Exponential Structures

By Richard P. Stanley

Generating functions of the type exp2{°f(n)x"/n!M (n) occur throughout enu-
merative combinatorics. We give a general setting for obtaining such generating
functions in which the numbers M (n) have an explicit combinatorial meaning.
Applications are given to the computation of Mobius functions and related
invariants of certain posets.

1. Introduction

In the course of his investigation of Ising ferromagnets, Garrett Sylvester [10]
was led to consider the poset (partially ordered set) Q, of all even partitions 7 of
the set [2n]={1,2,...,2n}, i.e., partitions « of [2n] such that every block of = has
even cardinality. The elements of Q, are ordered in the usual way by refinement,
so that Q, is a subposet (actually a sub-join-semilattice) of the well-known
lattice ITp, of all partitions of [2n]. Let Q, denote Q, with a unique minimal
element O adjoined, and let . denote the M&bius function (in the sense of [7]) of
Q,, Let 1 denote the unique maximal element of Q,, (i.e., the partition of [2n]
into one block), and set p, = p(O 1). For instance, ;= —1 and p,=2. Sylvester
[10, p. 145] showed that

-1
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=tanhy.
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2n
- i =logcoshy. (D
= (2n)!
n=1
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An equivalent result, though not stated in terms of posets and Mobius functions,
appears in [6, Lemma 3].

It is natural to ask for a general theory which includes Sylvester’s result as a
special case. What abstract properties of the posets Q, cause results like (1) to be
valid? In this paper we construct a general class of posets, called exponential
structures, which behave analogously to Sylvester’s posets Q,. With each ex-
ponential structure is associated an “exponential formula” and more generally a
“convolutional formula”, which is an analogue of the well-known exponential
formula of enumerative combinatorics, as described for instance in [4] or [9, Sec.
6). The convolutional formula allows us to derive generating function identities
such as (1) in a mechanical way. We also obtain the result that certain sequences
of polynomials related to exponential structures in a natural way form a
sequence of binomial type in the sense of [5] and [8]. Some of the basic
invariants associated with sequences of binomial type have a simple combina-
torial interpretation in this setting.

Our exponential structures are closely related to the exponential prefabs of
Bender and Goldman [1]. Exponential structures and exponential prefabs are
basically two ways of looking at the same phenomenon: the former from the
viewpoint of posets and the latter from the viewpoint of abstract algebra. In the
context of posets certain concepts become more natural, such as the Mobius
function and the fundamental invariants M (n) described below. Our work may
be regarded as a direct generalization of [2, Sec. 5.2], which sets up an
isomorphism between the algebra of multiplicative functions in the incidence
algebra of IT, and the algebra of formal power series under composition. For the
sake of simplicity, however, we will not use the language of incidence algebras.
The reader familiar with incidence algebras will have little difficulty in translat-
ing our results into that context.

Throughout this paper we let P denote the positive integers and C the

complex numbers, and we let [n]={1,2,...,n} for nEP.

2. Definitions and examples

An exponential structure is a sequence Q=(Q,,(Q,,...) of posets satisfying the
following three axioms:

(i) For each positive integer n, Q,, is finite and has a unique maximal element
1, (denoted simply by 1), and every maximal chain of Q, has n elements (or
length n—1). )

(i) If #€Q,, then the interval [=,1] is isomorphic to II, (the lattice of
partitions of a k-element set) for some k. We then write |7|= k. Thus if |7|=k,
then every maximal chain from # to | has k elements.

(iii) Suppose 7 € Q, and p is a minimal element of Q, satisfying p < 7. Then
by (i) and (ii), [p, 1]=11,,.

Hence by the well-known properties of II, (e.g., [7, p. 359], [2, Sec. 5.2]) we
have [p,7]=TI¢1 X TI52X - - - XII% for unique non-negative integers a,,a,,...,q,
satisfying Siq;=n (and Za;=|7|). We require that the subposet {0 E€Q,:0< 7}
be isomorphic to Qf*X Q52X - -+ X Q%. In particular, if p’ is another minimal
element of Q, satisfying p’ < =, then [p,7]=[p’,7]. We call (a,,a,,...,a,) the type
of =.



Exponential Structures 75

Intuitively, one should think of Q, as forming a set of “decompositions” of
some structure S, of “size” n into “pieces” which are smaller S;’s. Then (ii) states
that given a decomposition of S, one can take any partition of the pieces of the
decomposition and join together the pieces in each block in a unique way to
obtain a coarser decomposition. Moreover, (iii) states that each piece can be
decomposed independently to form a finer decomposition.

