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1 Overview

In this paper, we present our systems for semantic indexing and surveillance event detection in
TRECVID 2010.

Semantic Indexing

We propose a statistical framework for semantic indexing using Gaussian mixture model (GMM)
supervector kernels with visual and audio features. For classifier we used a Maximal Figure-of-Merit
(MFoM) classifier and support vector machines (SVMs). Our four submitted runs are summarized
in Table 1. Our best method was ranked 10-th in all full submission runs and 5-th among 31 teams.

Table 1: Description of TT+GT models

Model Name Features and kernels Learning Scheme  Mean Inf. AP
F A TT+GT+runl-1 GMM supervector kernels with SVM 7.36%
MFCC and SIFT features
F A TT+GT+run2.2 LSI features with color his- MFoM-AP 3.72%
togram and Gabor coefficients
F A TT+GT+run3.8 GMM supervector kernels with SVM 6.37%

SIFT extracted from Harris
and Hessian affine regions

FA_TT+GT+rund_4 GMM supervector kernel with MFoM-F} 3.56%
SIFT extracted from Harris
affine regions

Surveillance Event Detection

We combine local features and global features and use them for detecting events. Local features
are based on a person detector and they represent movements of individuals. Global features are
based on optical flow features in video frames and they represent the flow of people. We tried
to detect PersonRuns, PeopleMeet and PeopleSplitUp events. The results of three events are as
follows; ANDCR of PersonRuns was 1.002, ANDCR of PeopleMeet was 1.003, and ANDCR of
PeopleSplitUp was 1.008.

This paper is organized as follows. Section 2 describes the GMM supervector kernel and the
MFoM classifier for semantic indexing. Section 3 describes our system for surveillance event detec-
tion using local and global features.



2 Semantic Indexing

2.1 Tokyo Tech’s System
This section describes the GMM supervector kernels with MFCC and SIFT features.

2.1.1 Feature extraction
We extract three types of visual and audio features as follows:

1. SIFT features with Harris affine detector

The SIFT feature proposed by Lowe [1] is invariant to image scaling and changing illumination
so that it is widely used for object detection and categorization. Moreover, the Harris affine re-
gion detector [2], which is an extension of the Harris corner detector, provides affine-invariant
regions. We use 32 dimensional SIF'T features whose dimension is reduced by applying prin-
cipal component analysis (PCA). The SIFT features are extracted not only from keyframes
but also from a half of all the image frames in a shot.

2. SIFT features with Hessian affine detector

We also extract SIFT features with the Hessian affine detector [2], which is complementary
to the Harris affine detector. The combination of several different detectors can improve the
robustness against noises.

3. MFCC features

For audio features, we extract mel-frequency cepstrum coefficients (MFCCs), which are widely
used in speech recognition. MFCCs describe the short-time spectral shape of audio frames.
We also use A MFCC, AA MFCC, A log power, and AA log power. The total dimension of
the audio features is 38.

2.1.2 GMM supervector kernel

The GMM supervector technique is proposed by Campbell [4] as a speaker recognition method
and applied to visual event detection by Zhou [5]. We also showed the effectiveness of the GMM
modeling and the combination of visual and audio models in the TRECVID high-level feature
extraction task ([6]). In this work, we provide a unified processing of visual and audio features by
using the GMM supervector kernel.

Let Xy = {z;};, be a set of MFCC or SIFT features extracted from the s-th shot. Here we
estimate a GMM parameter for each shot. The probability density function (pdf) of a GMM is
given by

K
p(]0) =D weN (2|, Si), (1)

k=1

where 0 = {w, ux, Zk}le is a set of parameters, K is the number of mixture components (vocab-
ulary size), wy is a mixing coefficient, and N (z|uy, Xx) is a pdf of Gaussian distribution with mean
vector uj and variance matrix .

