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Layered Neural Nets for Pattern Recognition 
BERNARD WIDROW, FELLOW, IEEE, RODNEY G. WINTER, AND ROBERT A. BAXTER 

Abstract-Adaptive threshold logic elements called ADALINES can 
be used in trainable pattern recognition systems. Adaptation by the 
LMS (least mean squares) algorithm is discussed. Threshold logic ele- 
ments only realize linearly separable functions. To implement more 
elaborate classification functions, multilayered ADALINE networks can 
be used. 

A pattern recognition concept involving first an “invariance net” 
and second a “trainable classifier” is proposed. The invariance net can 
be trained or designed to produce a set of outputs that are insensitive 
to translation, rotation, scale change, perspective change, etc., of the 
retinal input pattern. The outputs of the invariance net are scrambled, 
however. When these outputs are fed to a trainable classifier, the final 
outputs are descrambled and the original patterns are reproduced in 
standard position, orientation, scale, etc. I t  is expected that the same 
basic approach will he effective for speech recognition, where insensi- 
tivity to certain aspects of speech signals and at the same time sensitiv- 
ity to other aspects of speech signals will be required. 

The entire recognition system is a layered network of ADALINE 
neurons. The ability to adapt a multilayered neural net is fundamental. 
A new adaptation rule is proposed for layered nets which is an exten- 
sion of the MADALINE rule of the 1960’s. The new rule, MRII, is a 
useful alternative to the back-propagation algorithm. 

INTRODUCTION 
ETWORKS of neural elements can be utilized to N construct trainable decision-making systems. The 

basic building block is the “adaptive linear neuron,” or 
ADALINE [l] ,  shown in Fig. 1. This is an adaptive 
threshold logic element. In a digital implementation, this 
element has at time k an input signal vector or  input pat- 
tern vector Xk = [xoxItx2, - * * x,J whose components are 
weighted by a set of coefficients. The weight vector is Wk 
= [wokw~,w2, - * w,,] ’. The element produces an analog 
output, the inner product yk = XIWk = w,‘x,. The bias 
weight wok is connected to a constant input, xo = + 1, and 
it controls the threshold level. The element also produces 
a binary output, qk. Decisions are made by a 2-level quan- 
tizer. The binary 

The “desired response” is a special input signal used 
to train the neuron. During the training process, input pat- 
terns and corresponding desired responses are fed to this 
element. An adaptation algorithm automatically adjusts 
the weights so that the output responses to the input pat- 
terns will be as close as possible to their respective. de- 
sired responses. Often this is done by adjusting the 

1 output is q k  = SGN ( yk). 
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weights in accord with a least squares adaptation algo- 
rithm (the LMS algorithm [l], often called the Widrow- 
Hoff Delta Rule [2]). This algorithm minimizes the sum 
of the squares of the errors over the training set, where 
the error is defined as the difference between the desired 
response and ,the analog output. 

The desired response and the components of X ,  could 
be analog or  binary. In neural networks, however, inputs 
and outputs are often binary and are preferred to be +1 
rather than the unsymmetrical 0, 1. The weights are es- 
sentially continuously variable, and can take on negative 
as well as positive values. 

Once the weights are adjusted and the neuron is trained, 
its responses can be tested by applying various input pat- 
terns. If the neuron responds correctly, with high proba- 
bility, to input patterns that were not included in the train- 
ing set, it is said that generalization has taken place. The 
capability of generalization is a highly significant attri- 
bute of neural nets. 

Although the LMS algorithm originated in the field of 
neural nets, its greatest impact today is in the field of 
adaptive signal processing [3]. Commercial applications 
are in the field of telecommunications, adaptive equaliz- 
ers [4] for high-speed digital modems, and adaptive echo 
cancellers [5] for long-distance telephone circuits and sat- 
ellite channels. The LMS algorithm is widely used in 
adaptive signal processing and telecommunications. 
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LINEAR SEPARABILITY 
With n binary inputs and one binary output, a single 

neuron of the type shown in Fig. 1 is capable of imple- 
menting certain logic functions. There are 2" possible in- 
put patterns. A general logic implementation would be 
capable of classifying each pattern as either + 1 or - 1, 
in accord with the desired response. Thus, there are 22n 
possible logic functions connecting n inputs to a single 
output. A single neuron is capable of realizing only a small 
subset of these functions, known as the linearly separable 
logic functions [ 6 ] .  These are the set of logic functions 
that can be obtained with all possible settings of the weight 
values. 

