Visual semantic concepts
trained on the web data are better than the baseline for 5
out of 20 concepts, and perform close to a baseline for
one of them (Boat or Ship). For these 6 concepts, textual
definition of the concept matched both the definition of
the concept as seen in TRECVID training data and in the
crowdsourced image set.

3.5 Multi-concept Learning

Multi-concept learning is to estimate the label y. € {1,0}
for concept ¢ from a collection of relevance scores for
concepts that are related to the concept ¢, denoted as
x = [x1, ..., xp]. Multi-concept models need to account
for two factors of correlations and uncertainty. The first
factor is ontological relationship, e.g., a bus is likely to be
outdoors and unlikely to be in an office. The second fac-
tor is detector performance, e.g., knowing both the pres-
ence/absence of people and desert may help us decide if it
is military setup, but people detectors are generally more
reliable and hence shall be given more weight.

We use the Naive Bayes model to estimate the class-
conditional probability P(z;|y.), in order to find the
maximum-posterior class ¢ = argmax, P(y.|z) based



’ Concept \ Run Type A (baseline) \ Run Type A (best) \ Run Type C
Airplane flying 0.0919 0.2775 0.1339
Boat Ship 0.1568 0.189 0.1411
Bus 0.0172 0.0306 0.029
Demonstration or Protest | 0.0099 0.0817 0.0178
Emergency Vehicle 0.0076 0.0251 0.062
Mountain 0.038 0.0671 0.0487
Table 1: Selected Web Concepts
X, ye {0,1} target concepts, along with a selected set of 200+ concepts
X trained from web data as the input pool.

Figure 2: Naive Bayes model for multi-concept learning.

on the Bayes rule (Figure 2). This algorithm models the
pair-wise correlations between the target concept ¢ and
each input concept 7,7 = 1,...,M. The maximum-
likelihood estimate of the class-conditional probability
P(x;|y.) is obtained by averaging the confidence over all
the training data on a given target concept y.. Because
naive Bayes models assume that input x; are condition-
ally independent given label ., we can factorize the joint
class-probabilities and use these estimates to obtain the
log-likelihood ratio L. as shown in Equation (2). It has
been shown [XYYO8] that this model is robust to highly
correlated inputs than logistic regression or SVM.
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In our implementation, each input observation z; is
sigmoid-normalized and uniformly quantized into 15
bins, and the maximum likelihood estimates of P(z;|y.)
is smoothed by the prior of z; as P(z]y.) = (1 —
a)P(zily.) + aP(x;), with @« = 0.06. The resulting
likelihood scores L. are then used to re-rank the orig-
inal prediction score with simple averaging. For each
TRECVID’08 target concept ¢, we use the rest of the 20

3.6 Fusion Methods

We applied ensemble fusion methods to combine all con-
cept detection hypotheses generated by different model-
ing techniques or different features. In particular, we per-
formed a grid search in the fusion parameter space to se-
lect the optimal fusion configuration based on validation
data. Fusion parameters include a score normalization
method and a score aggregation method. For score nor-
malization methods, we considers using both raw SVM
scores, statistical normalization, range normalization and
sigmoid normalization. The fusion methods we consid-
ered include simple average and weighted average fusion.
The fusion strategy are automatically chosen based on the
validation performance.

To generate the runs, we detect the concepts first using
the following individual approaches and then proceeded
to fuse resultant detection results with described fusion
techniques.

1. Baseline: Random subspace bagging learned from
training set;

2. Text: Text retrieval with manually defined keywords
for each concept;

3. PCS3V M: Principle component semi-supervised
SVMs learned from training set;

4. Web: Random subspace bagging learned from Web
data;

5. MCL: Multi-concept relationship learning on base-
line models and 200 web models;
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Figure 3: Retrieval performance of IBM high level feature runs in context of all the submissions (including Type

A/B/C) using the mean inferred average precision measure.

Description Run Type | MAP Total Time (hours)
Baseline A_ibm.Baseline_5 A 0.10515 | 12

PCS3VM - - 0.07500 | 200

Baseline + PC'S°V M A_ibm.BaseSSL 4 A 0.11820 | -

Text - - 0.02300 | 0.3

Baseline + PC'S3V M + Text A_ibm.BaseSSLText3 | A 0.12675 | -

Web C_ibm.CrossDomain_6 | C 0.05185 | 48

MCL on Baseline, PC'S?V M, Web | C_ibm.BNet_2 C 0.11995 | -

Best Overall Run C_ibm.BOR_1 C 0.13365

Table 2: IBM TRECVID 2008 High level Feature Detection Task — Submitted and Unsubmitted Runs