The maximum a posteriori (MAP) adaptation technique is used to estimate GMM parameters.
For prior distribution for MAP adaptation, we use a universal background model (UBM), which is
estimated by using all the features in video data. In this work, we adapt only mean vectors from
the UBM as follows:
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where ,u,(CU) is the k-th mean vector of the UBM, 7 is a hyper parameter, and c;;, C are given by
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The GMM supervector is created by combining (normalized) mean vectors as follows:
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Finally, we obtain an RBF-kernel in the GMM supervector space given by
k(Xs, Xo) = exp (—y[|¢(Xs) — o(X)[13) - (5)

For classifier, we use SVM and MFoM (description of the MFoM classifier is in Section 2.2).
When we use SVM, we combine SVM scores for audio and visual features by calculating weighted
sum of the scores. The weight coefficients (that add up to one) are trained by using 2-fold cross
validation.

2.2 Georgia Tech’s System

Our learning framework is based on Linear Discriminative Function (LDF) classifiers trained
with a Maximal Figure-of-Merit (MFoM) algorithm proposed in [14, 15]. This year, we tried two
new schemes, namely: (1) maximizing the average precision (AP) metric directly by approximating
it with a staircase function and smoothing it with a set of sigmoid functions; and (2) kernelizing
the LDF's with features generated at Tokyo Tech as a collaboration system with Tokyo Tech. They
are discussed next.

2.2.1 Maximal Figure of Merit Learning Scheme

The ranking score for ordering instances according to their relevance or similarity is based on a
separation function that measures the distance between the target class and other competing classes.
T ={(X,Y)|X € RP,Y C C} be a given training set, where X is a D-dimensional feature for an
instance and Y is the corresponding label for X. For binary classification, C = {Ct,C~}, and C~
can be also divided into several subclasses as C~ = {C,--- ,C},;}. Then, we learn a discriminant
function, g; (X;A;), with the parameter set, A = {A;,0 < j < M}. The class separation function
is defined as follows:

d(X;A) = —g(X;A0) + 9~ (X5 A) (6)
where g7 (X; A) is called an anti-discriminant function for the positive class, defined as:
1 M 1/
g7 (X;A) =log |17 D exp(gi (X; )" (7)
i=1

which represents a geometric average of the competing scores among all negative subclasses. Here, if
M = 1, which means that only one class is used for the negative class, g~ (X; A) is just a confidence
score for the negative class. For the g(-) function, we used a linear discrimination function (LDF),
9j(X;Aj) = w; - X, where w; is a D-dimensional parameter vector.

Then, a loss function for a given objective performance metric, such as precision, recall, or Fy,
can be defined by approximating the four items in a contingency table with 0-1 sigmoid functions.
With a generalized probabilistic descent(GPD) algorithm, a classifier is learned to minimize the
desired loss function.



2.2.2 AP maximization with MFoM

We propose an extended MFoM called MFoM-AP [16] to directly maximize the ranking per-
formance metric, AP, which is used for the evaluation of the TRECVID 2010 SIN task. In [9], it
is shown that a learning algorithm to minimize classification errors cannot guarantee to maximize
any desired ranking quantity. Even a classifier maximizing another ranking performance metric,
Area Under the ROC curve (AUC), cannot guarantee to optimize AP [10]. Especially, for uneven
distributions of positive and negative instances which is often the case in our evaluation, a learning
scheme attempting to optimize the AP value is expected to lead to better AP values than the one
that minimizes the error rate or maximize other ranking metrics. Our preliminary experiments
using two-fold cross-validation sets showed that MFoM-AP outperforms MFoM-F} by a relative
improvement of 10.7% in AP.

One of the difficulties in optimizing AP is that AP, like other ranking performance metrics,
is a discrete measure and all related errors need to be approximated by 0-1 error functions, such
as a sigmoid. There have been approaches to approximate pair-wise rankings [12, 11]. However,
pair-wise training is almost prohibitive in the TRECVID case, where the size of training data is
extremely large.