In Fig. 2, a two-input neuron is shown. In Fig. 3, all 
possible binary inputs for a two-input neuron are shown 
in pattern vector space. In this space, the coordinate axes 
are the components of the input pattern vector. The neu- 
ron separates the input patterns into two categories, de- 
pending on the values of the input-signal weights and the 
bias weight. A critical thresholding condition occurs when 
the analog response y equals zero: 

y = XlWl + x2w2 + WO = 0 ( 1 )  

:. x2 = -- - T X 1 .  
w2 w2 

This linear relation is graphed in Fig. 3. It comprises a 
separating line which has slope and intercept of 

( 3 )  
W WO 

w2 w2 
slope = - 1; intercept = - -. 

The three weights determine slope, intercept, and the side 
of the separating line that corresponds to a positive out- 
put. The opposite side of the separating line corresponds 
to a negative output. 

As sketched in Fig. 3, the binary inputs are classified 
as follows: 

( + l ,  +1) + + 1  

( + l ,  -1)  3 + I  

(-1, -1) -+ + 1  

(-1, +1) -1. (4) 
This is an example of a linearly separable function. An 
example of a nonlinearly separable function with two in- 
puts is the following. 

( + l ,  +1) 3 +1 

( + l ,  -1) + -1 

(-1, -1) 3 + I  

(-1, +1) 3 -1. ( 5 )  

No single line exists that can achieve this separation of 
the input patterns. 

With two inputs, almost all possible logic functions can 
be realized by a single neuron. With many inputs, how- 

X 1  

X 

x = + 1  
0 

Fig. 2.  A two-input neuron 

Line 

(-1:l) I (+1.-1) 

Fig. 3.  Separating line in pattern space. 

ever, only a small fraction of all possible logic functions 
are linearly separable. Since the single neuron can only 
realize linearly separable functions and generally cannot 
realize most functions, combinations of neurons or net- 
works of neurons can be used to realize nonlinearly sep- 
arable functions. 

Before discussing networks of neurons, a simple means 
for achieving nonlinear separability with a single neuron 
with nonlinearities in its input signal path is shown next. 

NONLINEAR SEPARABILITY-NONLINEAR INPUT 
FUNCTIONS 

Nonlinear functions of the inputs applied to the single 
neuron can yield nonlinear decision boundaries. Consider 
the system illustrated in Fig. 4. The threshold condition 
is 

y = WO + XlWl + x:wll + X I X 2 W 1 2  

+ x:w22 + x2w2 = 0 .  ( 6 )  
With proper choice of the weights, the separating bound- 
ary in pattern space can be established as shown, for ex- 
ample, in Fig. 5 .  The nonlinearly separable function ( 5 )  
can be realized by this configuration. Of course, with suit- 
able choice of the weight values, all of the linearly sep- 
arable functions are also realizable. The usage of such 
nonlinearities can be generalized for more inputs than two 
and for higher degree polynomial functions and cross 
product functions of the inputs. One of the first works in 
this area was done by Specht [7], [8] at Stanford in the 
1960's, and later by Ivankhnenko [9] in the 1970's. 

NONLINEAR SEPARABILITY-MADALINE NETWORKS 
Another approach to the implementation of nonlinearly 

separable logic functions was initiated at Stanford by Hoff 
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Fig .  6. A two-neuron form of M A D A L I N E .  

[ lo ]  and Ridgway [ l l ]  in the early 1960's. Retinal inputs 
were connected to adative neurons in a single layer. Their 
outputs in turn were connected to a fixed logic device pro- 
viding the system output. Methods for adapting such nets 
were developed at that time. An example of such a net- 
work is shown in Fig. 6. Two ADALINES are connected 
to an AND logic device to provide an output. Systems of 
this type were called MADALINES (many ADALINES). 
Today such systems would be called neural nets. 

