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MEASUREMENT, CHARACTERIZATION, AND PREDICTION
OF STRONG GROUND MOTION

WiLLiaM B. JoYNER AND Davip M. Boore*

The estimation of ground motion in future earthquakes for engineering purposes is one of the
primary motivations for the measurement and processing of strong-motion data. The response
spectrum is the best representation of ground motion because it takes account of the natural
frequencies of structures. The conventional practice of using peak acceleration to scale standard
response spectral shapes is likely to lead to serious error, except at high frequencies, because
the shapes of response spectra depend strongly on magnitude and local geologic site conditions.
Magnitude, distance, and site conditions are the principal variables used in predicting future ground
motions. A number of predictive relationships derived from regression analysis of strong-motion
data are available for horizontal peak acceleration, velocity, and response spectral values. Theoretical
prediction of ground motion calls for stochastic source models because source heterogeneities control
the amplitude of ground motion at most, if not all, frequencies of engineering interest. Stochastic
source models have been used for predicting ground motion in regions such as eastern North America
where little recorded data are available. Ground motion predictions for large earthquakes have also
been made by summation of recordings of smaller earthquakes. This technique does not take proper
account of directivity except in very special circumstances. Aside from directivity, it is possible to
do the summation in such a way that the low-frequency and high-frequency limits of the spectrum of

the predicted motion obey appropriate scaling laws, but the spectrum may be deficient in amplitude
at intermediate frequencies.

INTRODUCTION

There has been great progress in the last ten years in the study of strong earthquake ground
motion and its engineering applications. New data and analysis have provided the basis for more
reliable empirical estimates of ground motion in future earthquakes. Theoretical methods have
been developed for estimation of ground-motion parameters and simulation of ground-motion time
series. These methods are particularly helpful for regions such as eastern North America where
strong-motion data are sparse. In what follows we survey the field, first reviewing developments
in ground-motion measurement and data processing. We then consider the choice of parameters
for characterizing strong ground motion and describe the wave-types involved in strong ground

motion and the factors affecting ground-motion amplitudes. We conclude by describing methods for
predicting ground motion.

Our intent was to make this paper a comprehensive and self-contained manual describing the
newer methods of ground-motion prediction. We feel that this goal justifies the added detail and

complexity in the paper and the introduction of much material from seismology that many engineers
may find unfamiliar.

* U.S. Geological Survey, 345 Middlefield Road MS 977, Menlo Park, CA 94025
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MEASUREMENT AND PROCESSING OF STRONG GROUND-MOTION DATA

Measurement

Since the time the first strong-motion record was obtained in 1933 most strong-motion data
have been recorded on accelerographs with photographic recording. These instruments are triggered
by the motion itself, and some part of the initial motion is therefore lost. Numerical calculations
with the data require that the photographic film or paper record be digitized. At first this was done
manually; later the process was automated. Now, digital recording instruments using force-balance
accelerometers are coming into wider use (Anderson et al., 1983). Digital recording eliminates the
delays and loss of accuracy associated with digitizing film or paper records and also permits recovery
of the initial portion of the signal. Borcherdt ef al. (1984) give a tabulation and discussion of the
characteristics of digital recording systems available in the United States. As more experience is
gained with digital recorders their use can be expected to increase further, but conventional recorders
are still predominant, and it will be many years before they can be replaced. Of particular interest
among new developments in digital instrumentation is the GEOS recording system (Borcherdt et al.,
1985), a broad-band system with 16-bit dynamic range that facilitates the simultaneous recording of

large and small motions at the same site. GEOS is especially suited for aftershock studies (Borcherdt
et al., 1983; Boatwright, 1985).

Special attention has recently been devoted to the collection and analysis of data from spatially
distributed arrays and networks of recording instruments. By analyzing data recorded on the
El Centro differential array during the 1979 Imperial Valley, California, earthquake Spudich and
Cranswick (1984) were able to show that the ground motion consisted of waves radiated from
a compact region around the rupture front and that the rupture front progressed more or less
coherently from the hypocenter to the limits of the rupture. Data from the SMART 1 digital array
in Taiwan have been used to examine the spatial coherence of ground motion (Bolt et al.,1984;
Abrahamson, 1985). Because of the earthquake that has been predicted at Parkfield, California, a
network of strong-motion instruments has been established there by the California Strong-Motion
Instumentation Program (McJunkin and Shakal, 1983), and special strong-motion arrays arrays
have been installed there by the Electric Power Research Institute and the California Strong-Motion
Instrumentation Program and by the U.S. Geological Survey. At Anza, California, a broad-band,
wide-dynamic-range, digital network of short-period seismometers supplemented by accelerographs

has been set up to study earthquake source processes in a seismic gap along the San Jacinto fault
(Berger et al., 1984).

One of the most important data sets in strong-motion seismology is that recorded in the 1979
Imperial Valley, California, earthquake because it gives good coverage of the near-source region
for a shallow earthquake of moment magnitude as large as 6.5. The outstanding need now is for
near-source data from shallow earthquakes of larger magnitude. Other significant data sets recently
recorded are listed in Table 1. The 1985 earthquakes in Chile and Mexico are of particular importance
because they contributed the first and only extensive data sets from the near-source regions of large
subduction-zone earthquakes.

Processing

Early methods of strong-motion data processing consisted of subtracting a best-fitting parabola
from the accelerogram before integrating to velocity and displacement (references on early methods
are given by Trifunac, 1971). Subtraction of the parabola—called baseline correction—had no
physical basis, but served to remove long-period errors that would be grossly magnified by double
integration. Modern data-processing methods are derived from proposals by Trifunac (1971, 1972)
that a high-pass digital filter be used for the baseline correction and a centered finite-difference
approximation be used to correct for the effect of the instrument.
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TABLE 1. RECENT STRONG-MOTION DATA SETS

Earthquake Day Month Year Magnitude References
GMT
Coalinga, California 2 5 83 M 6.7  Shakal and McJunkin, 1983
Maley et al., 1983
Borah Peak, Idaho 28 10 83 Ms 7.3  Jackson and Boatwright, 1985
Morgan Hill, California 24 4 84 My 6.2  Brady et al, 1984a, b

Huang et al., 1985
Shakal et al., 1986a

Central Chile 3 3 8 Ms 7.8 Saragoni, 1985
Michoacan, Mexico 19 9 85 Ms 8.1 Anderson et al., 1986
Nahanni, Canada 23 12 85 Ms 6.9 Weichert et al., 1986
Palm Springs, California 8 7 86 M; 5.9 Huang et al., 1986
Porcella et al., 1987a
Chalfant Valley, California 21 7 86 Mp 6.0 Maley et al., 1986
San Salvador, El Salvador 10 10 86 Ms 54  Shakal et al., 1986b
Whittier Narrows, California 1 10 87 Mg 6.1  Etheredge and Porcella, 1987
Shakal ef al., 1987
Superstition Hills, California 24 11 87 ML 58  Huang et al., 1987

M16.0 Porcella et al., 1987b

The processing scheme initially developed from Trifunac’s proposals (Trifunac and Lee, 1973)
was used successfully on hundreds of seismograms, but there are two problems with it. The finite-
difference approximation used for the instrument correction is satisfactory if the sampling rate is
high enough, but at 50 samples per second, the rate used for most records processed before 1975,
the approximation is poor for frequencies above about 10 Hz (Raugh, 1981; Shyam Sunder and
Connor, 1982). Figure 1 compares the response of the finite-difference instrument-correction filter
for sample rates of 50 and 200 samples per second with the exact response of the ideal filter for a
natural frequency of 25 Hz and damping of 0.6 critical. Most present-day record processing is done
at 200 samples per second, a rate at which the finite-difference approximation is adequate as shown
in Figure 1. Other methods of instrument correction, however, are preferable. The correction can
be applied exactly in the frequency domain, or it can be implemented to arbitrarily high accuracy
with a time-domain convolution filter (Raugh, 1981; Shyam Sunder and Connor, 1982).

Shyam Sunder and Connor (1982) pointed out a second problem with the method described by
Trifunac and Lee (1973). In the method an acausal high-pass filter is applied and then the result
is integrated without including the filter transient that precedes the start time of the unfiltered
data. Integrating an acausally filtered record without including the leading filter transient has the
effect of shifting the result by a constant amount and can be thought of as reintroducing the low
frequencies that were removed by the filter. In the method described by Trifunac and Lee the effects
of excluding the leading filter transient were removed later by filtering the velocity and filtering
the displacement. For that and other reasons, however, the method was unnecessarily complex. If
the filter transients are included, it is possible to use a simple processing scheme consisting only of
instrument correction and high- and low-pass filtering of the acceleration, followed by integration
to velocity and displacement. The filter transients should also be included in the computation
of response spectra; otherwise, spurious long periods will be incorporated into the result. The
low-pass filter is necessary if instrument correction is to be performed because the instrument
correction strongly amplifies any high-frequency noise present in the record (Figure 1). Because the
accelerograph response is flat up to about half of the natural frequency and the natural frequency is
typically about 25 Hz for modern instruments, instrument correction is necessary only for the sake
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FIGURE 1. The exact response of the ideal instrument-correction filter for a natural frequency of 25 hz and
damping of 0.6 critical compared with the response of the finite-difference approximation for 50 and 200 samples pers. ‘e

of the high-frequency components of the record. The high-pass filter is generally necessary because
any low-frequency noise present in the record is strongly amplified by the double integration to
displacement and by the computation of response spectral values at long periods. Direct use of
time-domain convolution for the high-pass filter operation requires excessive computer time, much
more than recursive filters or frequency-domain filters. Each of the processing stages may be done in
a number of different ways. To insure satisfactory results, however, care must be taken with respect
to certain key points. If filtering is done in the frequency domain, the record must be padded with
enough zeros to avoid wrap-around error. If bidirectional recursive filtering is done, the record must
be padded with enough zeros to accomodate the filter transient at the end of the record. If acausal
filters are used, as stated previously, subsequent integration and the calculation of response spectra
must include the filter transient that precedes the origin time of the original record. It is advisable
to avoid using high-pass filters with too sharp a cutoff. Such filters may produce oscillations at
frequencies near the cutoff frequencies, as shown by Fletcher et al. (1980).

In the last few years the U.S.Geological Survey has completely revised its standard processing
scheme (Raugh, 1981; Converse et al., 1984). Previously the Survey used the methods described by
Trifunac and Lee (1973). The revised scheme combines the low-pass filter and instrument correction
and offers the option of implementing the combination either in the frequency domain or by time-
domain convolution. An advantage of combining the low-pass filter and instrument correction is
a substantial reduction in the number of filter weights required for specified accuracy in the time-
domain convolution for the instrument correction. For routine operations the high-pass filter is
a bidirectional Butterworth recursive filter, although other options are available. The current -
version contains provision for including the leading filter transient in subsequent computations,
but that feature is not described in the latest published manual (Converse, 1984). The California
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Strong-Motion Instrumentation Program uses a processing scheme that is a modified version (Shakal
and Ragsdale, 1984) of the methods described by Trifunac and Lee (1973). Shyam Sunder and
Connor (1982) proposed a scheme in which the instrument correction is performed by time-domain
convolution and the low- and high-pass filters are combined and implemented by an elliptical
recursive filter. Khemici and Chiang (1984) describe a system in which instrument correction,

high- and low-pass filtering, and integration are all combined into one operation in the frequency
domain.