In contrast MFoM-AP uses an efficient list-wise method to approximate AP. First, AP is con-
sidered as a function of all the positive and negative sample scores as follows:

AP:f(sf,s;,...,s&p,sf,sg,...,sX/[n) (8)

where M, and M,, indicate the numbers of positive and negative samples. And, s;r and s; are the

ith and j*" highest positive and negative scores, respectively. Assuming we can change the value
of a sample score, sj or s, , remaining the other scores not changed, S4p behaves like a staircase
function with regard to the individual sample score. The stair way function is approximated using
a combination of sigmoid functions to @j or 21\3]_ as a function of s or s; . Then, with chain

rule, we can compute the gradient of AP with respect to model parameters as follows:

8w—.185i+ dw = 9s; Ow
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where w indicates the classifier parameters. With this approximation, we only need to calculate
(M, + M,) gradients, where the computational complexity is significantly reduced compared to
(M, x M,) gradients in pair-wise approaches. For the ranking score, sj and s, we used the class
separation function in Eq (6) as:

si = —d(Xi; A) (10)

The model parameters are estimated using a probabilistic gradient descent algorithm [14, 15]. Specif-
ically, we used the inexact line search algorithm to find an appropriate learning rate. A detailed
presentation can be found in [16].

2.2.3 Kernelized MFoM approach based on subspace distance minimization

In this section, we pursue a viable solution to fuse feature extraction techniques from the Tokyo
Tech side and classifier design techniques from the Georgia Tech side. It is mainly inspired by the
idea of encoding pairwise distances between video shots into a kernel matrix K and the idea of
directly optimizing a performance metric during the MFoM training phase.

One issue that we had to pursue such a direction was that the MFoM learning approach presented
in the previous section was mainly aimed to handle feature vectors based on bag-of-features followed
by latent semantic indexing in which mostly linear score functions are used. On the other hand,



the feature extraction technique developed from the Tokyo Tech side constructed a kernel matrix
K by encoding pairwise distances between video shots. To take advantage of the kernel matrix K,
one typically introduces a Hilbert space H derived from K such as in SVM [7]. Similarly, we define
the score function g for a class j as follows:

gz, Aj) = Nijk(zi, @) + by, (11)
i=1
where Aj = [Ayj,..., )\nj]T is a parameter vector and b; is a bias for the class j and n is the number

of training data samples.

In Eq. (11), one should notice that the dimension of the parameter vector is increased to n
multiplied by the number of classes. Recall in this years’ TRECVID evaluation, n > 100k, which
makes learning the parameter vectors for all n computationally prohibitive. Therefore, we developed
a kernelized MFoM approach based on a subspace distance minimization criterion. Specifically,
given a subspace of the Hilbert space H, U constructed with the entire training samples, another
subspace of H, V was constructed with a subset of training samples in a way that a subspace
distance between U and )V was minimized. Then, only the parameter A;’s associated with the
training samples that were chosen to construct V were learned. This way, one can imagine that
learning the parameter vector now becomes feasible, while the learned vector is nearly optimal.
With the proposed technique, the score function in Eq. (11) is reduced to

d
g(iL',Aj) = Z /\ijk(xi,x) + bj for 7 € Id, (12)

=1

where Z; are an index set with a cardinality of d that indicates the selected training samples. The
method to select training samples are based on a particular spectral problem on the kernel matrix
K, called the Nystrom extension. Interested readers can refer [8] to see detailed methods along with
theoretical background.

2.3 Experiment and Result

Our results in the semantic indexing task are illustrated in Figure 1 and Figure 2. The best
result was 7.36% in terms of Mean Inf. AP, which is ranked 10-th in all the full-submission runs,
and 5-th among all the participated teams. The followings are details of our four submitted runs.
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Figure 1: Overview of results of the semantic indexing task in TRECIVD 2010. Mean Inf. AP of
our best run using MFCC and SIFT GMM supervector kernels was 7.36%.
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Figure 2: Comparison of performances in the semantic indexing task. Our 4 runs are plotted with
the max and median scores in TRECVID 2010.

FATT+GT_runl_1

This run used GMM supervector kernels and SVM classifier with MFCC and SIFT features
described in Section 2.1. We used K = 512 Gaussians for SIFT and K = 256 Gaussians for MFCC.
The UBMs were trained using 1,000,000 sample features. The parameter 7 for MAP adaptation was
set to 20.0 and the parameter ~ for the RBF kernel was set to d—! where d is the average distance
between two supervectors.