With weights suitably chosen, the separating boundary 
in pattern space for the system of Fig. 6 would be as 
shown in Fig. 7. This separating boundary implements 
the nonlinearly separable logic function ( 5 ) .  

MADALINES were constructed with many more in- 
puts, with many more neurons in the first layer, and with 

I 
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Fig. 8 Neuronal implementation of A N D .  OR, and MAJ  logic functions 

various fixed logic devices in the second layer such as 
AND, OR, and MAJority vote-taker. These three func- 
tions are in themselves threshold logic functions, as illus- 
trated in Fig. 8. The weights given will implement these 
functions, but the weight choices are not unique. 

LAYERED NEURAL NETS 
The MADALINES of the 1960's had adaptive first lay- 

ers and fixed threshold functions for the second (the out- 
put) layers. The neural nets of the 1980's have many lay- 
ers, and all layers are adaptive. The best-known multilayer 
work is by Rumelhart er al .  [2]. A 3-layer adaptive net- 
work is illustrated in Fig. 9. 

It is a simple matter to adapt the neurons in the output 
layer, since the desired responses for the entire network 
(which are given with each input training pattern) are the 
desired responses for the corresponding output neurons. 
Given the desired responses, adaptation of the output layer 
can be a straightforward exercise of the LMS algorithm. 
The fundamental difficulty associated with adaptation of 
a layered network lies in obtaining desired responses for 
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Fig. 9. A three-layer adaptive neural network 

the neurons in the layers other than the output layer. The 
back-propagation algorithm (reported earliest by Werbos 
[ 121 then discovered by Parker [ 131, and again discovered 
by Rumelhart et al. [2]) is one method for establishing 
desired responses for the neurons in the “hidden layers,” 
those layers whose neuronal outputs do not appear di- 
rectly at the system output (refer to Fig. 9). 

Generalization in layered networks is a key issue. The 
question is: how well do multilayered networks perform 
with inputs that were not specifically trained in? Most of 
the work in the field deals with learning the training pat- 
terns. The question of generalization will be important 
and some good examples are being developed where use- 
ful generalizations take place. Many different algorithms 
may be needed for the adaptation of multilayered net- 
works to produce required generalizations. Without gen- 
eralization, neural nets will be of little engineering sig- 
nificance. Merely learning the training patterns can be 
accomplished by storing these patterns and their associ- 
ated desired responses in a look-up table. 

The layered networks of Parker and Rumelhart et al. 
utilize neuronal elements like the ADALINE of Fig. 1, 
except that the quantizer or  threshold device is a soft lim- 
iting “sigmoid” function rather than the hard limiting 
“signum” function of the ADALINE. The various back- 
propagation algorithms for adapting layered networks of 
neurons require differentiability along the signal paths of 
the network, and cannot work with the hard limiter of the 
ADALINE element. The sigmoid function has the nec- 
essary differentiability. However, it presents implemen- 
tational difficulties if the neural net is to be ultimately 
constructed digitally. For this reason, a new algorithm was 
developed for adaptation of layered networks of ADA- 
LINE neurons with hard limiting quantizers. The new al- 
gorithm is an extension of the original MADALINE ad- 
aptation rule [ 141, [ 151 and is called MADALINE rule 11 
or MRII. The idea is to adapt the network to properly 
respond to the newest input pattern while minimally dis- 
turbing the responses already trained in for the previous 
input patterns. Unless this principle is practiced, it is dif- 
ficult for the network to simultaneously store all of the 
required pattern responses. 

LMS OR WIDROW-HOFF DELTA RULE FOR THE 

SINGLE NEURON 
The LMS algorithm applied to the adaptation of the 

weights of a single neuron embodies a minimal distur- 
bance principle. A self-normalizing form of this algo- 
rithm can be written as 

(7) 
a 

w k + ,  = wk + 7 E k X k ,  
I x k l  

where Wk+l is the next value of the weight vector, wk is 
the present value of the weight vector, Xk is the present 
input pattern vector, and Ek is the present error (i.e., the 
difference between the desired response and the analog 
output before adaptation). With binary k 1 input vectors, 
I xk ( *  equals the number of weights. 