Record-processing procedures are available which, if properly applied, are entirely adequate for
the ranges of frequency and amplitude that have engineering significance. The most critical problem
in applying the record-processing procedures is choosing the cutoff frequency for the high-pass filter.
The best recent approach to that problem (Shakal and Ragsdale, 1984; Lee and Trifunac, 1984;
Gerald Brady, written communication, 1987; Kenneth Campbell, oral communication, 1987) is to
digitize one of the fixed traces which are present on the records from most modern analog strong-
motion instruments and use the results to estimate the spectrum of the noise in the processing
system. The proper cutoff frequency is chosen on the basis of a comparison between the spectrum
of the noise and the spectrum of the accelerograph trace. Whether a filter with a given cutoff
frequency removes a significant portion of the signal can be judged with the help of some results
from seismology. For earthquakes large enough to be of engineering interest, the Brune (1970, 1971)
spectrum of acceleration, which has been shown to be a good description of strong ground motion
(Hanks and McGuire, 1981; Boore, 1983; Anderson and Hough, 1984), is approximately flat at
intermediate frequencies down to a corner frequency fo below which the spectrum is proportional
to frequency squared. The corner frequency is given by

fo=4.9 x 10°8(Ac/M,)!/3

where the units of fo, 8, Ao, and My are Hz, km/s, bars, and dyne-cm, respectively. For 8 = 3.2
km/sec and Ao = 100 bars (Boore, 1983) the formula simplifies to fo = 10~(M-5)/2 where M
is moment magnitude. Unless the cutoff frequency is significantly less than the corner frequency,
application of a high-pass filter should be expected to modify the signal substantially. For example,
an earthquake of magnitude 6 has a corner frequency of about 0.3 Hz according to the formula.
Unless the cutoff frequency is much smaller than 0.3, we should expect the signal from a magnitude
6 earthquake to be significantly changed by filtering.

Most strong-motion accelerograph data include low-frequency noise sufficient to make high-pass
filtering mandatory, and the permanent displacement is thereby lost. If data of sufficient accuracy
are obtained, and if the instrument is not subjected to tilt, then it should be possible to forego
high-pass filtering and doubly integrate the acceleration to displacement, retaining the permanent
displacement. In the case of triggered accelerographs this feat would require determination of the
initial velocity. The processing system used by the U.S. Geological Survey (Converse, 1984) contains
a procedure for obtaining the initial velocity. The accelerogram is first integrated to velocity without
high-pass filtering. The final portion of the velocity trace after the strong motion has subsided is
then fit by a least-squares straight line, on the assumption that the velocity must be zero after the
strong motion ceases. In fitting the straight line, tapered weights are applied at the beginning and
end of the fitted segment to prevent partial cycles of low-level motion from biasing the determination
of the line. The tapered weights are cosine half bells. The fitted line is extended to the start time
of the record and subtracted, point by point, from the velocity, which is then integrated to give
displacement. The slope of the line fitted to velocity is subtracted from the acceleration.

Digital recorders preserve the initial motion, simplifying the task of determining permanent
displacement. Iwan et al. (1985) have proposed a scheme for processing digitally recorded data that
replaces the high-pass filtering operation by corrections to make the average of both the acceleration
and velocity zero over the final portion of the record. The permanent displacement is preserved in
this scheme. A constant correction is applied to the portion of the record corresponding to the time
of strong shaking, and a different constant correction is applied to the remainder of the record after
the end of strong shaking. The values of the two different corrections are chosen so as to achieve the
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desired zero values for average velocity and average acceleration over the final portion of the record.
Anderson et al. (1986) applied this scheme to determine permanent displacement at accelerograph
sites in the epicentral region of the 1985 Michoacan, Mexico earthquake, including one site where
the resulting vertical displacement of nearly 1 m was confirmed by observations of coastal uplift.
The scheme will only work, of course, with data of sufficient relative accuracy.

CHARACTERIZATION OF STRONG GROUND MOTION

A number of different parameters may be used to characterize strong ground motion for purposes
of seismic design. These include peak acceleration, peak velocity, response spectral values, and
Fourier spectral values. Peak displacement has also been suggested, but peak displacement is too
sensitive to the somewhat arbitrary choice of high-pass filter cutoff used in record processing. The
most useful of these parameters are response spectral values. The response spectrum is the basis,
either directly or indirectly, of most earthquake-resistant design. It may be used in the dynamic
analysis of structures, and it is the basis for the relation, in building codes, between the lateral-
design-force coefficient and the period of the building (Structural Engineers Association of California,
1980; Applied Technology Council, 1978). The response spectrum is useful because it represents the
response, to a given ground motion, of a set of simple mathematical models of structures. It can
be defined as the maximum response, to the given motion, of a set of single-degree-of freedom
oscillators (for example, mass-spring systems) having different natural periods and damping. The
response spectrum as customarily defined represents the response of a damped elastic system and
does not incorporate the nonlinear response to be expected from real structures at high levels of
motion. Nonlinear response spectra can be computed, but they would be different for different
kinds of structures. As a practical matter, linear response spectra, coupled with response-reduction
factors calculated by nonlinear analysis of particular structural types, are more likely to be used
than nonlinear response spectra (Cornell and Sewell, 1987).

Although response spectral values may be the most useful of the parameters describing ground
motion, the most emphasis in engineering practice, at least in the past, has been placed on peak
horizontal acceleration. The conventional method for estimating response spectral values uses peak
horizontal acceleration to scale some normalized spectral shape such as the Nuclear Regulatory
Commission’s Regulatory Guide 1.60 spectrum (U.S. Atomic Energy Commission, 1973). Such a
procedure would be generally valid only if the shape of the response spectrum were independent
of earthquake magnitude, source distance, and recording site conditions. In fact, a number of
independent studies (McGuire, 1974; Mohraz, 1976; Trifunac and Anderson, 1978, Joyner and Boore,
1982) have shown that the shape of the response spectrum is strongly dependent on magnitude and
site conditions, and, at frequencies less than about 3 Hz, large errors can result from the practice of
scaling fixed spectral shapes by peak acceleration. These errors can be partially avoided by Newmark
and Hall’s (1969) method, in which the short-period portion of the spectrum is proportional to
peak acceleration, the intermediate portion (about 0.3 to 2.0 sec) to peak velocity, and the long-
period portion to peak displacement. The proportionality factor between velocity and intermediate
period response, however, varies significantly with magnitude and site conditions as indicated by our
predictive equations for response and for peak velocity (Joyner and Boore, 1982). Peak displacement,
moreover, is, as previously mentioned, a quantity that is highly sensitive to the choice of high-pass
filter cutoff. The obvious solution is to predict response values directly (e.g. Joyner and Boore,
1982). Another approach is the use of peak acceleration to scale a normalized spectral shape that
varies with magnitude and site conditions (Idriss, 1985, 1987).

The search for a single parameter to characterize ground motion is clearly doomed to failure.
Because the shape of the spectrum changes with magnitude and site conditions, a single parameter
that represents ground motion well at one frequency must necessarily fail to do so at others.

In general, the study of ground motion has been focused on the horizontal component because

of its greater engineering significance, and this review will not deal explicitly with the vertical
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component. If needed, estimates of vertical motion can be obtained from procedures similar to
those discussed in this paper for estimating the horizontal component of motion.

PREDICTION OF STRONG GROUND MOTION

Factors That Affect Strong Ground Motion

Wave Types Involved in Strong Ground Motion. Horizontal ground motion is produced by S
body waves (shear waves that travel through the earth) and by surface waves (waves that propagate
along the surface). Where velocity increases with depth, which is the usual case, fundamental-
mode surface waves tend to arrive later than body waves and may be distinguished by their later
arrival. Higher-mode surface waves may arrive at more nearly the same time as body waves and may
therefore be difficult to distinguish from body waves; in fact the distinction between body waves
and higher-mode surface waves is not always meaningful.

The engineering importance of surface waves is sometimes overstated. The strong motion with
frequency in the range of about 2-10 Hz seen on horizontal accelerograms recorded within a few tens
of km of the source can adequately be described in terms of § body waves, perhaps modified to some
degree by scattering and reflection. Surface waves are also recorded by strong-motion instruments
(Hanks, 1975). Typically they are recorded at sites on deep sedimentary basins, they have periods
in the general range of 3-10 sec, and they arrive later than the S body waves. In some cases, perhaps
in most cases, these waves are generated at the margins of the sedimentary basins by conversion
from body waves in the high-velocity material bounding the basin (Vidale and Helmberger, 1988).
In such basins fundamental-mode surface waves at frequencies of engineering interest are confined
to shallow depths, a few hundred meters or so, and sources at seismogenic depths are ineffective in
exciting them. They can more readily be excited by body waves incident at basin margins.

Concerning the role of surface waves in strong ground motion, there is a widespread
misconception that surface-wave amplitude decays with distance r as r—1/2 whereas body waves
decay as r~! and surface waves will therefore dominate on distant records. This concept is wrong
in at least two different ways. In the first place, while Fourier spectral amplitudes of surface-wave
ground motion do in fact decay as r~1/2, time-domain amplitudes do not, because of dispersion.
Well-dispersed surface waves have a time-domain amplitude decay of r—!, and Airy phases, which
correspond to stationary points on the group-velocity dispersion curve, have a decay of r~5/¢ (Ewing
et al., 1957, p. 358). Furthermore, fundamental-mode surface waves are confined to the shallower
layers, and are therefore subject to greater anelastic attenuation than body waves.

At distances of about 100 km and greater the dominant phase on strong-motion records is the
L, phase, which is a superposition of multiply-reflected S waves trapped in the crust by supercritical
reflection (Bouchon, 1982; Kennett, 1985). It is an Airy phase and therefore has a theoretical decay
with distance of r=3/6, It is dominant over direct body waves at distance probably because direct
body waves decay with distance more rapidly than r=! for realistic distributions of velocity with
depth. In contrast to the direct body wave whose duration is fixed by the source duration, the L,
phase has a duration that increases with distance—an important point in ground-motion modeling
(Herrmann, 1985).

Magnitude. Earthquake ground motions depend on the size of the earthquake, the most common
measure of which is magnitude. Of the many different kinds of earthquake magnitude that have been
defined, the two most commonly cited in earthquake engineering are the Richter local magnitude
M) and the surface-wave magnitude Ms. My is determined from the trace amplitude on a record
made by a particular kind of seismograph, the Wood-Anderson seismograph, located within a few
hundred km of the earthquake. Mg is determined from the ground motion associated with surface -
waves of 20 s period recorded anywhere in the world. For earthquakes in California with My less
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than about 6.5 the commonly cited magnitude is M. For earthquakes worldwide with Ms greater
than about 6.5 the most commonly cited magnitude is Ms.