If Q=(Q,,Q,, ...) is an exponential structure, let M (n) denote the number of
minimal elements of Q,. As will be seen below, all the basic combinatorial
properties of Q can be deduced from the numbers M (n). We call the sequence
M= (M (1),M(2),...) the denominator sequence of Q.

We now proceed to some examples of exponential structures.

Example 2.1. The prototypical example of an exponential structure is given
by Q,=1II,, the lattice of partitions of an n-element set. In this case we have
M(n)=1.

Example 2.2. Let V, be an n-dimensional vector space over the finite field
GF(q). Let Q, consist of all collections { W, W,,...,W,} of subspaces of V,
such that dim W;>0 for all i, and such that V, =W, ®W,®- - © W, (direct
sum). An element of Q, is called a direct sum decomposition of V,. We order Q,
in the obvious way by refinement, i.e., { W), Wo,..., W, } <{W|,W,..., W/} if
each W, is contained in some W;. We call Q, the poset of direct sum decomposi-
tions of V,. It is easily seen that (Q;,Q,,...) is an exponential structure with
M(n)=q(g)(l+q)(l+q+q2)- co(l+qg+q*+--- +q"" ) /nl. We may regard
Q, as a “g-analogue” of the partition lattice IL,, since putting g=1 in the above
expression for M (n) yields M (n)=1. Although Q, is a g-analogue of II,, it is
not a very satisfactory one. Ideally, a g-analogue of II, would be a geometric
lattice which somehow “contains” (perhaps as a sublattice) the lattice L(V)) of
subspaces of V,. But Q, is not even a lattice; and it contains in a natural way
copies of the lattice IT,, not L(V}). For most purposes the Dowling lattices [3]
are better g-analogues of II,, though they are actually G-analogues, where G is a
finite group. On the other hand, the exponential structure (@), @y, .--) is well
suited for studying direct sum decompositions of V.

Example 2.3. Let G, be a graph (without loops or multiple edges) on the
vertex set [n]={1,2,...,n}, and let = be a partition of [n] such that each block B
of 7 is independent in G (i.e., no two vertices in B are connected by an edge of
G). The pair (G,,7) may be regarded as a colored graph (with unlabeled colors)
on the vertex set [n]. Define a partial order on the set Q, of all colored graphs
(G,,7) on [n] by setting (G, 7)< (H,,0) if (i) 7< o in II,, and (ii) if i and j are
two vertices which do not belong to the same block of o; then i and j are con-
nected by an edge in G, if and only if they are connected in H, . Then Q =

(0,0, ...) is an exponential structure with M (n)=2(2). An easy modificatign
yields for any integers ¢ > 1and k > 2 an exponential structure with M (n)=q\*/.

n n n
Even greater generality is possible, e.g., M(n)= q$2)q23)- . qlgk) for any fixed
positive integers g,. Such generalizations seem rather contrived and not of much
value for solving problems of enumerative combinatorics.

Example 24. Let Q=(0Q,,0,, ...) be an exponential structure with de-
nominator sequence M= (M (1), M (2),...). Fix a positive integer r, and define
0" to be the subposet of Q,, consisting of all 7€ Q,, of type (a},ay...,a,,),
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where a,=0 unless r divides i. Then QV=(Q, Qz(’),..‘.) is an exponential
structure with denominator sequence (M, (1), M, (2), ...) given by

(ny= ML, @

In particular, if O, =11, then Q,® is the poset considered by Sylvester. .
Example 2.5. Let r be a positive integer, and let S be an n-element set. Define

an r-partition of S to be a set

7= {(BII’BIZ!""Blr)’(le’Bzz""7B2r)""’(Bkl’BkZ”"’Bkr)} (3)

satisfying:

(i) For each j€[r], the set 7;={ By, Byj,..» By} forms a partition of § into k

blocks, and

(ii) FOI' fiXCd i, IB“, = lBiZI =...= lBirI'
The set Q, of all r-partitions of S has an obvious partial o'rdering by refiixfment
which makes (Q,,0,, ...) into an exponential structure with M (n)=n!""". The
type (a;,as,...,a,) of 7€ Q, is equal to the type of any of the.‘partltlons T [By
(ii), all the 7’s have the same type.] An application of r-partitions to counting

matrices Witljl equal row and column sums appears in [9, Example 6.11].

The poset Q, of all r-partitions of S is a kind of product.of r copies of II,.
One can devise similar “products” of various other exponential structures. If Q
and Q’ have the denominator sequences M and M, then the “proc'luc§ structure”
analogous to 2-partitions will have a denominator sequence N satisfying N (n)=

M (n)M’(n)n!. Further details are left to the reader.