With each adapt cycle, the above recursion formula is 
applied, and the error is reduced as a result by the fraction 
a. This can be demonstrated as follows. At the kth inter- 
action cycle, the error is 

( 8 )  

(9) 

Ek = dk - xiwk. 
The error is changed (reduced) by changing the weights. 

AEk = A(dk - xiwk) = -xiAwk. 
In accord with the LMS rule (7), the weight change is 

Combining (9) and (lo), we obtain 

= - ( Y E k .  (11) 
Therefore, the error is reduced by a factor of CY as the 
weights are changed while holding the input pattern fixed. 
Putting in a new input pattern starts the next adapt cycle. 
The next error is then reduced by a factor of a, and the 
process continues. The choice of a controls stability and 
speed of convergence. Stability requires that 

2 > a > 0 .  (12) 

Making a greater than 1 generally does not make sense, 
since the error would be overcorrected. Total error cor- 
rection comes with a = 1. A practical range for a is 

(13) 1.0 > a > 0.1. 

Fig. 10 gives a geometric picture of how the LMS rule 
works. wk+ equals Wk Dlus A wk in accord with ( lo) ,  and 
AWk is parallel with the input pattern vector xk also in 
accord with (10). By (9), the change in the error will be 
equal to the negative dot product of x k  with AW,. Since 
the LMS algorithm selects AWk to be collinear with xk, 
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the needed error correction is achieved with the smallest 
magnitude of weight vector change. When adapting to re- 
spond properly to a new input pattem, the responses to 
previous training patterns are therefore minimally dis- 
turbed, on the average. The algorithm also minimizes 
mean square error 131, for which i t  is best known. 

ADAPTATION OF LAYERED N ~ U R A L  N m s  BY T H E  

MRII RULE 
The minimal disturbance principle can be applied to the 

adaptation of the layered neural network of Fig. 9 in the 
following way. Present a retinal pattern vector and its as- 
sociated desired response vector. The training objective 
is to reduce the number of output errors (the Hamming 
distance between the net's actual output and desired re- 
sponse vectors) to as low a level as possible. Accord- 
ingly, when the first training pattern is presented to the 
neural network, the first layer will be adapted as required 
to reduce the number of response errors at the final output 
layer. In accord with the minimal disturbance principle, 
the first-layer neuron whose analog response is closest to 
zero is given a trial adaptation in the direction to reverse 
its binary output. When the reversal takes place, the sec- 
ond layer inputs change, the second layer outputs change, 
and consequently the network outputs change. A check is 
made to see if this reduces the number of output errors. 
If so, the trial change is accepted. If not, the weights are 
restored to their previous values and the first-layer neuron 
whose analog response is next closest to zero is trial 
adapted, reversing its response. If this reduces the number 
of output errors, the change is accepted. If not. the weights 
are restored and one goes on to adaptively switch the neu- 
ron with an analog response next closest to zero. and so 
on, disturbing the neurons as little as possible. After 
adapting all of the first-layer neurons whose output re- 
versals reduced the number of network output errors. neu- 
rons are then chosen in pair combinations and trial adap- 
tations are made which can be accepted if output errors 
are reduced. After adapting the first-layer neurons in sin- 
gles, pairs, triples, etc. ,  up to a predetermined limit in 
combination size, the second layer is adapted to further 
reduce the number of network output errors. The method 
of choosing the neurons to be adapted in the second layer 

is the same as that for the first layer. I t '  furthcr error re- 
duction is nceded. the output laqer can be adaptcci. This 
is straightforward. since the output-la) er desired re- 
sponses are the desired responses for- thc network. After 
adapting the output layer. the responses nil1 be correct. 
The next input pattern vector and i t 4  associated clesired 
response vector are then applied to the neural network anc l  
the adaptive process rcsiinies. 