The recently defined moment magnitude M (Hanks and Kanamori, 1979) has the advantage
that it corresponds to a well-defined physical property of the earthquake source. It is defined in
terms of the seismic moment My, which is the product of three factors, the area of the rupture
surface, the average slip, and the modulus of rigidity in the source zone. Moment magnitude is thus
a measure of the size of an earthquake in a very specific sense. The equation for computing moment
magnitude is

= %log Mo - 10.7 1)

where the units of My are dyne-cm. Use of moment magnitude has the advantage of making it easier
to relate earthquake occurrence rates to geologically determined fault slip rates. It is sometimes
stated that because My is determined from an instrument with a natural period in the period
range of greatest engineering interest My should be preferred as the measure of earthquake size to
use in making ground-motion estimates for engineering purposes. Catalog values of M for large
earthquakes, however, are commonly poorly determined (Hutton and Boore, 1987; Boore, 1988), and
moment magnitude is the better measure for such use. We compiled moment magnitudes for most
of the earthquakes in the western North American strong-motion data set prior to 1981 (Joyner
and Boore, 1981). Ekstrom and Dziewonski (1985) gave moments for 35 earthquakes in western
North America occuring between 1977 and 1983. Moment determinations are available for most
past earthquakes with important strong-motion records and can be expected for most, if not all,
such earthquakes in the future.

In developing equations for the empirical estimation of earthquake ground motion we use
moment magnitude as the measure of earthquake size (Joyner and Boore, 1981, 1982). Campbell
(1981, 1988) and Idriss (1985) used Ms for earthquakes with My and Ms greater than or equal to
6.0 and M for earthquakes with M; and Mg less than 6.0. Generally speaking, below a moment
magnitude of about 8.0, moment magnitudes are approximately the same as magnitudes assigned
by Campbell’s rule, which in turn are the commonly cited magnitudes. The 1979 Imperial Valley,
California, earthquake, however, was assigned a magnitude of 6.5 by us and 6.9 by Campbell. This
discrepancy has a significant effect on the end results because the 1979 Imperial Valley earthquake
contributes a large share of the near-source data points to both data sets.

Distance. Because the rupture surface for earthquakes may extend over tens or hundreds of
kilometers, there is ambiguity in defining the source distance for a strong-motion record. Various
measures of source distance have been used in the development of relationships for estimating ground
motion. Some of these are illustrated in Figure 2. The early analyses tended to use epicentral
distance because it was readily available. Obvious problems arise with the use of either epicentral or
hypocentral distance in the case of earthquakes like the 1966 Parkfield, California, earthquake or the
1979 Imperial Valley, California, earthquake, which have very long rupture zones with the epicenter
at one end and recording stations at the other. For some stations the epicenter and hypocenter are
many times more distant than the closer portions of the rupture which are in fact the sources of the
peak motions. Similar problems arise with the use of distance to the centroid of the rupture. Some
stations may be far from the centroid but close to the rupture. In general it must be expected that
different parts of the fault rupture will produce the peak motion at different recording stations. It
might seem that the distance measure to use is the distance to the part of the rupture producing
the peak motion. Where that part of the rupture is located, however, is unknown for many past
earthquakes and all future earthquakes. Most recent work has used some variation on the closest
distance to the rupture. We used the closest distance to the vertical projecton of the rupture on
the surface of the earth (Joyner and Boore, 1981, 1982). Campbell (1981, 1988) used the closest
distance to the rupture. In his 1981 paper he interpreted that as the distance to the surface rupture
in the case of ruptures that broke the surface. In his 1988 paper he changed the interpretation to
the closest distance to the “zone of seismogenic rupture.” The top of that zone was identified from
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FIGURE 2. Diagram illustrating different distance measures used in predictive relationships (from Shakal and
Bernreuter, 1981).

the aftershock distribution if possible, otherwise by the intersection of the fault surface with the
surface of the basement rock.

For a point source in a uniform medium, geometric spreading of a direct body wave produces a
distance dependence of 1/r for ground-motion amplitudes, where r is distance. Anelastic attenuation
and/or scattering further reduce each frequency component by a factor of exp(—x fr/ QB), where fis
frequency, § is the propagation velocity, and Q is the quality factor, which may depend on frequency
(1/Q is equal to twice the fraction of critical damping for the material). In a nonuniform medium
geometric spreading may not be well-represented by the 1/r factor. In cases where spreading of 1/r
is assumed, analysis commonly indicates @ increasing with frequency. As Frankel and Wennerberg
(1987) point out, however, the apparent frequency dependence of Q may be simply the consequence
of underestimating the effect of geometric spreading.

Burger et al. (1987) and Barker et al. (1988) have shown that, in a layered medium, horizontal
ground motion at the shortest ranges is dominated by the upgoing direct S wave, which typically
falls off more rapidly than 1/r. At somewhat greater distances depending on the crustal structure,
the motion is dominated by the interaction between the upgoing S wave and the S wave that initially
heads downward and is later refracted upward toward the surface. In the vicinity of 100 km the
motion is dominated by supercritical reflections from the base of the crust and in some cases from
interfaces within the crust. Beyond 100 km the motion is dominated by the L, phase, which, as
noted above, is a superposition of multiple supercritically reflected S waves and has a falloff of r—5/6,
These complications can be modeled but only if the crustal structure is well-known and only for
specific source depths. In most cases simpler methods will be relied upon for estimating ground
motion.

There is no clear-cut basis for choosing a simple functional form to represent the dependence
of ground-motion amplitudes with distance. We have used ezp(kr)/r, where k is chosen to fit the
data, except for certain long-period response ordinates for which the value of k turned out to be
positive. In those cases we used r¢, where d is chosen to fit the data (Joyner and Boore, 1981, 1982).
Most other workers have used r¢ with d generally less than -1.0. It is probably not appropriate to
attach much physical significance to the parameter values obtained by fitting these simple functions
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to the data.

1t is of interest to examine the distance dependence of the Wood-Anderson amplitudes used in
assigning Richter local magnitude M, because many more data are available than in the strong-
motion data set. Wood-Anderson amplitudes in northern California were investigated by Bakun and
Joyner (1984) and in southern California by Hutton and Boore (1987). There were sufficient data
in both data sets to determine both d and k in the function r exp(kr) used to model the distance
dependence. The value of d determined for central California was statistically indistinguishable
from -1.0, and for southern California it was -1.11. The distance dependence of Wood-Anderson
amplitudes found in both studies is very similar to that found for peak horizontal acceleration
and velocity from strong-motion data recorded principally in California (Joyner and Boore, 1981,
1982). This similarity indicates that data collected by high-sensitivity seismograph networks can be
used in developing locally applicable equations for estimating strong motion in regions where few
strong-motion data are available (see Rogers et al., 1988).

A significant issue in estimating future earthquake ground motion is the question of whether or
not the shape of the curves relating peak ground-motion amplitudes to distance are dependent on
magnitude. This issue is illustrated in Figure 3, which shows the curves for mean peak horizontal
acceleration given by Campbell (1981), which have a magnitude-dependent shape, compared with
ours, which do not (Joyner and Boore, 1981). Both his equations and ours contain a parameter that
takes on the value zero if the shape is magnitude-independent and not otherwise. He finds that the
parameter is significantly different from zero in his equations; we do not in ours. The reasons for
the conflicting conclusions are not clear. Differences in the definitions of distance may be a factor.
Lacking statistical evidence for significance we would include the parameter only if we believed that
theoretical considerations called for it. We do give a theoretical argument in the appendix of our
paper for a small degree of magnitude-dependence, but too small to justify modifying the equations.
We remain unconvinced by other theoretical justifications for magnitude-dependence. As to the
finite-source argument, we acknowledge that the whole rupture surface may be large compared
to the distance to the recording site, but we would argue that the source of the peak motion is
some restricted portion of the whole rupture and may well be small compared to the distance to
any recording site on the surface of the earth. As we will show later, the question of magnitude-
dependent shape does not make an important difference for predicting peak horizontal acceleration
or response spectra at periods near 0.2 s, the difference being small compared to the standard error
of an individual prediction. For peak horizontal velocity or response spectra at periods of about 1.0
s or longer, however, the difference is important.

Site Conditions. Significant site effects include the effects of topography and local site geology and
the effects on the ground motion of structures within which or near which the recording instruments
are installed. The effects of topography are the subject of a large literature (e.g. Boore, 1972,
1973; Bouchon, 1973; Tucker et al., 1984; Brune et al., 1984; Bard and Tucker, 1985; Geli et al.,
1988; Andrews el al. 1988), but since the effects are negligible at most sites we will not consider
them further here. The effect of local site geology has also been widely discussed (e.g. Kanai, 1952;
Gutenberg, 1957; Idriss and Seed, 1968; Borcherdt, 1970; Rogers et al., 1984).

In considering local geological effects it is necessary to distinguish between two kinds of site
amplification. The more widely recognized but actually less common of the two is the resonant
amplification resulting from reinforcing mutiple reflections within low-velocity layers near the surface.
This kind of amplification is highly sensitive to frequency. The second kind does not require sharp,
reflecting interfaces, is not sensitive to frequency, and results from low velocity, or, more precisely,
low impedance near the surface, impedance being the product of density and velocity. If we consider
a tube of rays and neglect losses due to reflection, scattering and anelastic attenuation, the energy
along a tube of rays is constant. If the effect of changes in the cross-sectional area of the tube can
be neglected, which is commonly the case, then amplitude is inversely proportional to the square
root of impedance (Aki and Richards, 1980, p. 127).

10 Joyner and Boore
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FIGURE 3. Curves of mean peak horizontal acceleration given by Campbell (1981), which have a magnitude-
dependent shape, compared with those of Joyner and Boore (1981), which do not. The Joyner and Boore curves for
the larger peak of two horizontal components have been reduced by 12 percent so that they may be compared with
the mean peak. (Illustration modified from Campbell, 1981.) '

Material with low velocity (and thereby low impedance) tends to have low Q, so, depending on
the frequency of the motion and the thickness of the material, the amplifying effect of low-velocity
material may be partly or totally offset by greater attenuation.

Largely because the data on site conditions at strong-motion recording sites are limited, the
means used to incorporate site effects into the analysis of strong-motion data sets tend to be rather
crude. We divided recording sites into two categories, rock and soil (Joyner and Boore, 1981, 1982).
Sites with less than 5 m of soil overlying rock were put into the rock category. We found no
statistically significant difference between the rock and soil sites in peak horizontal acceleration or
response spectral values at periods less than 0.3 s, suggesting that attenuation in the soils offsets the
amplification for high frequencies. Joyner and Fumal (1984) found no correlation at soil sites between
peak horizontal acceleration and depth to rock for a range in depth to rock from nearly zero to nearly
one km. This suggests that most of the attenuation in soils occurs at shallow depth, perhaps less
than something like 100-200 m. For peak horizontal velocity and response at periods longer than
about 0.3 s, we found significantly higher values on soil than on rock, higher by a factor of 1.5 for
peak horizontal velocity and by a factor of 1.9 for one-second horizontal pseudovelocity response. If
the effects of attenuation just offset the effects of amplification for high-frequency measures of ground
motion, it would be expected that amplification would dominate for lower-frequency measures, since
the limited available data suggest that Q in soils is not dependent on frequency.