3. The convolutional formula and the exponential formula

The basic combinatorial properties of an exponential structure will be obtained
from the following lemma.

LEMMA 3.1.  Let Q=(Q,, 0, ...) be an exponential structure with denominator
sequence (M (1), M (2),...). Then the number of mE Q, of type (aay,...,a,) is
equal to

n!'M(n)
119 .. plog - 'a"!M(l)a'- . .M(n)a,. .

Proof: Let N= N (a,,...,a,) be the number of pairs (o,7) where o is a minimal
element of Q, such that 6 <« and = has type (ay,...,a,). On the one hand we
can pick ¢ in M (n) ways, and then pick 7 > 0. The number of choices for 7 is
the number of elements of II, of type (a,...,a,), which is well known to equal
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n!/11%. .. ploq ... q ! Hence

3 n!M(n)
N= e et ol )

On the other hand, if K is the desired number of » € Q, of type (q,,...,qa,), then
we can pick 7 in K ways and then choose ¢ <#. Since Q, has M (n) minimal
elements, the poset Q1 X Q32X - -+ X Q7 has M (1)*'M (2)*2- - - M (n)?» minimal
elements. Hence there are M (1)"'M (2)%2- - - M (n)*~ choices for o, so

N=K-M(1)" - M(n)™ (5)

The proof follows from (4) and (5). O

We are now in a position to state and prove the basic combinatorial property
of exponential structures.

THEOREM 3.2 (The convolutional formula). Let (Q,,Q,, ...) be an exponential
structure with denominator sequence (M (1),M (2),...). Given functions f:P—>C
and g :P—C, define a new function h:P—C by

h(n)= 2 f)"FQ2)% - f(n)*g(|7]),

TEQ,

where w has type (ay,ay,...,a,) and where |m|=a,+a,+ - - - +a,. Define a formal
power series F(x), G(x), H(x) with complex coeﬁ'tczents by

F(x)= 2 f(n)x"

" n!M(n)’
6=, SO

o~ h(n)x"
H(x)= 2 n!M(n)’
1
Then -H (x)= G(F (x)).
Proof: We have

6(re)= 2 5P [2 {j}(")}

=1 i=1

2 g(k) 2 o f(bl)"‘f(bk) bt +h

=1 bk!M(bl)"'M(bk) ’
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where the inner sum is over all k-tuples (b,,...,b,) EPX. Let g; be the number of
b;’s which are equal to i, so that k=3q;; and let n=2b= Eza We obtain

G (F(x))

_ N x" N n!'M(n)a(ay,...,a,) _ .
-2 n!M(n) 2 1 pl%M (1) - - M (n)*k! ()8 ()

ne
where the inner sum is over all solutions in non-negative integers g; to n=2ia,
where k=3a, and where a(ay,...,a,) is the number of dlstmct k-tuples
(by,..-,b,) with exactly a; of the b’s equal to i. Clearly a(ay,...,a, ) is just the
multinomial coefficient k!/a;!a,!- - - a,!. Hence

G (F(x))
_ 00 X7 n!M(n) a . .. na"
_,,21 n!M(n) Z 119 - nl%gt- g IM ()" -« M(n)* s S () g (k).

By the previous lemma, we conclude

GUF()= 3 Sres 3 S f )R
and the proof follows. []

COROLLARY 3.3 (The exponential formula). In Theorem 3.2 let g(n)=1 for all
n&P. Then

14+ H (x)=eF™.

4, Applications

We will now apply Theorem 3.2 to certain counting problems associated with
exponential structures in general. For some further applications which deal with
specific exponential structures (viz., r-partitions) see [9, Sec. 6]. The simplest

application is that of counting the total number |Q,| of elements of the poset Q.

Since

1Q,l= X 1,

TEQ,

we simply substitute f(n)=1, g(n)=1, h(n)=|Q,| in Theorem 3.2 (or Corollary
3.3) to obtain

|Qn}x”
I+ 2 M) pz n’M(n)

n=1



Exponential Structures 79

More generally, we can ask for the number S, of #€Q, satisfying |7|=
Define a polynomial

w,N)= 2 A= 3 S~
k=1

TEQ,

Now by Theorem 3.2, if we put f(n)=A and g(n)=1 [or equivalently f(n)=1
and g(n)=A"], then we have h(n)=W,(\) and

d W,,(}\)x" > n
e 2, m“"?[@l nm’hn)}

1

This shows that the polynomials W,(A)/ M (n) form a polynomial sequence of
binomial type in the sense of [5] and [8]. Moreover, the corresponding delta

operator ¢(D) satisfies
ad n
<_l> xX)= ___'x____—

where g<~1>(x) denotes the inverse formal power series to g(x) [5, Corollary 2, p.

