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Abstract

In this paper, we describe our approaches that were tested in the TRECVID 2010 Content-Based
Copy Detection (CBCD) task. We introduce a method consisting of a feature degeneration and
sparse feature selection process for video detection tasks, which is highly robust as regards video
signal distortion. For audio detection tasks, we adopt a method based on spectral partitioning to
cope with additive interfering sounds. Both methods are key techniques for our Robust Media Search
(RMS) technology, which has already been deployed for various commercial services. Evaluation
results show the effectiveness of our methods.

1 Introduction

The task of content-based copy detection is to locate a fragment of a copy of known reference media
content in response to a media content query. The copy detection of media data, or media search,
has a wide range of applications including copyright management and enforcement, derivative tracking,
advertising or recommendations. Media search technology examines the similarity between a “query
signal,” which is a fragment of audio or video, and a “reference signal,” which is stored in a database. In
media search, robustness is particularly important because media signals are often converted to various
encoding formats, mixed with other signals such as background music, or even edited and re-edited into
different versions. Search speed is also crucial, considering the rapidly growing volumes of audio and video
being created, distributed and exchanged by individuals, public institutions and corporations around the
world.

TRECVID 2010 CBCD task evaluates the performance of copy detection systems with a test set
that includes various kinds of transformations. We participated in the campaign with one of the recent
implementations of our media search technology called Robust Media Search (RMS).

2 Robust Media Search (RMS) Technology

The RMS is a core technology for content-based audio and video media search and identification developed
by NTT. It has been used, for example, in copyright monitoring systems for video sharing sites on the
Internet that can instantaneously detect the uses of known content [1]. RMS offers excellent robustness
and a very high search speed by using coarsely-quantized features and spatiotemporal consistency.

As shown in Fig. 1, the audio and video signals are first converted to sequences of coarsely-quantized
digits. Note that not all of those digits are necessarily used for matching; we found that appropriately
choosing digits to be matched from among all digits not only simplifies the search but also greatly
improves the robustness of the search, which is performed by matching those features. Specifically, the
spatiotemporal accumulation of many such features enables us to achieve extremely high identification
accuracy.



Figure 1: RMS basic principle (left) and example of coarsely-quantized video feature (right)
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Figure 2: System Overview

2.1 System Overview

We tackled the TRECVID 2010 CBCD task with an RMS system configured for the task. The transfor-
mations in the TRECVID CBCD task includes more complex patterns than the transformations found
in the real world, we introduced a pre-processing stage in the video feature extraction. Figure 2 shows
the flow of our copy-detection system configured for the TRECVID 2010 CBCD task.

The reference audio/video data are converted into feature data and stored in a reference database. On
the other hand, query video data are pre-processed by several transformations as described in 3.2. The
extracted audio and video features are processed in an audio search engine and a video search engine,
respectively. Finally, we merge the audio and video results to generate a submission run.

The rest of the paper describes the approaches we used in the video and audio search engines and the
evaluation results.



3 Video Copy Detection

This section describes our approach to the copy detection task for video.

3.1 Coarsely-quantized Area Matching Method (CAM)

The Coarsely-quantized Area Matching method (CAM) is our video fingerprinting technology, which has
excellent robustness against various kinds of distortion [2, 3]. The CAM method consists of the following
five procedures.

3.1.1 Video feature extraction

Let vc(p, t) be the RGB value of pixels in the video data where c ∈ {R, G, B} denotes a color, p is a pixel
coordinate and t denotes time or frame index. We adopt the raw RGB value of a reduced-size image of
each frame in the video as a primitive video feature, that is,

xc(i, t) =
1
|Ii|

∑
p∈Ii

vc(p, t), (1)

where Ii (i = 1, 2, ..., W ) is a whole set of pixels in the i-th sub image. Here, W is determined empirically.

3.1.2 Temporal local normalization

The i-th element of the normalized feature vector yc(t) = [yc(1, t), ..., yc(W, t)] is defined as follows.

yc(i, t) =
1

σc(i, t)
(xc(i, t) − μc(i, t)) (2)

where

μc(i, t) =
1
M

M−�M/2�−1∑
j=−�M/2�

xc(i, t + j), (3)

and

σc(i, t) =

⎛
⎝ 1

M

M−�M/2�−1∑
j=−�M/2�

(xc(i, t + j) − μc(i, t))2

⎞
⎠

1/2

(4)

are an average and a standard deviation over a time window of size M . Here �·� denotes a flooring
operation.