Campbell (1981) separated sites with less than 10 m of soil overlying rock into a special category
of shallow soil sites. For other sites he, as we, found no significant difference between peak horizontal
acceleration on rock and soil. The shallow soil sites, however, had a higher peak acceleration than
the other categories by a factor of 1.8 on the average. Though we might argue about the criterion
for delimiting the category of shallow soil sites, we do not disagree with the designation of such a
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category; our data set simply did not include a sufficient number of shallow soil sites to support a
separate category. Results from analysis of Italian strong-motion data (Sabetta and Pugliese, 1987)
support higher horizontal accelerations at shallow soil sites. Mohraz (1976) showed that horizontal
response spectra at shallow soil sites were preferentially richer in high frequencies than at sites where
the soil was more than 60 m thick.

In an attempt to achieve a more physically based method of predicting site effects, Joyner and
Fumal (1984) used downhole shear-velocity data at 33 strong-motion sites to develop equations for
site effects in terms of the shear velocity averaged from the surface to a depth equal to one-quarter
wavelength at the period of interest. Campbell (1988) took a different approach to the site effect
on peak horizontal velocity and, like Trifunac and Lee (1979), expressed the site effect in terms
of the depth of sediments beneath the recording site. No physical interpretation was given of this
representation of the site effect. Unlike Trifunac and Lee, Campbell expressed the site effect in terms
of a nonlinear function of sediment depth.

The methods described above do not incorporate the effect of resonance. To do so requires
more detailed site information than is often available. For cases where the required information is
available, methods of modeling assuming body waves in plane layers can be used. Pioneer work with
such methods was done by Idriss and Seed (1968; Schnabel et al., 1972). They used the equivalent-
linear method to incorporate nonlinear behavior in the soils, that is, they used a linear analysis
with values of the dynamic soil properties chosen by an iterative procedure to correspond with the
average strain level determined by the analysis. Joyner and Chen (1975) presented a truly nonlinear
method and showed that for motion of short period and high amplitude on thick soil deposits the
equivalent-linear method does not give a satisfactory approximation to the nonlinear results. Silva
(1976) described a general system for the linear modeling of plane-layered systems based on the
Thompson-Haskell method. All these kinds of analyses depend on the assumption of plane layers
and, if nonlinearity is presumed, on laboratory data for dynamic soil properties. The adequacy
of the plane-layer approximation has been demonstrated at a number of sites (e.g. Joyner et al.,
1976; Johnson and Silva, 1981), though there are sites for which it is not appropriate (King and
Tucker, 1984). There is some uncertainty, however, over the degree to which laboratory data are
representative of the properties of soils in situ and in particular over the level of shaking at which
nonlinearity becomes a significant factor for soils in situ.

An extreme example of the effect of site conditions is afforded by the damage in Mexico City
from the 1985 Michoacan, Mexico, earthquakes, whose source zones were 300 km or more from the
city. More than 300 buildings in Mexico City were destroyed or badly damaged. Nearly all of the
buildings that collapsed in the city were located in an old lake bed, characterized by very soft clay
soils. Response spectra at 5 percent damping showed amplification of approximately ten times at
2 s period on the lake bed relative to surrounding areas (Anderson et al., 1986; Singh et al., 1988).
Materials similar to the soft clays of the old lake bed are found elsewhere in the world, and changes
have been made in the upcoming editions of the Recommended Lateral Force Requirements of the
Structural Engineers Association of California (1988) and the Uniform Building Code (International
Conference of Building Officials, 1988) in an attempt to accomodate situations of this kind.

Many strong-motion records come from instruments located at the ground floor or in the
basements of buildings or on the abutments of dams. Such records are affected by the response
of the structure in which or near which the instrument is located. Even so-called “free-field” sites
may be aflected at high frequencies by the response of the instrument shelter (Bycroft, 1978; Crouse
et al., 1984), though for the typical shelters used by the U.S. Geological Survey and the California
Division of Mines and Geology the effects are at frequencies too high to be of concern (Crouse and
Hushmand, 1987). We attempted to minimize the effects of structures by excluding all data recorded
on the abutments of dams or in the basements of buildings three or more stories in height (Joyner
and Boore, 1981, 1982). Campbell (1981, 1988) included the effect of the building as a parameter
to be determined by analysis of the data.
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Fault Type, Depth, and Repeat Time. Fault type, depth, and repeat time have been suggested
as important in determining ground-motion amplitudes because of their presumed relation to the
stress state at the source or to stress changes associated with the earthquake. McGarr (1984) argues
that ground motion should increase with depth and that ground motion should be greater from
reverse faults than from normal faults, with strike-slip faults having intermediate values. Kanamori
and Allen (1986) present data showing that faults with longer repeat times have shorter lengths for
the same magnitude, indicating a larger average stress drop and, presumably, higher ground motion.

Empirical attempts to correlate fault type, depth, and repeat time with measures of strong
ground motion do not support clear-cut conclusions. Campbell (1988) finds that peak horizontal
acceleration and velocity in shallow reverse-slip earthquakes are larger on the average by factors
of about 1.4 and 1.6, respectively, than in strike-slip earthquakes. Reexamination of data we used
in developing our published ground-motion predictive equations indicates values of peak horizontal
acceleration higher on the average by a factor of about 1.25 in reverse-slip earthquakes than in strike-
slip earthquakes. We cannot tell, however, whether the difference is due to fault type or repeat time.
The reverse-slip faults are generally the ones with long repeat times and the strike-slip faults the
ones with short repeat times. The conspicuous exception is the 1979 St. Elias, Alaska, earthquake,
a reverse-slip event which lies on the boundary between the Pacific and North American plates, and
therefore, presumably has a short repeat time. The peak horizontal acceleration values for the St.
Elias earthquake on the average fall below the predictions of the equations developed from the whole
data set, suggesting that repeat time and not fault type is the controlling variable, but no definite
conclusions should be drawn based on a single earthquake.

Data on the amplitude of ground motion from normal-slip earthquakes compared to other
types is subject to conflicting interpretations. McGarr (1984; see also McGarr, 1986) found a large
difference between normal- and reverse-slip events. For a selected data set with few observations
of large events he examined the effect of fault type and focal depth on peak acceleration and peak
velocity. To remove the effect of distance he multiplied the peak motions by the hypocentral distance.
He assumed that peak acceleration was independent of moment My, and to remove the effect of M,
on peak velocity he divided by Mo1 /3. The resulting peak values were approximately proportional
to depth. On the average the peak accelerations were about a factor of 3 greater and the peak
velocities a factor of 2 greater for reverse- than for normal-slip events. Values for strike-slip events
were intermediate. Other studies do not show such large differences. Westaway and Smith (1987)
compared peak horizontal acceleration from normal-slip earthquakes with our equations (Joyner
and Boore, 1981) and with Campbell’s (1981) equations. Both sets of equations are based primarily
on data from reverse- and strike-slip events. After considering data from more than 600 records
of normal-slip events in the western United States, the Mediterranean region, and New Zealand,
Westaway and Smith concluded that there is no significant difference between normal-slip events
and others. The data set included some records with source distances greater than 100 km, and the
argument could be made that regional differences in attenuation may have obscured differences due
to fault type, but the data set also included data, such as the record from the base of the Matahina
Dam in New Zealand, at distances short enough so that one would not expect a significant effect
due to differences in attenuation (New Zealand Geological Survey, 1987).

The Italian strong-motion data set (Sabetta and Pulgliese, 1987) is particularly pertinent to
the comparison between normal- and reverse-slip earthquakes. The data from the Friuli region are
all from reverse-slip events and the rest of the data are all from normal-slip events. Sabetta and
Pugliese developed predictive equations for peak horizontal acceleration from the whole data set of
95 records and also for the truncated data set of 52 records formed by omitting the records from
the Friuli region. The equations developed from the truncated data set gave values only about 10
percent less than the equations developed for the whole data set for a stiff or deep soil site 10 km
from a magnitude 6.5 event, indicating that the effect, if any, of fault type was small. Most of the
Friuli records were from aftershocks, however, so that this conclusion holds in the general case only
if aftershocks can be presumed characteristic of main shocks.
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The data discussed up to this point has all come from shallow crustal earthquakes, for which the
fault ruptures are confined to a zone within about 20 km of the earth’s surface. Another important
class of earthquakes is subduction-zone earthquakes such as occur off the Pacific coasts of Japan,
Alaska, and Central and South America. Such earthquakes occur over a range of depths of a few
hundred kilometers. In an analysis of subduction-zone data from the Northern Honshu zone Crouse
et al. (1988) found no significant differences in the horizontal response spectral values from reverse,
normal and strike-slip events. Their regression analysis showed a linear dependence of the logarithm
of spectral response on focal depth. For periods less than about 1.0 s deeper events gave larger
response than shallower events. At 0.1 s period the difference was the largest and corresponded to
a factor of 2.5 for an increase of 100 km in depth. At periods greater than about 1.0 s the deeper
events gave response that was smaller than shallower events. The difference at 4.0 s was the largest
and corresponded to a factor of 1.7 for an increase of 100 km in depth. Crouse et al. suggested
that the deeper events might have higher amplitude at short period because of higher stress drop or
lower anelastic attenuation. They suggested that the deeper events might have lower amplitude at
long period because they are less effective in generating surface waves. They did note, however, that
the inclusion of the depth term in the regression did not substantially improve the fit to the data.

Directivity and Radiation Pattern. If the angle between the source-to-recording-site vector
and the direction of rupture propagation is small, the recorded ground motion may be substantially
increased in amplitude. This effect, called directivity (Ben-Menahem, 1961), can be expected
to occur for incoherent as well as coherent ruptures (Boore and Joyner, 1978). The work of
Boatwright and Boore (1982) shows that strong ground motion can be significantly affected by
directivity, but it is not clear how to incorporate directivity into schemes for predicting ground
motion in future earthquakes. The variable of importance for directivity is the angle § between the
rupture direction and the source-to-recording-site vector, and 6 is not known in general for future
earthquakes. Furthermore, for sites close to large earthquake ruptures, where reliable prediction
is most important, # changes during rupture propagation. Araya and Der Kiureghian (1986) have
suggested an approach for including directivity in ground-motion predictive equations. Campbell
(1988) included directivity as a parameter in his analysis, but he applied it to only 3 recordings out
of a total of 134, acknowledging that other recordings in the data set might also be “affected to
some degree” by directivity. Most authors of ground-motion predictive equations have not explicitly
included a variable representing directivity. To the extent that directivity affects the records in the
data set, however, the equations and the estimates of variability will reflect the effect. Near-source
recording sites are more likely to be affected by directivity, and the predictive equations will give
higher near-source values as a result.