When training the network to rcapond corrcctl) to thc 
various input patterns, thc "golden rule" is: g i i , c .  rlio / I -  
sponsibilit~ to the) tit~iiroti or rici~rori.~ tlitrt ( ' ( i t /  riio.\t c.ii.sil\, 
i~.s.su/iie it .  In other words. clori '1 r n c A  ill(. hotit a n y  mor-c 
than necessary to achieve thc desired training objective. 
This mini ma 1 -d is t urban ce M RI1 al gori t h in has bee n t e s t cd 
extensively. and appears to converge and behave ro- 
bustly. It appears to be a very useful algorithm and does 
not require differentiability throughout the net, A great 
deal of effort will be required to derive its matheniatical 
properties. To simulate it  and make i t  ~ , o r k  is straighttor- 
ward. Simulation gives insight into its bchavioral char- 
acteristics. A parallel effort is contemplated: a )  to analqze 
the algorithm mathematicall\. and b) to improve i t  a n t i  
explore its application to practical problems on an cmpir- 
ical basis. 

APPLICA,~ ION O F  L,.\yt:RbI> N F T W O R K ~  i o  PA I I - ~ . R \  

RFC.O(;NII IO\ 
It would be useful to devise a neural net configuration 

that could be trained to classify an important set o f  train- 
ing patterns as required. but have these responses be in- 
variant to left-right. up-down translation within the field 
of view, and to be invariant to rotation and  scale change. 
It should not be necessary to train the s) stem with the 
specific training patterns of interest i n  all combinations of 
translation, rotation. and scale. 

The first step is to show that a neural netuork exists 
having these propertics. Thc next step is to obtain training 
a 1 g ori t h ni s to ac h i ev e the de s i red o b.i e c t i v e s , 

I N V A R I A N C E  I O  UP-Dowu. L ~ F I  -RI(;H I P.\ I I t . ~ \  

TKA\SLA I I O \  

Fig. 1 1 shows a planar networh configuration ( a  "slab" 
of neurons) that could bc used to map a retinal image into 
a single-bit output such that, with proper weights in the 
neurons of the network, the response will be insensiti\,e 
to left-right translation and/or up-don n translation. Thc 
same slab structure can be replicated. with ditferent 
weights. to allow the retinal pattern to be independently 
mapped into additional single-bit outputs. all insenhiti\ e 
to left-right. up-down translation. 

The general idea is illustrated in Fig. 12.  The retinal 
image having a given number of pixels can be mapped 
through an array of slabs into a different image that could 
have the same number of pixels or possibly inore or fewer 
pixels. depending on the nuniber of slabs used. In any 
event, the mapped image would be insensitive to up- 
down, left-right translation of the original image. The 
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Fig. 12. A translation-invariant neural network and an adaptive two-layer 
descrambler network. 

mapped image in Fig. 12 is fed to a set of ADALINE 
neurons that can be easily trained to provide output re- 
sponses to the original image as required. These output 
responses would classify the original input images and 
would at the same time be insensitive to their left-right, 
up-down translations. 

In the systems of Figs. 11 and 12, the elements labeled 
“AD” are ADALINES. Those labeled “MAJ” are ma- 
jority vote-takers. (If the number of input lines to MAJ is 
even and there is a tie vote, these elements are biased to 
give a positive response.) The AD elements are adaptive 

neurons and the MAJ elements are fixed neurons, as in 
Fig. 8. 

How the weights are structured in the system of Fig. 11 
to cause the output to be insensitive to left-right and up- 
down translation needs some further explanation. Our 
purpose here is to show that sets of weights exist that will 
achieve this function. How to adaptively obtain such 
weights is a separate issue. Consider the diagram of Fig. 
13. This system is insensitive to up-down translation. Let 
the weights of each ADALINE in Fig. 13 be arranged in 
a square array. Let the corresponding retinal pixels also 
be arrayed in a square pattern. Let the array of weights of 
the topmost ADALINE be designated by the square ma- 
trix (Wl) .  Let the array of weights of the next lower 
ADALINE be TDl( Wl) .  The operator TDl represents 
“translate down one.” This set of weights is the same as 
that of the topmost ADALINE, except that they are en 
masse translated down by one pixel. The bottom row is 
wrapped around to comprise the top row. The patterns on 
the retina itself are wrapped around on a cylinder when 
they undergo translation. The weights of the next lower 
ADALINE are TD2( Wl),  and those of the next lower 
ADALINE are TD3( W, ). As the input pattern is moved up 
or down on the retina, the roles of the various ADA- 
LINES interchange. Since the outputs of the four ADA- 
LINES arc all equally weighted by the MAJ element, 
translating the input pattern up-down on the retina will 
have no effect on the MAJ element output. 