3.1.3 Feature selection

We assume that an area that has a large deviance from a temporal local average is a salient part. Based
on this assumption, we select the top-N features for each frame with respect to the magnitude

zc(i, t) = |xc(i, t) − μc(i, t)|. (5)

Figure 3 shows the flow of this procedure.
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Figure 3: Example of feature selection and quantization

3.1.4 Quantization

Next, we quantize selected feature values. The quantization is carried out on locally normalized fea-
ture values. There are many approaches to quantization including non-linear quantization and vector
quantization. Here, we use a linear scalar quantization method for simplicity. The procedure is as follows:

y′
c(i, t) =

⎧⎨
⎩

�Q×(yc(i,t)+r)
2r � if |yc(i, t)| < r

Q − 1 else if yc(i, t) ≥ r
0 otherwise

, (6)

where r is the maximum number of quantization levels.

3.1.5 Time-series search

Finally, we perform a time-series search for the query feature in the reference feature database using codes
obtained by quantizing locally normalized feature values. The database is scanned with a sliding window
that has the same length as a query segment. Similarity is measured in terms of the Hamming distance
between masked query codes and reference codes, that is, by counting the number of co-occurrences of
the quantized codes at the corresponding positions in the window. This procedure is implemented very
efficiently by using a hash table whose key is a pair consisting of the code and coordinates.

3.2 Pre-processing for multiple feature generation

The conventional CAM is robust against various kind of transformations and distortions such as insertions
of pattern (T3), strong reencoding (T4), change of gamma (T5), blur, contrast, noise (T6, T7), and
picture in picture type 2 (the original video is in the background). However it is weak against geometrical



transformations such as picture in picture type 1 (T2, the original video is small) or flip, since the feature
of conventional CAM is dependent on the positions of the pixel values. Frame dropping, or the insertion
of black/white frame, also harms the CAM feature, because it causes a rapid change of intensity in the
temporal direction and CAM mistakes it for a “feature”.

To cope with video transformations in TRECVID, we introduced a pre-processing stage including
several transformations for generating multiple features. The stage was inserted before the video feature
extraction stage described in 3.1.1. The operations in the pre-processing stage are as follows:

anti-frame drop: Discard a frame in which most of the sub-regions are approximately 0 or 1.

monochrome: Convert the (R,G,B) color value to (Y, Pb, Pr).

intensity normalization: Normalizing the intensity by the average and standard deviations over the
whole frame. This process is effective for detecting slow or small movements.

flip: Flipping horizontally.

fixed crop: Cropping an image into sub-images. The combinations of the location and size of the sub-
images are { ul, ur, bl, br, c }× { 0.5, 0.4, 0.3 }.

automated crop: Find vertical and horizontal lines and crop an image.

4 Audio Copy Detection

This section describes our approach to the audio copy detection task.

4.1 Divide And Locate Method (DAL)

The Divide-And-Locate method (DAL) is an audio version of our RMS technology, which is especially
robust as regards additive noise [4]. The basic idea of the DAL is to divide a spectrogram into a number
of small regions and undertake matching for each region to locate it in the database. The small spectrum
components are quantized by vector quantization (VQ), and the matching operation is executed by
looking up a similarity table among the VQ codes and scanning index lists.

The outline of the DAL method is as follows. First, time-frequency power spectra are extracted for
reference signals. Each spectrum is then decomposed into a number of small time-frequency components
of uniform size and normalized by its average power, as in Fig. 4(a), where Gt,wm denotes the component
at time t and the frequency band wm of the reference signal. Next, the spectrum corresponding to each
component is classified by VQ. A VQ codebook is prepared for each frequency band using the LBG
algorithm. Then, an index is made for the VQ codes of the reference signal. The index is a list of
positions at which each VQ code appears. We perform these processes prior to the search stage.

The four main processing steps are described below.

Step 1 The time-frequency spectra of a query are extracted and decomposed into components [Fig. 4(a)],
as done for the reference signals in the pre-processing. Here, let Fti,wm be the decomposed compo-
nent at time ti of the query, where wm is the frequency band of Fti,wm ; let TQ = {t1, t2, ...} be the
entire set of ti of decomposed components of the query; and let W = {w1, w2, ...} be the entire set
of frequency bands. These decomposed components are normalized by power and classified by VQ
in each frequency band using the same VQ codebook as that used for the stored signals.