Even without rupture propagation, the ground motion from a point dislocation will depend
on the direction the ray leaves the source. This dependence, referred to as radiation pattern, is
mentioned here only for the sake of completeness. The radiation pattern, which is relatively simple
in a homogeneous medium, is complicated in the real world by scattering and refraction caused by
variations in propagation velocity. The fault zone itself probably represents a low-velocity zone,
and rays leaving the fault zone at a large angle to the normal may undergo significant refraction.
Under these circumstances attempts to incorporate the radiation-pattern effect in ground-motion
prediction equations are unlikely to yield much benefit, and no one, to our knowledge, has proposed
doing so.

Empirical Prediction

The Method of Representative Accelerograms. Guzman and Jennings (1976) suggested a
method, later elaborated by Heaton et al. (1986), for establishing design ground motions. The
method begins with the selection of a suite of accelerograms recorded for magnitudes, distances, local
site conditions and other factors similar to the postulated design earthquake. Each accelerogram
and its response spectrum are multiplied by a constant scaling factor to account for differences in
magnitude and source distance between the design earthquake and the accelerogram. The collection
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of response spectra is used to portray the range of ground motion to be expected at the site. The
method has the advantage of directness and of maintaining a close tie to the basic data. The necessity
for deciding which accelerograms represent conditions similar to the design earthquake and which do
not, however, introduces an undesirable element of subjectivity. In our view, well-designed regression
analyses of the whole data set make more efficient use of the available information than the method
of representative accelerograms.

Development of Predictive Relationships. A comprehensive review of ground-motion
predictive relationships developed before the 1979 Imperial Valley, California, earthquake is given
by Idriss (1979). The 1979 Imperial Valley earthquake marked a major change in the strong-motion
data base by providing many more near-source data points than had been available previously.
More recent reviews have been written by us (Boore and Joyner, 1982) and Campbell (1985).
Predictive relationships for ground motion may be expressed in graphical form or as mathematical
equations. An example of graphical relationships is provided by the widely-used Schnabel and Seed
(1973) curves, which are the basis of the seismic risk maps by Algermissen and Perkins (1976) and
Algermissen et al. (1982) as well as the ATC-3 seismic zone maps (Applied Technology Council,
1978). In the case of predictive relationships expressed as mathematical equations, the equations
contain parameters that are adjusted in some way so as to fit the available strong-motion data.
Brillinger and Preisler (1984, 1985) demonstrated that there is a significant between-earthquake
component of variance in ground-motion data in addition to the within-earthquake component.
Such being the case, ordinary least squares is not strictly correct as a method for determining
the parameters of the predictive equations. Brillinger and Preisler describe maximum-likelihood
methods applicable to this case. The need to take account of the between-earthquake variance
was recognized by us in our use of a two-stage regression procedure (described below) to develop
predictive relationships (Joyner and Boore, 1981). The two-stage procedure gives virtually the same
values as the methods of Brillinger and Preisler for each of the two components of the variance,
indicating that it is equivalent. Campbell (1981, 1988) uses weighted least squares in a scheme
“designed to give each earthquake an equal weight in the analysis in each of nine distance intervals.”

In our view it is important to choose a form for the predictive equations based as much as
possible on physical grounds. We consider this guideline important because data are sparse or
nonexistent for important ranges of the predictive variables. If data were plentiful, it would matter
less what form were chosen; either the form would fit the data, or the lack of fit would be obvious.
Only those predictive variables should be used whose inclusion can be justified by physical reasoning.
Furthermore, the number of adjustable parameters should be kept as small as possible.

A key feature of the data set for shallow earthquakes is the scarcity of data points for distances
less than about 20 km and magnitudes greater than 7.0. Confident predictions can simply not be

made in that range of magnitude and distance, which is, unfortunately, where predictions are most
needed.

Much of the early strong-motion record processing was done on data sampled at 50 samples
per second using a finite-difference instrument-correction algorithm. Response values derived from
these data may be inaccurate at periods less than about 0.1 s. The peak accelerations obtained
from such data may also be in error. Many workers have used uncorrected rather than corrected
peak acceleration values to avoid the bias introduced by the early record processing (e.g. Joyner
and Boore, 1981, 1982; Campbell, 1981, 1988).

Examples of Predictive Equations for Shallow Earthquakes. We now proceed to give
examples of a number of predictive equations that have been proposed in the last 10 years. We
have attempted to give all the information needed to make predictions of ground motions from the
various equations. At the expense of easy visual comparisons of the equations themselves, we have
retained the author’s form of the equatlons, units, and preference for natural or common logarithms_
in order to forestall errors of conversion.
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Joyner and Boore. Figure 4a shows the distribution in magnitude and distance of the strong-motion
data we used in developing predictive equations for peak horizontal acceleration, and Figure 4b shows
the distribution we used in developing equations for peak horizontal velocity and pseudovelocity
response at 5 percent damping (Joyner and Boore, 1981, 1982). There are more points on Figure 4a
than Figure 4b because record processing is necessary to obtain velocity and response spectra,
and not all of the records represented on Figure 4a have been processed. The data sets are
restricted to earthquakes in western North America with moment magnitude greater than 5.0 and
to shallow earthquakes, defined as those for which the fault rupture lies mainly above a depth of
20 km. To minimize the effect of structures we exclude from the data sets all records made at the
base of buildings three or more stories in height and on the abutments of dams. We exclude all
earthquakes for which the data were in our opinion inadequate for estimating the source distance
to an accuracy better than 5 km. Bias may be introduced into a strong-motion data set if low
amplitude ground motions are preferentially excluded because they fall below the trigger level of
operational instruments or, if recorded, the peak motions are excluded from the data set for any
reason having to do with amplitude (e.g. a record is not digitized because of its low amplitude).
To avoid this bias we exclude, for each earthquake, data recorded at a distance greater than the
smallest distance at which an operational instrument did not trigger or at which data were excluded
from the data set for a reason related to amplitude.

As previously mentioned, we use a two-stage regression procedure to develop the predictive
equations. The precedure is illustrated in Figure 5. In the first stage the equation

logy = A;+dlogr + kr+s 2
r= (rg -+ h2)1/2 (

is fit to the data, where y is the ground-motion parameter to be predicted, rq is the shortest distance
(km) from the recording site to the vertical projection of the earthquake fault rupture on the surface
of the earth, and s is the site correction for soil sites (sites with 5 m or more of soil). Initially d is
set equal to -1.0. Values of k and s and a value A; for each earthquake i are determined by linear
regression for a trial value of h. The final value of h is determined by a simple search procedure to
minimize the sum of squares of the residuals, unless the corresponding value of k is positive. In that
case k is set to zero and the process repeated this time with variable d.

In the second stage a first- or second-order polynomial in magnitude is fit by least squares to
the values A;.

Ai = a+ b(M; — 6) + ¢(M; — 6)* (3)
where M; is moment magnitude of earthquake i. In our early papers we used ordinary least squares
for the second-stage regression, and, for peak acceleration, excluded all of the earthquakes for which
only one recording was available (Joyner and Boore, 1981, 1982). In our 1982 paper, for peak velocity
and response spectra, we did not exclude any earthquakes because so few were available. Actually,

the correct way to do the second-stage regression is by weighted least squares (Bevington, 1969).
The weighting factor, 1/07, is the inverse of the variance of A;:

a,? = o'z/N,' + af 4)

where o2 is the within-earthquake component of the total variance and is given by the variance of
data points in the first-stage regression, N; is the number of records in the data set for earthquake
i, and of is the between-earthquake component of the total variance. of is determined iteratively
in the second-stage regression by using zero as a starting value. Use of weighted least squares for
the second-stage regression does not produce a large change in the resulting equations.

The final predictive equation is

logy =a+b(M —6) + c(M — 6)* + dlogr+ kr +s
50<MLT.T 5 ()
r= (rg + h")”2
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FIGURE 4. Distribution in magnitude and distance of the strong-motion data used by Joyner and Boore (1982) -
to develop predictive relationships for (a) peak horizontal acceleration and (b) peak horizontal velocity and response

spectra.
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FIGURE 5. Schematic diagram showing the two-stage regression procedure of Joyner and Boore (1981, 1982).
The upper part of the figure illustrates the first stage, in which the sum of the squares of the residuals is minimized
by varying the shape of the curve representing the dependence on distance (dashed curve) and by shifting all the
data points from the ith earthquake (contained within a closed curve) by an amount A;. The lower part of the figure
illustrates the second stage, in which the offset factors A; are regressed against magnitude to determine the magnitude
dependence.

where values of a, b, ¢, d, k, 5, and h are given in Table 2 for predicting parameters corresponding to
the randomly oriented horizontal component and in Table 3 for predicting parameters corresponding
to the larger of the two horizontal components. The coefficients for the randomly oriented horizontal
component are determined by including in the regression both horizontal components from each
site as if they were independent data points. That procedure gives the correct coefficients for the
randomly oriented horizontal component, though it would not give correct values for the standard
errors of the coefficients, because the two components are not in fact independent. The values given
in Table 2 for peak horizontal acceleration and velocity were not determined by regression. They
were obtained from the values in Table 3 by changing the constant term a by an amount determined
by averaging the difference between the logarithm of the larger peak and the average logarithm of
the two peaks over a selected subset of the data. An alternative for the soil effect is

= elog (-;’5;) | (6)

where Vs is the site shear velocity averaged to a depth of one-quarter wavelength at the period of
interest, and e and Vso are given in Tables 2 and 3 (Joyner and Fumal, 1984).

Equation (5) gives curves of strong-motion amplitude versus distance with a shape independent
of magnitude. A magnitude-dependent shape can be obtained by taking

h = hy exp[ha(M — 6)] (7
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TABLE 2. PARAMETERS IN THE PREDICTIVE EQUATIONS OF JOYNER AND BOORE
(1982) FOR THE RANDOMLY ORIENTED HORIZONTAL COMPONENT OF
PSEUDOVELOCITY RESPONSE (CM/S) AT 5 PERCENT DAMPING AND OF
PEAK ACCELERATION (g) AND VELOCITY (CM/S)

Period (s) a b c h d k 8 Vso e Ology
Pseudovelocity response

0.1 216 025 -006 113 -1.0 -0.0073 -0.02 0.28

0.15 240 30 -.08 108 -1.0 -.0067 -.02 .28

0.2 246 35 -.09 96 -1.0 -.0063 -.01 .28

0.3 247 42 -.11 69 -1.0 -.0058 .04 590 -0.28 .28

0.4 244 47 -13 5.7 -1.0 -.0054 10 830 - .33 31

0.5 2.41 52 -.14 5.1 -1.0 - .0051 14 1020 - .38 33
0.75 2.34 60 -.16 48 -1.0 -.0045 23 1410 - 46 .33
1.0 2.28 67 -7 47 -10 -.0039 27 1580 - .51 .33
1.5 2.19 14 - .19 4.7 -1.0 -.0026 31 1620 - .59 .33
2.0 2.12 79 -.20 47 -10  -.0015 32 1620 - .64 .33
3.0 2.02 85 -.22 4.7 -0.98 .0 32 1550 - .72 .33
4.0 196 088 -024 47 -0.95 0.0 0.29 1450 -0.78 0.33
Peak acceleration
043 023 0.0 8.0 -1.0  -0.0027 0.0 0.28
Peak velocity

209 049 0.0 40 -10 -0.0026 0.17 1190 -0.45 0.33

where hy and h; are chosen to fit the data. As previously mentioned, however, we find that the
difference between h; so chosen and zero is not statistically significant (in particular, see Figure 16
in Boore and Joyner, 1982).