The network of ADALINES of Fig. 13 is replicated on 
the slab of Fig. 11. Let the first column of weights in Fig. 
11 be chosen like the weights of the column in Fig. 13. 
Let the second column of weights be chosen as 

The topmost weights of this column are the weights ( W ,  ) 
translated right one pixel. The next lower set of weights 
are translated right one, translated down one, and so forth. 
The pattern of weights for the entire array of ADALINES 
of Fig. 11 is given by 

- 

From column to column, the weight patterns are trans- 
lated left-right. From row to row, the weight patterns are 
translated up-down. Since the outputs of all of the ADA- 
LINE units are equally weighted and dealt with symmet- 
rically by the output MAJ element, it is clear that the out- 



when designing a pattern recognition system for a specific 
application that translational invariance would be a re- 
quired property, it would make sense to manufacture the 
appropriate symmetry into a fixed weight system. leaving 
only the final output layers of ADALINES of Fig. 12 to 
be plastic and trainable. Such a preprocessor would defi- 
nitely work, would provide a very high speed response 
without requiring scanning and searching for the pattern 
location and alignment, would be an excellent application 
of neural nets, and would be a useful practical product. 

Presenting a pattern to the retina causes an ininiediate 
response from the output majority element in Fig. 14. I t  
is clear that this response will be unchanged b) translation 
of the pattern on the retina. Rotation of  the pattern by 90" 
causes an interchange of the roles of the slabs in making 
their responses, but sir,ce they are all weighted equally by 
the output majority element. the output response is un- 
changed by 90" rotation and translation. 

I f  one wished to have insensitivity to 45" rotation. the 
system of Fig. 14 would need eight slabs. and thc upper 
I eft - ha nd co rn e r A D A L I N E S w (3 u 1 d have w e i g h t ni ;it r i c L' 5 

INVARIANCE TO Ro I'ATION 

The system represented in Fig. 12 is designed to pre- 
process retinal patterns with a translational invariant fixed 
neural net followed by a two-layer adaptive descrambler 

rotated by 45" relative to corresponding neighbors. I n  
each slab, the weight matrices would be left-right. up- 
down translated. Rotation insensitivity can bc achieved 
for much smaller angular increments by increasing the 
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Fig. 14. A network for translational and rotational invariance. 

number of slabs. Rotation of the weight matrices by small 
angular increments can only be done with large retinas 
having high resolution. All of this involves neural net- 
works having large numbers of weights. 

A complete neural network providing invariance to ro- 
tation and translation would involve the structures of both 
Figs. 12 and 14. Each slab of Fig. 12 would need to be 
replaced by the multiple slab and majority element system 
of Fig. 14. 

INVARIANCE TO SCALE 
The same principles can be used to design invariance 

nets to be insensitive to scale or pattern size. Establishing 
a “point of expansion” on the retina so that input pattems 
can be expanded or contracted with respect to this point, 
two ADALINES can be trained to give similar responses 
to patterns of two different sizes if the weight matrix of 
one were expanded (or contracted) about the point of ex- 
pansion like the pattems themselves. The amplitude of the 
weights must be scaled in inverse proportion to the square 
of the linear dimension of the retinal pattern. Adding many 
more slabs, the invariance net can be built around this 
idea to be insensitive to pattern size as well as translation 
and rotation. 

INVARIANCE TO PERSPECTIVE 
Insensitivity to change in perspective is a difficult at- 

tribute to attain for three-dimensional objects. The fol- 
lowing is a simpler problem. Consider the flat object of 

Fig. 1 5 .  Two-dimensional perspectives of a two-dimensional object. 