Step 2 As shown in Fig. 4(b), components similar to Fti,wm are detected. This is easily accomplished
by using a look-up table of the similarities between the VQ codes and the index constructed during
the pre-processing.
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Figure 4: Overview of DAL search method



S(TR) := 0 /* initialization */
for all wm ∈ W do

for all ti ∈ TQ do
for all c ∈ Sim(fV Q(Fti,wm)) do

for all tr ∈ Idx(c) do
/* voting on the time of reference signal

corresponds to the head of query segment */
S(tr − ti) := S(tr − ti) + s(Fti,wm , Gtr ,wm)

end for
end for

end for
end for
S(TR) := S(TR)/(|TQ||W |) /* normalization */

Figure 5: Calculation of similarity S(t) by voting

Step 3 As in Fig. 4(c), the similarities with respect to each component detected in Step 2 are integrated,
and the total similarity S(t) for each segment of the reference signal is calculated as

S(t) =
1

|TQ||W |
∑

wm∈W

∑
ti∈TQ

s(Fti,wm , Gt+ti,wm), (7)

where s(Fti,wm , Gt+ti,wm) is the similarity between Fti,wm and Gt+ti,wm . In the S(t) calculation,
s(Fti,wm , Gt+ti,wm) is evaluated only if Gt+ti,wm is detected as a component similar to Fti,wm in
Step 2.

Step 4 Segments whose total similarities exceed a certain threshold are determined to contain the (orig-
inal) copy of the query.

Figure 5 shows an algorithm for calculating S(t). Here, fV Q(·) is a function for mapping a spectrum
segment to a VQ code, Sim(·) is a look-up table that returns a set of VQ codes similar to an input VQ
code, Idx(·) is a list of positions at which each VQ code appears, and TR = {tR1, tR2, ...} denotes all
the time frames of the reference signal. As an example of a simple implementation, we can adopt the
definitions Sim(c) ≡ {c} and s(F, G) ≡ 1.

As ∑

c∈Sim(fV Q(Fti,wm ))

|Idx(c)| � |TR|, (8)

the above procedure is much more efficient than an exhaustive search, which requires a calculation cost
of order O(|TQ||W ||TR|).

5 TV2010 submissions and results

This section describes our submitted runs for the TRECVID 2010 CBCD task.

5.1 Audio+Video results

In 2010, audio only and video only results were not tested, but audio + video results were required to
be submitted. We merged the audio and video results using the following procedure for each query. We
empirically prioritized the audio result when the audio and video results conflicted.



Table 1: Search algorithms and settings
media algorithm configuration and pre-processing operations

a1 audio DAL High density, small window width
v1 video CAM normal + fixed crop + anti-frame drop + flip
v2 video CAM automated crop + normalized intensity + monochrome, internal

threshold =0.384 for balanced profile
v3 video CAM same as v2 except for the internal threshold=0.533 for no false

alarm profile

1. If there are overlapping audio and video results with same reference ID, the audio results are
accepted.

2. If there is no overlapping result, the audio results are accepted.

3. If there is no audio result, the video results are accepted.

When multiple results overlap on the same query segment, we accept only the top result regarding the
length of the detected segment to avoid false alarms.

5.2 Submitted results

We submitted four runs with varying combinations of search engine settings. The configuration for the
audio copy detection was the same among all runs (a1). For the video copy detection, we used three
configurations (v1, v2 and v3). These are summarized in Table 1.

The labels and combinations of the settings of the submitted runs are as follows.

NTT-CSL.m.nofa.0 : a1 + v1

NTT-CSL.m.balanced.1 : a1 + v1 + v2

NTT-CSL.m.balanced.2 : a1 + v1 + v3

NTT-CSL.m.nofa.3 : a1 + v1 + v3

NTT-CSL.m.balanced.2 and NTT-CSL.m.nofa.3 are identical except for the application profile.

5.3 Evaluation results

Figure 6 shows the evaluation results of the submitted “balanced” profile runs. The configuration v3 is
a strict version of the configuration of v2. The difference between the two configurations was small, we
found no significant difference between NTT-CSL.m.balanced.1 and NTT-CSL.m.balanced.2.

Figure 7 shows the evaluation results of the submitted “no false alarm” profile runs. We can see that
the NDCR score of NTT-CSL.m.nofa.3 is slightly better than that of NTT-CSL.m.nofa.3. This means
that pre-processing before the video feature extraction is working well.

We analyzed the detailed results and found that the queries that contain short segments (e.g. less
than 10 seconds) to be detected tend to be missed and result in false negatives for all the runs in this
implementation.

6 Conclusions

In this paper, we described our approaches and results in the TRECVID 2010 CBCD task. The transfor-
mations in the TRECVID CBCD task include more complex patterns than the transformations frequently
found in the real world, and so we introduced a pre-processing stage in the video feature extraction. The
evaluation results proved a good accuracy and robustness of our methods against various transformations.
Our future tasks will include improving detection accuracy for very short segments.
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Run type:                           audio+video
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Run name:                           NTT-CSL.m.balanced.2
Run type:                           audio+video
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Figure 6: Evaluation results for balanced profile runs
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Figure 7: Evaluation results for no false alarm profile runs
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