Resulting Mean Inf. AP for this run was 7.36%. The APs for the following concepts improved
by more than 10% relative to the run using only visual features (F_A_TT+GT_run3.3): “Singing”,
“Dancing”, “Cheering”, “Swimming”, “Throwing”, “Dark-skinned_People”, “Old_Pe ople”, “Class-
room”, and “Animal”’. According to the results, the audio model helps detect human actions and
events, essecially when a person is talking or singing to the camera.

F_A TT+GT_run2_2

F A TT+GT+run2-2 used Latent Semantic Indexing (LSI) features with 12-dimensional color
histogram and Gabor texture filter coefficients proposed in [13]. Classifiers were learned for each
color and texture features, and fused by the model based transform (MBT) method. FLA_TT+GT+run2-2
showed much better performance for the Lite evaluation in ranking among the submitted models
when compared to the Full evaluation. Due to the limited time, we carefully adjusted parameters
and learning rate only for the 10 proposed concepts of the Lite evaluation. Improved performances
for the Full evaluation are expected if we had used the same procedure for the other 120 concepts
as that for the 10 Lite version concepts.

FATT+GT _run3_3

This run used the same method as F*A_TT+GT_run1_1 but no audio (MFCC) features are used.
Inf. Mean AP for this run was 6.37%. We found that the number of SIFT samples per shot is the
main factor to have a high accuracy, and in fact, although we didn’t use the dense SIF'T descriptors,



we got good reults with the multi-frame technique and the interest point base region detectors. In
our future work, we will analyze at least how many SIF'T samples are needed to estimate the GMM
parameters.

F_A TT+GT_run4 4

For the model, F_A_TT+GT+run4_4, the kernelized MFoM approach described in Section 2.2.3
was used. For K, a kernel matrix based on SIF'T descriptors extracted at the interest points where
a Harris affine filter detected was chosen, which was the same matrix that Tokyo Tech used for one
of the runs. Then, we trained 130 binary-class models through optimizing a F; measure. Similar to
other runs, parameters were tuned using two-fold cross validation. Among a few parameters, only
two were adjusted; a regularization parameter varying from 0.01 to le-6 and a slope of a function
that determines the number of negative samples, which aimed to ease the unbalanceness between
positive and negative classes.

This run achieved the Mean Inf. AP value of 3.56%. The semantic features that this run per-
formed the best and the least were dark-skinned_people with the AP value of 12.5% and asian_people
with the AP value of 0.1%, respectively.

Initially, we hoped F_LA_TT+GT+run3.8 and F_A_TT+GT+run4_4 would return at least sim-
ilar results, but the kernelized MFoM approach did not provide good results compared to the run
from Tokyo Tech side, which used SVM. Our assessments are as follows: a) parameters were not
properly adjusted through cross validation (i.e. only two parameters were adjusted), b) a scheme
to select negative samples was not effective, and ¢) unlike our second run, a F} measure was op-
timized. In fact, the kernelized MFoM approach has been updated considerably since submission
as an algorithm to provide better initial solutions was developed. So we also hope that we can get
much better results for the next year’s evaluation.

In addition, we assumed that unlabeled samples are negative samples. After the submission, we
found that there exist some positive samples in unlabeled data, which are not negligible. We should
have been more careful to deal with the labeled data. Also, we need to find out the reason why the
TRECVID evaluation performances were considerably degraded compared to those of our two-fold
cross validation experiments.



3 Surveillance Event Detection

3.1 Introduction

In this year’s task we selected three events, PersonRuns, PeopleMeet and PeopleSplitUp, out
of the seven events TRECVID2010 provided. We chose them for two reasons. First, they appear
frequently in the training data set. Second, they are related to the whole-body motion, unlike those
related to the motion of body parts, such as Pointing.