6. BOR: Best overall run by compiling the best models
based on heldout performance for each concept.

3.7 Submitted Systems and Results

We have generated multiple runs of detection results
based on the approaches presented before. A number of
runs are submitted to NIST for official evaluation with
their submission name shown, and all of the remaining
runs are evaluated using the ground truth provided by
NIST. The mean inferred average precision is used as the
measure of the overall performance of the systems. Ta-
ble 2 lists the performance of the submitted and unsub-

mitted runs, and Figure 3 summarizes the detection per-
formance of IBM high level feature runs in context of
all the submissions. The baseline run offers a reason-
able starting performance for the following combination.
Although the PCS3V M approach does not outperform
the baseline method on average, it achieves better results
on the concepts of “nighttime” and “driver”. After com-
bined with the baseline run, it obtains 12% performance
gain in terms of MAP on a relative basis. By introducing
complementary information beyond visual features, text
retrieval results in another 7% improvement over visual-
only detection. The additional development data collected
from the web domain are also proven to be informative on



a number of the concepts, such as “Emergency Vehicle”
(AP:0.062) and “Bus” (AP:0.04). By fusing the web train-
ing data with other baseline methods using multi-concept
learning approaches, we can improve the performance by
another 2%. Good models from web data, such as air-
plane flying or kitchen has notably helped in the multi-
concept fusion process. Finally, the best overall run brings
consistent improvement in MAP over runs of all flavors
and raise the MAP to 0.134.

4 Interactive Search

The IBM IMARS Multimedia Analysis and Retrieval Sys-
tem was used for our interactive search runs. This system
conceptually consists of two parts: the visual and seman-
tic analytics that were extracted from the test dataset and
ingested into the system to assist searching; the interactive
interface that takes in user-defined queries, supports mul-
tiple modes of interactions, and records the final results.
Figure 4 contains a snapshot of the IMARS interface with
TRECVID-2008 test dataset.
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Figure 4: IMARS system for interactive search.

4.1 Visual and Semantic Analytics

The IMARS system have included the following four
types of visual and semantic indexes to help searching:

e Low-level image features extracted from each
keyframe. Six different features are chosen from
the concept detection feature pool (Sec. 2): color
correlogram global, color histogram global, color
moments grid, wavelet texture grid, edge histogram
layout and thumbnail vector global. These features
are diverse enough so that nearest-neighbor search
would be more effective for different types of visual
scenes.

e Visual clusters and significance-based labeling.
Kmeans clustering was performed on the test videos
with the color histogram global feature.

e Visual near-duplicates, generated with the thumbnail
vector global feature with a tight clustering thresh-
old.

e Visual semantic concept scores.

4.2 Interactive System Features

The IMARS system is capable of two different modes of
searching and ranking based on the available analytics, it
further supports five other modes of interaction including
filtering, tagging, grouping, combining different queries
and recording interaction history. It analyzes the video
content in an off-line process that involves audio-visual
feature extraction, clustering, text analysis and concept
detection, as well as speech indexing.

The search algorithms return a ranked list over the pool
of available shots based on one or more scoring algo-
rithm. Text search on machine-translated speech tran-
script is based on the JuruXML semantic search en-
gine [MMA'02], and is the same as last year. We in-
dexed the ASR/MT transcripts corresponding to each sub-
shot from the shot reference provided by the ATT Sys-
tem [LGZ*07]. Temporal expansion to adjacent subshots
and query expansion are performed at indexing and re-
trieval time, respectively. Detailed descriptions can be
found in our previous report [CHLT07]. Nearest neigh-
bor search, in which the shots are returned based on their
Euclidean distance from the query. This method can be
applied to image features and semantic concept score vec-
tors.

Aside from ranking, the result list can interact with any
categorical attributes with filtering or grouping. Such at-



tribute include visual concepts, clusters, near-duplicates,
video or program information. Filtering prunes the list
and keeps the subset with one common attribute value,
whereas grouping rearranges the list according to the at-
tribute of interest. Different queries can be combined us-
ing weight averaging or boolean combination, available
through either the simple search box or a list of pull down
menus. Tagging provides a convenient way of saving in-
termediate results, and relevance feedback can also be
performed on the already selected positive shots to in-
crease recall. The system also performs query suggestion,
by either presenting a context list in the search box on-
the-fly, or looking through the result list and presents the
user with statistically significant terms or attributes.

A thin web client integrates all the search functionali-
ties above and allows the user to access the system from
anywhere with a network connection.

4.3 Runs and Results

We completed two interactive search runs using different
visual semantic vocabulary, as shown in Table 4.3. There
are eight searchers total, each completing about six ran-
domly chosen queries in either run. The search strate-
gies most use was to identify one or more relevant ex-
amples using visual concepts, text, or clusters, and then
drill down for more similar examples to increase recall.
Overall the performance variations across queries were
greater than that across searchers or across different se-
mantic indexes. The infMAP of the two runs are simi-
lar (with TypeC slightly better), and we would need more
query before making a comparative claim.

5 Conclusion

IBM Research team participated in the TREC Video Re-
trieval Track Concept Detection and Search tasks. In this
paper, we have presented preliminary results and experi-
ments for both tasks. More details and performance anal-
ysis on all approaches will be provided at the workshop,
and in the final notebook paper.
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