Figure 6 gives the curves for peak acceleration and velocity for the randomly oriented horizontal
component, and Figures 7, 8, and 9 give the corresponding pseudovelocity response spectra at 5
percent damping. Figure 7 shows the strong dependence, previously mentioned, of the shape of
response spectra on magnitude and site conditions. Figures 8 and 9 show that, between 10 and 40

km at least, there is very little dependence of the shape on distance—in sharp contradiction with
conventional wisdom.

Figures 8 and 9 do show that long-period response decreases more than short-period response
in going from 0 to 10 km. This reflects the fact that the values of h for short periods are greater
than for long periods; the values for peak acceleration are greater than for peak velocity (Tables
2 and 3). It is not completely clear why this should be the case. The larger value of h for peak
acceleration and short-period response may represent a limitation in acceleration near the source by
the limited strength of near-surface materials.

Tables 2 and 3 give estimates of ojogy, the standard deviation of an individual prediction of
log y using the equations. The estimates for peak horizontal acceleration and velocity agree quite
well with those of McGuire (1978), who used a data set specially constructed to avoid bias in the
estimate of residuals caused by multiple records from a single event or by multiple records from the
same site of different events. Some other workers, however, as will be seen, have obtained smaller
values for ojogy.

Crouse et al. The following equation for peak horizontal acceleration and horizontal pseudovelocity
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TABLE 3. PARAMETERS IN THE PREDICTIVE EQUATIONS OF JOYNER AND BOORE
(1982) FOR THE LARGER OF TWO HORIZONTAL COMPONENTS
OF PSEUDOVELOCITY RESPONSE (CM/S) AT 5 PERCENT DAMPING
AND OF PEAK ACCELERATION (g) AND VELOCITY (CM/SEC)

Period (s) a b ¢ h d k s Vso e Tlogy
Pseudovelocity response
0.1 224 030 -0.09 106 -1.0 -0.0067 -0.06 0.27
0.15 2.46 34 -.10 103 -10 -.0063 -.05 27
0.2 254 .31 -.11 9.3 -1.0  -.0061 -.03 27
0.3 256 43 - .12 7.0 -1.0 - .0057 .04 650 -0.20 27
0.4 2.54 49 - .13 5.7 -1.0 - .0055 .09 870 - .26 .30
0.5 2.53 b3 - .14 5.2 -1.0  -.0053 .12 1050 - .30 .32
0.75 2.46 61 -.15 4.7 -1.0  -.0049 19 1410 - .39 .35
1.0 241 66 - .16 4.6 1.0 -.0044 .24 1580 - 45 .35
1.5 2.32 1 -7 4.6 -1.0  -.0034 .30 1780 - .53 .35
2.0 2.26 75 - .18 4.6 -1.0  -.0025 .32 1820 - .59 .35
3.0 2.17 8 -.19 4.6 -1.0 .0 29 1620 - .67 .35
4.0 210 080 -020 4.6 -0.98 0.0 0.24 1320 -0.73 0.35
Peak acceleration
049 0.23 0.0 8.0 -1.0  -0.0027 0.0 0.28

Peak velocity
2.17  0.49 0.0 4.0 -1.0 -0.0026 0.17 1190 -0.45 0.33

response at 5 percent damping was developed from data recorded at deep soil sites (generally greater
than 60 m in thickness) during shallow crustal earthquakes in southern California by C. B. Crouse
(written communication, 1987; Vyas et al., 1988):

Iny=a+bMs+cMZ+din(r+1)+ kr (8)

where y is peak horizontal acceleration (gal) or horizontal pseudovelocity response (cm/s), Mg is
surface-wave magnitude, r is closest distance (km) from rupture surface to recording site, and the
coefficients a, b, ¢, d, and k are given in Table 4 along with o1, , the standard deviation of a single
prediction of Iny. The values of standard deviation are similar to those in Tables 2 and 3 when the
conversion is made from natural to common logarithm (multiply the numbers in Table 4 by 0.43).
Both horizontal components were used so that the values of y predicted by equation (8) correspond
to the randomly oriented horizontal component.

Sadigh et al. Equation (9) for peak horizontal acceleration and horizontal pseudoacceleration
response at b percent damping was developed  using data from the western United States
supplemented by significant recordings of earthquakes at depth less than 20 km from other parts of
the world (Sadigh, written communication, 1987; Sadigh et al., 1986). Both horizontal components
were used.

Iny=a+ dM+¢1(8.5 — M) + dln[r + hy exp(hoM)] (9)

where y is peak horizontal acceleration (g) or horizontal pseudoacceleration (g), M is moment
magnitude, r is the closest distance (km) to the rupture surface, and the values of a, b, ¢;, d, and
h; are given in Table 5 along with expressions for o1ny, the standard deviation of an individual
prediction of Iny. Note that o1,y depends on M and is significantly smaller for M > 6.5 than the
values in Table 4 and smaller than the values in Tables 2 and 3 if they were converted to natural
logarithms. Equation (9) was derived for strike-slip earthquakes; to obtain values corresponding to
reverse-slip events, the value of y from equation (9) should be increased by 20 percent.

20 Joyner and Boore
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percent so as to approximate the value for the randomly oriented horizontal component. Curves are dashed where
not constrained by data. Distance is the closest distance to the vertical projection of the rupture on the surface of

the earth.

Donovan and Borstein. Equation (10) was developed for peak horizontal acceleration from data
from the western United States (Donovan and Bornstein, 1978). Both horizontal components were
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constrained by data. Distance is as defined for Figure 6.

used.
y =aexp(bM)(r + 25)"l

a = 2,154,000(r)~21°
b = 0.046 + 0.445log(r)
d = —2.515 + 0.486 log(r)

(10)

where y is peak horizontal acceleration (gal), M is magnitude, and r is distance (km) to the energy
center, presumed to be at a depth of 5 km. Table 6 gives o1y, the standard deviation of the natural
logarithm of an individual prediction of y, as it is presumed to vary with y.

Campbell. Campbell (1988) developed equations for predicting peak horizontal acceleration and
velocity from a selected worldwide data set meeting the following criteria: “(1) the largest horizontal
component of peak acceleration was at least 0.02 g; (2) the accelerograph triggered early enough
to record the strongest phase of shaking; (3) the magnitude of the earthquake was 5.0 or larger;
(4) the closest distance to seismogenic rupture was less than 30 or 50 km, depending on whether
the magnitude of the earthquake was less than or greater than 6.25; (5) the shallowest extent
of seismogenic rupture was no deeper than 25 km; and (6) the recording site was located on
unconsolidated deposits.” Records from instruments on the abutments or toes of dams were
excluded. Two equations are given, equation (11) for the unconstrained relationship and equation
(12) for the constrained relationship, which includes an anelastic attenuation term to permit
extrapolation beyond the near-source region.

Iny = a+bM + dln[r + hyexp(haM)] + & (11)

Iny = a+bM +dln[r + hyexp(hoM)] + kr + 5 (12)

22 Joyner and Boore
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FIGURE 8. Predicted pseudovelocity response spectra (light lines) of shallow earthquakes for 5 percent damping
at soil sites for a moment magnitude of 6.5 and the indicated distances (Joyner and Boore, 1982) compared to
the ATC-3 spectrum (heavy line) for soil type S; in the highest seismic zone (Applied Technology Council, 1978).
Predicted spectra correspond to the randomly oriented horizontal component. Distance is as defined for Figure 6.

where y is the mean of the peak acceleration (g) or velocity (cm/s) values for the two horizontal
components, M is surface wave magnitude My if both local magnitude M and My are greater than
or equal to 6.0 or My if both Ms and M are less than 6.0, and r is the shortest distance (km) to the
zone of seismogenic rupture, identified where possible from the aftershock distribution, otherwise
from other data, particularly the intersection of the fault surface with the surface of basement rock
(Campbell does not state what magnitude to use if the relative sizes of Ms and My do not fall into
one of the categories above). A value of -0.0059 was assumed for k for the regression analysis of the
data base; in using equation (12) for predicting ground motion, a value appropriate for the region
should be chosen. For peak horizontal acceleration

s=e1 K +e2Ky+ e3sKs + e4Kq + e5 K5 + es(K4 + K5) tanh(err) (13)

and for peak velocity
s=e1K; 4+ e3Ky + e3K3 tanh(e.;D) +es(l - Ka) tanh(esD) (14)
where s incorporates the effects of fault type, directivity, soil type, building size, and building
embedment. D is depth (km) to crystalline basement rock. Values of a, b, d, h;, and e; are given
in Table 7 along with values of oy, y, the standard deviation of an individual prediction of Iny. The

standard deviations are less than one-half of those in Tables 2 and 3 after conversion from natural
to common logarithms. Values of K; are given in Table 8.

Idriss. Equation (15) was developed for the randomly oriented horizontal component of peak
horizontal acceleration by Idriss (1985, 1987).

Iny =Ina+din(r + 20) (15)
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FIGURE 9. Predicted pseudovelocity response spectra (light lines) of shallow earthquakes for 5 percent damping
at soil sites for a moment magnitude of 7.5 and the indicated distances (Joyner and Boore, 1982) compared to
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TABLE 4. PARAMETERS IN THE PREDICTIVE EQUATIONS
OF CROUSE (WRITTEN COMMUNICATION, 1987) FOR THE RANDOMLY ORIENTED
HORIZONTAL COMPONENT OF PSEUDOVELOCITY RESPONSE (CM/S)
AT 5 PERCENT DAMPING AND OF PEAK ACCELERATION (GAL)

Period (s) a b c d k Oiny
Pseudovelocity response
0.05 - 2.44178 0.84826 -0.02579 -0.52916 -0.0p961 0.59914
0.10 - 0.61623 0.62660 - .00999 - .50106 - 01199 68673
0.20 -4.47801 2.00876 - .11673 - .32102 - .01423 .64716
0.40 - 1.35559 1.17453 - .04411 - 47398 - 00782 .62089
0.60 - 6.02161 2.66493 - .15619 - .52586 - .00548 62275
1.00 - 5.89916 2.48235 - .13036 - .52261 - .00405 62745
2.00 -11.48576 4.01914 - .23152 - .56791 - .00280 63277
2.50 -12.33454 4.15828 - .23359 - .56280 - .00320 .66459
4.00 -14.90528 4.54962 .24999 32351 00738 .73830

6.00 -14.77796 4.33959 -0.23491 -0.20849 -0.00791 0.79595
Peak acceleration A
2.48456 0.73377 -0.01509 -0.50558 -0.00935 0.58082
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TABLE 5. PARAMETERS IN THE PREDICTIVE EQUATIONS
OF SADIGH (WRITTEN COMMUNICATION, 1987) FOR THE RANDOMLY ORIENTED
HORIZONTAL COMPONENT OF PSEUDOACCELERATION RESPONSE (9)
AT 5 PERCENT DAMPING AND OF PEAK ACCELERATION (9)