Most previous methods first detect a person, then extract local features from the area where
a person likely exists. However, it is difficult to detect a person in a crowd. To overcome this
problem, we propose an event detection method combining a detector using local features obtained
by human tracking and that using global features in a whole image. As for local features, first,
we obtain person trajectories by the particle filter, and then, detect events using our event models.
As for global features, we detect events by a support vector machine (SVM) whose inputs are the
optical flow vectors extracted from a whole image frame. Finally we combine outputs from these
two detectors for event detection.

3.2 Local features
3.2.1 Outline

We use person trajectories as local features. First, we calculate the existence probability of
a person using a cascade of person detectors [17] at each pixel, and then, cluster those pixels
with high probabilities by using the particle filter. This year, we improve the deviation of the
existence probability of a person using background subtraction. In addition, we prevent particles
from concentrating on one person by placing them on sparse grid points in an image frame. Next,
person areas between successive frames are associated to obtain a person trajectory. Finally, we
detect each event using the trajectory information. We detail each step below.

3.2.2 Calculation of a existence probability of a person using a cascade of person
detectors

For each pixel in an image frame, the existence probability of a person is calculated using a
cascade of person detectors. Its input is an image with a given size 8 x 20, whose center is located
at the pixel. This cascade sequentially connects 30 simple detectors, each of which detector uses
one Haar-Like feature. Each detector examines the images not rejected by the previous detectors,
and rejects the images in which a person is not likely to exist. Therefore, the more detectors an
image is processed through, the more likely a person exists in it.

We can calculate the existence probability of a person based on the number of detectors that it
passes through. Let A; be the set of samples accepted by the i-th detector. The existence probability
of a person, E(i), is defined as follows:

L (i)
B0 = 0@ +nG) (13)

where p(i) is the number of positive samples (where a person exists) in A;, and n(4) is the number
of the other samples in A;. Furthermore, a sigmoid function is used to prevent particles from
concentrating on one person whose existence probability is high. The modified existence probability
E'(i) is given by

B 1

~ 1+exp(a(—=E®i) +b))

The parameters a and b are optimized by using training data.

E'(i) (14)



3.2.3 Person detection using a particle filter and clustering

A particle filter [18] detects objects in an image using many particles. We use 800 particles.

1. Set randomly the initial position and velocity of all particles at the first frame.

[\)

. Calculate the existence probability of a person for each particle using the cascade.

3. Move the particles with low probabilities to the region of those with high probabilities.
4. Move all particles according to their velocity for which random noise is added.

5. Go to the next frame and return to 2.

We cluster the particles every five frames (200ms duration). The resulting clusters are identified
as a person.
In order to improve a particle filter, we added the following two new processes this year.

Background subtraction

A still person is often detected as a person, but we would like to detect only “moving” persons. To
realize this, we decrease the existence probability of a person at the pixel whose color is close to the
background color. Specifically, we multiply the existence probability of a person by a factor 3:

B=1—aexp <2Ci22) , (15)

where

d=/(ra—15)2+ (ga — 90)* + (ba — bp)? (16)

is the difference between color (74, ga, bs) of the pixel and background color (74, gy, by) of the same
pixel. We set o = 0.93 and o = 10.

The initial background image and the initial background candidate image are both the image
of the first frame. We set the counters ¢ for all pixels to zero at first. Let ¢ be the image frame
color, d be the background color, and e be the background candidate color. Then we perform the
following update process for each pixel images every frame.

Ifle—d <T,

1. d =0.05¢ + 0.95d

2.t=t—-10

3. Ift <0, thend=c
Else if [c —e| < T7,

1. e=0.1c+0.9¢

2.t=t+1

3. If t > 100, then d =e and e = ¢
Otherwise,

1. t=t—-10

2. Ift <0,thene=c¢

T and T" are different for different pixels.
We increased the person detection accuracy by 3.8%, by using this background subtraction.



Decentration of particles

Particles are often concentrated on a few clusters, even when there exist many persons. We place
each particle on one of the 5 x 5 grid points to prevent these particles from concentrating on one
cluster. This decentration increased the person detection accuracy by 1.6%.