189; 8, Corollary 3, p. 693].
Now let Q,, denote Q, with a umque minimal element 0 adjoined, and let [

denote the Mobius function [7] of Q,, We wish to compute the integer p,=
(0, 1). More generally, define a polynomial

w, == 2 pOmA",

TEQ,

so that — p,, is the coefficient of A. The defining recursion {7, p. 344]

H’(O!x)=_ 2 ;L(y,x), x>6
O<y<x

for the M&bius function yields

)= 3 X plomA
TE€EQ, 0EQ,
o< T

=2 2 plo,mAr.

o Tp0

Now for fixed 6 €Q,, the poset of all 7 > ¢ is isomorphic to the partition lattice
IT,. Hence by a well-known property of partition lattices (e.g., [7, Example 1, p.
362]) the inner sum above is given by (A),, where A),=AA—1)--- A—k+1).
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Hence

Wn(A):’_ 2 (}\)]ap
0€Q,

or in the language of the calculus of finite differences,
Aw, (0)= k'S, (6)

with S, as above. We now put f(n)=1 and g(n)=(), in Theorem 3.2 to obtain
h(n)=w,(\) and

X w,M)x" 3 W), F(x)”
+ Z n!'M (n) - z n!

0

i( JE(xy=[1+F ()]
0

=[1+Z_—n!1\xl(n)}' (7)

In particular, the polynomials w,(A)/M (n) also form a sequence of binomial
type. Since — p, =(d/dA)w,(0), we obtain

0 A
d n
_Z n’M(n) K[H-Z n!]l);(n)J

A=0

=log[l+2l n!]lxl(n)}. ®

Hence the delta operator ¢g(D) for w,(A) is given by

X"

(~1 = —

()= > L
=~ n!M(n)

As a special case, suppose Q,=I19?, the lattlce of even partitions studied by
Sylvester. Then by (2), M (n)=(2n)!/n!2", s

‘LL,,2'l "_ = 2
@)1 log[l+2 (2n)!}'
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Put 2x=y? to obtain

2n

0
By
- 21 21 =]logcoshy,

which is (1). Note also that in the case Q,=1II, [so M (n)=1], (8) reduces to

oS) n

- “;f =x.

1

This is because I1, already has a unique minimal element, so when we adjoin 0
the Mébius function g, = p(0, 1) will vanish unless Q, has length one, ie., n=1.

There is a general result which includes our results on w,(A) and W,(A). Let ¢
denote the zeta function of O, (as defined in [7]), and define for any integer r
the polynomial

P(rN= = [ @m-¢ 10,

TEQ,

Since ¢°0,m)=0 for all 7€Q,, we have P,(0,)=w,(}) and P,(1,\)=W, ().
Moreover, when r €P we have that {"(0,7)—{ r=1(0,7) is the number of chains
7 <7< -+ <m = in @, so the coefficient of A% in P,(r,A) is equal to the
number of chains 7, < 7, < -+ < 7, with |7,|=k.

In the same way that (7) was proved it can be shown that for any integer r,

X P (rA)x” X P (r—1,1)x"
1+2m=exp{}\21 W] 9

1

Hence for fixed r the polynomials P,(r,X)/ M (n) are of binomial type and their
inverse delta operators g¢~ (D) are determined by (9). One can write down
such daunting formulas as

2 P, (4,0)x" & o
n = x"/ntM@m) 1) —
+ 21 _——n!M(n) exp{}\[exp(el l) 1]}

and

A

ad P,,(—Z,}\)x" ad x"
1+21 ——nm'(—n—)—-— 1+log 1-!-10g{1+2l n!M(n)‘
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Moreover, Eq. (6) generalizes to

2 [AkPﬂ (I‘,O)] _2_:(- =Pn (r+ 1’}\)’
k

where A operates on the variable A.

Finally we remark that for fixed A and n, it is easy to see that P,(r,A) is a

polynomial function of r. For instance,

P(r,A)=A,
Pz(r,}\)=M(2))\r+}\[M(2)}\—M(2)+ 1].

Hence there is a natural way to define P,(r,A) for any r€C, and Eq. (9)
continues to remain valid with this definition.

9.

10
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