M<65 M>65
Period (s) a b c ¢ d hy hy Oiny hy ha oy

Pseudoacceleration response at soil sites

0.1 -2.024 1.1 0.007 2.5 -1.75 0.8217 0.4814 1.332— 0.148M 0.3157 0.6286 0.37
0.2 -1.696 1.1 .0 25 -1.75 .8217 .4814 1.453-0.162M .3157 .6286 .40
0.3 -1.638 1.1 -.008 2.5 -1.75 .8217 .4814 1.486—0.164M .3157 .6286 .42
0.5 -1.659 1.1 -.025 2.5 -1.75 .8217 .4814 1.584—0.176M .3157 .6286 .44
1.0 -1.975 1.1 -.060 2.5 -1.75 .8217 .4814 1.62—0.18M .3157 .6286 .45
2.0 -2.414 11 -.105 2.5 -1.75 .8217 .4814 1.62—0.18M  .3157 .6286 .45
4.0 -3.068 1.1 -0.160 2.5 -1.75 0.8217 0.4814 1.62—0.18M 0.3157 0.6286 0.45

Peak acceleration at soil sites
-2.611 1.1 0.0 2.5 -1.75 0.8217 0.4814 1.26-—0.14M 0.3157 0.6286 0.35
Pseudoacceleration response at rock sites

0.1 -0.688 1.1 0.007 2.5 -2.05 1.353 0.406 1.332—0.148M 0.579 0.537 0.37
0.2 -0.479 1.1 -.008 2.5 -2.05 1.353 .406 1.453—0.162M .579 .537 .40
0.3 -0.543 1.1 -.018 2.5 -2.05 1.353 .406 1.486—0.164M 579 537 .42
0.5 -0.793 1.1 -.036 2.5 -2.05 1.353 406 1.584—0.176M .579 .537 .44
1.0 -1.376 1.1 -.065 2.5 -2.05 1.353 406 1.62—0.18M 579 537 45
2.0 -2.142 1.1 -.100 2.5 -2.05 1.353 .406 1.62—0.18M 579 537 45
4.0 -3.177 1.1 -0.150 2.5 -2.05 1.353 0.406 1.62—0.18M 0.579 0.537 0.45

Peak acceleration at rock sites
-1406 1.1 0.0 25 -2.05 1.353 0.406 1.26—0.14M 0579 0.537 0.35

TABLE 6. STANDARD DEVIATION GIVEN BY DONOVAN AND BORNSTEIN (1978)
FOR THE NATURAL LOGARITHM OF AN INDIVIDUAL PREDICTION
OF PEAK HORIZONTAL ACCELERATION

Peak acceleration 0.01 0.05 0.10 0.15
Standard deviation of
natural logarithm of 0.50 0.48 0.46 041

peak acceleration

where y is peak horizontal acceleration (g), M is surface-wave magnitude for M greater than or equal
to 6 and local magnitude otherwise, and r is the closest distance (km) to the source for M greater
than 6 and hypocentral distance otherwise. Values of a and d are given in Table 9 along with oy,
the standard deviation of an individual prediction of In y, which is treated as a function of M. Idriss
proposed that peak acceleration from equation (15) be used to scale the response spectral shapes
shown in Figure 10 for different site conditions with magnitude- and period-dependent correction
factors shown in Figure 11. Figures 10 and 11 constitute another demonstration of the dependence
of the shape of response spectra on magnitude and site conditions.

Comparisons of Predictive Equations. To compare the different relationships properly,
adjustments must be made for the different definitions of distance. Figure 12a compares peak
horizontal acceleration for the randomly oriented horizontal component at magnitude 6.5 as predicted
by Donovan and Bornstein (1978), Joyner and Boore (1982), Idriss (1987), and Campbell (1988).
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TABLE 7. PARAMETERS IN THE PREDICTIVE EQUATIONS OF CAMPBELL (1988)
FOR MEAN PEAK HORIZONTAL ACCELERATION (g) AND VELOCITY (CM/S)

Acceleration Velocity
Unconstrained Constrained Unconstrained Constrained
a -2.817 -3.303 -0.798 -1.584
b 0.702 0.850 1.02 1.18
d -1.20 -1.25 -1.26 -1.24
hy 0.0921 0.0872 0.0150 0.00907
ha 0.584 0.678 0.812 0.951
e; 0.32 0.34 0.47 0.49
€2 0.52 0.53 0.95 0.99
es 0.41 0.41 0.63 0.53
ey -0.85 -0.86 0.39 0.41
es -1.14 -1.12 0.72 0.60
€6 0.87 0.89 0.75 0.88
er 0.068 0.065 - —_
Olny 0.30 0.30 0.26 0.27 P

TABLE 8. PARAMETER K; IN THE PREDICTIVE EQUATIONS OF CAMPBELL (1988)
FOR MEAN PEAK HORIZONTAL ACCELERATION AND VELOCITY

Peak acceleration

Fault type K, = 1 reverse
P ! 0 strike-slip
Source directivity Ky = 1 rupture toward site
0 other
Shallow soil Ko= | solesi0m decp
Ke= 1 basements of buildings 3-9 stories
4 —
0 other
Embedment
Ks = 1 basements of buildings 10 or more stories
0 other
Peak velocity
Fault type K, = 1 reverse
P 1= 0 strikeslip
Source directivity K,= 1 rupture toward site
0 other
Building size Ks= 1 shelters and buildings less than 5 stories
0 other

The definition of distance used in Figure 12a is the closest distance to the vertical projection of
the rupture on the surface of the earth. The curves of Donovan and Bornstein and Campbell were
adjusted assuming a source depth of 5 km. The curve shown for Idriss is that for deep soil sites. The
curve shown for Campbell is that for strike-slip earthquakes recorded at free-field sites with more
than 10 m of soil, and no allowance is made for directivity. In this and subsequent comparisons
there is no indication of where the curves are not constrained by data as there is in Figures 6, 7,
and 9. At short distance, where it matters the most, the different relationships agree to within a
fraction of the uncertainty of an individual prediction as given by any of the authors. This suggests
that the short-distance predictions at magnitude 6.5 are controlled by the data. The differences at
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TABLE 9. PARAMETERS IN THE PREDICTIVE EQUATIONS OF IDRISS (1987) FOR
THE RANDOMLY. ORIENTED HORIZONTAL COMPONENT OF PEAK ACCELERATION

Rock and stiff soil sites Deep soil sites
M a d a - d Oiny
4.5 606 -2.57 189 -2.22 0.70
5.0 617 -2.46 195 -2.13 .58
5.5 452 -2.28 147 -1.97 48
6.0 282 -2.07 98 -1.79 42
6.5 164 -1.85 61.6 -1.60 .38
7.0 91.7 -1.63 37.2 -1.41 .35
7.5 49.8 -1.41 22 -1.22 .35
8.0 28.5 -1.21 13.7 -1.05 .35
8.5 15.9 -1.01 8.4 -0.88 0.35

large distance are not of much practical importance; they are due, at least in part, to the inclusion
of different records in the different data sets. Figure 12b gives the same comparison for magnitude
7.5. The agreement at short distance is not as good as at magnitude 6.5, reflecting the scarcity of
data points, but it is within the uncertainty of an individual prediction.

Figure 13a compares 0.2 s pseudovelocity response at 5 percent damping for the randomly
oriented horizontal component as predicted for magnitude 6.5 by Crouse (written communication,
1987; Vyas et al., 1988), Idriss (1987), Sadigh (written communication, 1987; Sadigh et al., 1986)
and us (Joyner and Boore, 1982). The definition of distance is the same as in Figure 12. The curves
shown for Crouse and Idriss are those for deep soil sites; the other two are for soil sites. Figure 13b
gives the same comparison for magnitude 7.5. The differences shown for 0.2 s response are somewhat
larger than for peak horizontal acceleration but smaller than for longer-period measures of ground
motion, shown in Figures 14a and 14b, which give the same comparisons for 1.0 s pseudovelocity
response. The maximum differences for motions large enough to be of engineering concern are a little
larger than a factor of two; they occur for magnitude 7.5 at distances less than 10 km, a magnitude
and distance range for which very few data are available.

For the 1.0 s response at magnitude 7.5 shown on Figure 14b, all four curves at short distances
are higher, by factors of 1.5 to 3, than the highest values of the ATC-3 spectrum for firm ground.
Ninety em/s is the highest value of the ATC-3 pseudovelocity response spectrum at 1 hz for 5
percent damping on soil type S; with a response modification factor of 1 (see Figure 9). Concern
that response values near the source may greatly exceed the values implicit in building codes is the
reason for the proposal that a zone 5 should be added to the four zones of existing building codes.
Zone 5 would lie within 8 km (5 miles) of a fault considered capable of producing a magnitude 7.5
earthquake.

Predictive Equations Developed from Italian Data. The predictive equations for shallow
earthquakes described and compared in previous sections are based primarily on data from the
western United States. There is a large set of strong-motion data recorded from shallow earthquakes
in Italy. Predictive relationships for peak horizontal acceleration and velocity based on this data set
have been developed by Sabetta and Pugliese (1987). They included only data believed to represent
free-field conditions and only data where the triggering earthquake was reliably identified, had a
magnitude greater than 4.5, was recorded by at least two stations, had an epicenter determined to
an accuracy of 5 km or less, and had a magnitude accurate to 0.3. They used three site categories,
stiff, shallow soil (5-20 m thick) and deep soil (more than 20 m thick). The equation fitted to the
data is

logy = a+ bM ~ log(r2 + h’)llz +s (16)-

where y is the larger value from the two horizontal components for either peak acceleration (g) or
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velocity (¢cm/s). M is given by surface-wave magnitude Mg when both Ms and local magnitude My
are greater than or equal to 5.5, and M otherwise. rq is the closest distance (km) to the vertical
projection of the rupture on the surface of the earth. Values of a, b, h, and s are given in Table 10
along with 004y, the standard deviation of an individual prediction of logy. Sabetta and Pugliese
tried a magnitude-dependent h but did not find a statistically significant improvement in fit.

Equation (16) is similar in form to ours (Joyner and Boore, 1982), which facilitates comparison.
Figures 15a and 15b give the comparison for peak horizontal acceleration and velocity, respectively.
For distances less than 100 km the agreement is within a fraction of the standard deviation of an
individual prediction for either study. In their paper Sabetta and Pugliese made the comparison
using an earlier version of our curves (Joyner and Boore, 1981). Our earlier curve for peak horizontal
velocity, which was based on fewer data than our 1982 equations, does not agree as well as the
curve shown in Figure 15b. The differences at large distance between the two sets of curves in
Figures 15a and 15b have little practical importance. They are probably due to our exclusion, for
each earthquake, of data recorded at distances greater than the distance to the closest operational
instrument that did not trigger.