3.2.4 Human tracking

In order to obtain the trajectory of a particle cluster identified as a person, each cluster in the
i-th frame is associated with its corresponding cluster in the (i + 1)-th frame using the positions
and velocities of these clusters. Here we set the frame period to 200 ms. First we define position
p.(i) and velocity v, (i) of cluster ¢ at time frame ¢ as follows.

N N
Pe(i) = 1= S BH(), veli) = 1= D VH(). (17)
€ k=1 € k=1

where N, is the number of particles in cluster ¢, and p*(i) and v*(i) are the position and velocity
of k-th particle, respectively.
We predict position p.(i + 1) of the same cluster at the next frame as

pc(i + 1) = pc(i) + Vc(i>' (18)

Next we associate this cluster ¢ with the cluster nearest to p.(i + 1). If there is no cluster to
be associate with, or, the distance between two associated clusters is longer than a predetermined
threshold dy = 4|v.|, we assume that the trajectory ends at the present frame.

3.2.5 Event detection using event model

We describe how to make an event model utilizing th trajectory information. Here the input
features of each trajectory are the positions and velocities of the associated clusters for five frames.
Let 1.(i,j) be a distance of cluster ¢ from the i-th frame to the j-th frame. Then, we define the
score for each of the three events St as follows:

e PersonRuns: S;, = max |v.(i)]
0<i<4

3
e PeopleMeet: S, =Y (|ve(i)] — |ve(i +1)])
=0

e PeopleSplitUp: St = (1:(2,3) +1:(3,4)) — (1c(0,1) + 1(1,2))

We set the score for PeopleMeet to zero when there is at most one cluster.

3.3 Global features

As global features, we use optical flow vectors [19] extracted in 10(col) x 8(row) = 80 grid points
in an image. Their components are concatenated to make one feature vector. We use support vector
machines (SVMs) to detect event frames from the extracted feature vectors. For each of the three
events, we train one SVM. We use feature vectors extracted from the frames in which the event
occurs as positive samples, and use feature vectors extracted from the other frames as negative
samples. The output score from SVM, S¢, shows the degree how likely the event occurs.



Table 2: T values

] H Cameral ‘ Camera2 ‘ Camera3 ‘ Camera4 ‘ Camerab ‘

PersonRuns 177 100 143 150 231
PeopleMeet 57 28 45 30 30
PeopleSplitUp 10 13 12 18 20

Table 3: Results of TT4+GT group’s run for Surveillance Event Detection

’ H Ref ‘ Sys ‘ CorDet ‘ FA ‘ Miss ‘ ANDCR ‘

PersonRuns || 107 7 0 71 107 1.002
PeopleMeet || 449 8 0 8 | 449 1.003
PeopleSplitUp || 187 | 43 1| 42| 186 1.008

3.4 Combining local features and global features

The score S;, was obtained using the event models based on local features. And the score Sg
was obtained using the SVMs based on global features. Here we define a new score S¢ by combining
these two scores with a weight w as follows:

Sc=(1—-w)Sr + awSg, (19)

where « is a constant number to adjust the difference of dynamic ranges of St’s and Sg’s. We set
« = 50. The frames whose S¢’s are larger than the predetermined threshold T are detected as the
event frames. T values are shown in Table 2. The weight w in Eq. (19) was determined by our
preliminary experiments using training data; PersonRuns: w = 0.25, PeopleMeet: w = 0.81, and
PeopleSplitUp: w = 0.79. In this preliminary experiments, we tried to reduce the false detection
rate and to improve ANDCR, by controlling the weights.

3.5 Results

Table 3 shows our detection scores for the three events. Our ANDCR scores were still larger than
1.000. It may be because the background detector didn’t work well and because the convergence
speed of the particle filter was slow. We found that some persons were often misrecognized as the
background. Our assumption that there are no persons exist in the first frame of a video clip were
not satisfied in the testing data. Secondly, the particles often failed to converge to persons since the
video lengths of the test data were too short. Our future work will focus on improving our person
detector by estimating the existence probability more correctly.
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