Fig. 15 being photographed from various vantage points 
indicated by the arrows. Each two-dimensional photo will 
be of a certain perspective relative to the original object. 
The photos could be spatially quantized and provided as 
retinal inputs to a recognition system. The recognition 
problem requires first an insensitivity to perspective. The 
requirement is similar to insensitivity to scale, except that 
the vertical scale is fixed and the horizontal scale is vari- 
able. The method of approach is similar to that for insen- 
sitivity to scale, rotation, and translation. 

SPEECH RECOGNITION 
The idea of an invariance net followed by a trainable 

classifier can, it is believed, be used effectively for speech 
recognition. Speech could be spectrally analyzed and 
sampled over time in each of a set of bandpass ranges, or 
it could be encoded by adaptive linear prediction and the 
LPC coefficients could be sampled over time, or  some 
other form of preprocessing could be practiced to obtain 
input patterns for a speech classifier. Speech recognition 
requires insensitivity to certain aspects of speech and, at 
the same time, sensitivity to other aspects. Trainable sen- 
sitivity and insensitivity is needed. The system structure 
of Fig. 12 will have the proper attributes for this appli- 
cation. This will soon be tested and reported. 

SIMULATION EXPERIMENTS 
The system of Fig. 12 was computer simulated. The 

training set consisted of 36 patterns each arranged on a 5 
x 5 pixel retina in “standard” position. Twenty-five 
slabs, each with twenty-five ADALINES, having weights 
fixed in accord with the symmetry patterns of (15), were 
used in the translation-invariant preprocessor. The pre- 
processor output represented a scrambled version of the 
input pattern. The nature of this scrambling was deter- 
mined by the choice of the upper-left ADALINE weight 
matrices ( W l ) ,  , ( W,,). These weights were chosen 
randomly, the only requirement being that the input pat- 
tern to preprocessor output map be one-to-one. (This 
choice of weights produced a very noise intolerant map- 
ping. Methods of training-in these weights using MRII to 
customize them to the training set are being investigated.) 

MRII was used to train the descrambler. The descram- 
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Fig. 16. Laming  curve for 2-layer 25 by 25 adaptive descrambler. 
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Fig. 17. A MADALINE system for pattern recognition. 

bler was a 2-layer system with 25 ADALINES in each 
layer. The initial weights of the descrambler were chosen 
randomly. (All random weights in the system were cho- 
sen independently, identically distributed uniformly on the 
interval ( - 1, + 1 ). ) Patterns were presented in random 
order, each pattern being equally likely of being the next 
presented. The desired response used was the training pat- 
tern in standard position. The system as a whole would 
then recognize any trained-in pattern in any translated po- 
sition on the input retina and reproduce it in standard po- 
sition at the output. A typical learning curve for the de- 
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scrambler is shown in Fig. 16. The graph shows the num- 
ber of incorrect pixels at the output, averaged over the 
training set, every 50 pattern presentations. 

Much work on MRII remains to be done, including de- 
tailed studies of its convergence properties and its ability 
to produce generalizations. Preliminary results are very 
encouraging. Applying the algorithm to problems will lead 
to insights that will hopefully allow a mathematical anal- 
ysis of the algorithm. 

SUMMARY 

A general concept for pattern recognition is described 
involving the use of an invariance net followed by a train- 
able classifier. The key ideas are illustrated in Fig. 17. 
The invariance net can be trained or designed to produce 
a set of outputs that are insensitive to translation, rotation, 
scale change, perspective, etc., of the retinal pattern. 
These outputs are scrambled, however. The adaptive lay- 
ers can be trained to descramble the invariance net outputs 
and to reproduce the original patterns in “standard” po- 
sition, orientation, scale, etc. The reader is referred once 
again to Fig. 17. 

Multilayer adaptation algorithms are essential to mak- 
ing such a scheme work. A new MADALINE adaptation 
rule (MRII) has been devised for such a purpose, and pre- 
liminary experimental results indicate that it works and is 
effective . 
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