Predictive Equations for Subduction-Zone Earthquakes. Data from subduction-zone

earthquakes is generally treated separately because of presumed differences in source andfor
propagation conditions. Jacob and Mori (1984) suggest that “the high variability of stress drops
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typical for some subduction zones” is responsible for the apparently larger scatter in peak horizontal
acceleration from Alaskan data compared with data from shallow earthquakes in the rest of the
western United States. Boore (1986), however, was successful in simulating teleseismic P waves

32 Joyner and Boore




TABLE 10. PARAMETERS IN THE PREDICTIVE EQUATIONS
OF SABETTA AND PUGLIESE (1987) FOR THE LARGER PEAK ACCELERATION (y)
AND VELOCITY (CM/S) OF TWO HORIZONTAL COMPONENTS

a b h s 8 8

Ology

Stif  Shallow soil  Deep soil
Peak acceleration -1.562 0306 5.8 0.0 0.169 0.0 0.173
Peak velocity -0.710 0.455 3.6 0.0 0.133 0.133 0.215

from subduction zone earthquakes with moment magnitudes up to 9.5, using the same stochastic
source model with the same stress parameter as he used for simulating strong-motion data from
shallow earthquakes in the western United States. This suggests a general similarity between
the source processes of subduction-zone earthquakes and shallow crustal earthquakes. There are
significant differences in geometry and propagation path between the two kinds of earthquake data.
Of particular importance may be less anelastic attenuation along the deeper paths characteristic of
data from subduction-zone earthquakes.

The Ms 7.8 Central Chile earthquake and the Mg 8.1 Michoacan, Mexico, earthquake, both in
1985, provided the first extensive sets of data from the epicentral regions of large subduction-zone
earthquakes. Figure 16, taken from Anderson et al. (1986), shows peak accelerations from these

data sets. The values for the Chilean earthquake are substantially higher at distances less than 100
km.

Crouse et al. Equation (17) was developed from pseudovelocity response data at soil sites from
subduction earthquakes in the Northern Honshu zone (Crouse et al, 1988). Both horizontal
components were used.

Iny=a+dM+dlnr+4¢h 17)

where y is the pseudovelocity response value (cm/s) at § percent damping for the randomly oriented
horizontal component, M is moment magnitude, r is distance (km) to the center of energy release,
and h is focal depth (km). Values of a, b, d, and g are given in Table 11 along with 0}y, the standard
deviation of an individual prediction. The distance to the center of energy release was taken as the
hypocentral distance for all earthquakes with M less than 7.5. For most of the larger events the
distance was taken as the distance to the centroid of the fault plane defined by the aftershocks. If
studies were available identifying the location of the greatest energy release, the distance to that
point was used. Crouse et al. showed that equation (17) also fits data from stiff-soil sites in the
Kurile, Nankai, Alaskan, and Mexican subduction zones but appears not to fit data from stif-soil
sites in the Peru/North Chile and the New Britain/Bougainville zones.

Kawashima. Equation (18) for peak horizontal acceleration (gal), velocity (cm/s), and displacement
(cm) and horizontal acceleration response (gal) for 5 percent damping was developed from data
recorded in Japanese earthquakes with focal depth less than 60 km (Kawashima et al., 1984).
Presumably most of the earthquakes are subduction-zone events. Data recorded on structures
(including first floor and basement) were excluded.

y = al0*¥ (A + 30)¢ (18)

where y represents the peak motion or the acceleration response which is the maximum over
all possible azimuths of the horizontal component, M is JMA (Japanese Meteorological Agency)
magnitude, and A is epicentral distance (km). Values of a, b, and d are given in Table 12 along with
values of 0)ogy, the standard deviation of the common logarithm of an individual prediction of y.
Different values of a, b, and 0),¢y are given for three different site conditions defined in Table 13.
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TABLE 11. PARAMETERS IN THE PREDICTIVE EQUATIONS OF CROUSE ET AL. (1988)
FOR THE RANDOMLY ORIENTED HORIZONTAL COMPONENT OF
PSEUDOVELOCITY RESPONSE (CM/S) AT 5 PERCENT DAMPING

Period (s) a b d q Oiny
0.1 1.86 0.48 -1.02 0.0093 0.668
0.2 3.19 0.44 -0.98 .0053 672
0.4 1.29 - 0.68 -0.84 .0041 597
0.6 0.67 0.85 -0.95 .0030 674
0.8 -0.38 0.96 -0.87 .0017 .703
1.0 -1.13 1.06 -0.83 .0 713
1.5 -2.79 1.18 -0.69 - .0007 .663
2.0 -3.04 1.26 -0.78 - .0008 718
3.0 -3.46 1.34 -0.85 - .0046 .730
4.0 -4.09 1.39 -0.85 -0.0053 0.720

Theoretical Prediction

The usual method for calculating theoretical strong-motion seismograms is kinematic and
requires specification of the distribution in space and time of slip on the fault and a means of
calculating the Green’s functions, which give the response to slip at a point. There are now available
a number of methods for calculating complete Green’s functions for earth models in which material
properties vary only with depth (Spudich and Ascher, 1983; Ascher and Spudich, 1986; Olson et
al., 1984). If lateral heterogeneity is a significant factor, ray methods (Spudich and Frazer, 1984) -
can be used to compute high-frequency (> 1Hz2) ground motions at near-source distances. The
methods for calculating complete Green’s functions have been used to infer the distribution of slip
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TABLE 12. PARAMETERS IN THE PREDICTIVE EQUATIONS
OF KAWASHIMA ET AL. (1984) FOR HORIZONTAL ACCELERATION
RESPONSE (GAL) AT 5 PERCENT DAMPING AND FOR PEAK HORIZONTAL
ACCELERATION (GAL), VELOCITY (CM/S), AND DISPLACEMENT (CM)

Ground group 1 Ground group 2 Ground group 3
Period (s) d a b Ology a b Clogy a b Ology
Acceleration response
0.1 -1.178 2420 0.211 0.262 848.0 0.262 0.256 1307 0.208 0.219
0.15 -1.178 2407 216 229 6291 288 244 9482 238 218
0.2 -1.178 1269 247 226 466.0 315 273 1128 228 211
0.3 -1.178 574.8 273 241 266.8 345 270 1263 224 27
0.5 -1.178 2118 299 278 102.2 388 .249 5806 281 240
0.7 -1.178 1025 317 239 34.34 440 245 65.67 421 243
1.0 -1.178  40.10  .344 273 5.04  .548 305 7.41 541 307
15 -1.178 7.12 432 254 0.719 630 .288 0.803 .647 .305
2.0 -1.178 5.78 417 267 0.347 644 .264 0.351 .666 .276
3.0 -1.178 1.67 0.462 0.249 0.361 0.586 0.248 0.262 0.635 0.263

Peak acceleration
-1.218 0874 0216 0216 2325 0.313 0.224 403.8 0.265 0.197
Peak velocity

-1.222 208  0.263 0.236 2.81 0.430 0.239 5.11 0.404 0.243
Peak displacement

-1.254 0.626 0.372 0.262 0.062 0.567 0.258 0.070 0.584 0.262

TABLE 13. CLASSIFICATION OF SITE CONDITIONS FOR THE PREDICTIVE
EQUATIONS OF KAWASHIMA ET AL. (1984)

Geological Definition Definition b?'
’ Natural Period

Group 1 Ter.tiar.y or older rock or _
diluvium less than 10m thick
Diluvium with thickness 10m or more or
Group 2 alluvium less than 25 m thick including Period between 0.2 and 0.6 s
soft layer less than 5 m thick
Other than the above, usually
soft alluvium or reclaimed land

Period less than 0.2 s

Group 3 Period more than 0.6 s

in past earthquakes by direct inversion (Olson and Apsel, 1982; Hartzell and Heaton, 1983) and by
trial-and-error forward modeling (Archuleta, 1984). Such studies are important in advancing our
understanding of earthquake source processes. The calculation of theoretical seismograms for future
earthquakes, however, requires a means of specifying the distribution of slip in future earthquakes.
Assuming uniform slip would not give realistic seismograms. We have done computations indicating
that the amplitude of ground motions at all frequencies of engineering interest is controlied by the
heterogeneities in the fault rupture (Boore and Joyner, 1986). Because there is no way to predict the
heterogeneities of future ruptures, we turn to stochastic source models as the basis for theoretical
ground-motion prediction.

Stochastic Source Models. Stochastic source models make possible what we consider to be the
first realistic theoretical predictions of strong ground motion. We describe two stochastic source
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models, the barrier model of Papageorgiou and Aki (1983a, b) and the stochastic w-square model
of Hanks and McGuire (1981). In the barrier model a rectangular fault plane is covered by circular
cracks of equal diameter separated by unbroken barriers. Individual cracks rupture independently
and randomly, and their radiation is described by Sato and Hirasawa’s (1973) equations. The Fourier
spectrum of the resulting ground motion has random phase, which is the reason we classify the barrier
model as a stochastic source model. The barrier model is specified by five basic parameters, fault
length, fault width, maximum slip, rupture velocity, and barrier interval. A sixth parameter, the
cohesive zone size, is introduced to explain the cutoff of high frequencies in the spectrum. The
cutoff frequency f, (Hanks, 1982) is considered by Papageorgiou and Aki (1983a) to be a source
parameter that may vary with other source parameters. This contrasts with the view of advocates of
the Hanks-McGuire model who, while admitting the possibility of source-controlled cutoff, generally
consider the cutoff of high frequencies to be an effect of near-surface attenuation at the recording site.
Papageorgiou and Aki (1983b) applied the barrier model to the analysis of six California earthquakes
and showed that the barrier interval is strongly related to the maximum slip.

According to the Hanks-McGuire (1981) model earthquake accelerations are band-limited white
noise in the band between the corner frequency fo and fr, and the spectral shape is given by the
Brune (1970, 1971) spectrum. In addition to moment My, the model is specified by two parameters,
the stress parameter Ao and f,,. Hanks and McGuire used this model with the aid of random
vibration theory to predict horizontal peak acceleration and rms acceleration and obtained excellent
agreement with empirical data over the magnitude range from 4.0 to 7.7. Boore (1983) made use
of both stochastic simulations and random vibration theory to test the predictions of the Hanks-
McGuire model for peak horizontal velocity and response spectra as well as peak acceleration. He
showed agreement between model predictions and data covering a magnitude range from less than
1.0 to more than 7.0. Hanks and Boore (1984) showed that the model predictions reproduce the
correlation between log moment and local magnitude M, for California earthquakes in the M| range
from 0 to 7. Boore (1986) compared model predictions with peak teleseismic P-wave amplitudes
given by Houston and Kanamori (1986) for earthquakes with moment magnitude up to 9.5 and
showed good agreement.

A question with the Hanks-McGuire model arises in extending the model to magnitudes greater
than the critical magnitude corresponding to rupture of the full width of the seismogenic zone. For
larger earthquakes similarity must break down because rupture width can no longer increase as the
moment increases. Joyner (1984) proposed a scaling law that accomplishes the extension of the
Hanks-McGuire model to magnitudes for which similarity no longer applies.

Ground-Motion Prediction with Stochastic Source Models. Two methods are available for
making ground-motion predictions with stochastic source models. One uses Monte Carlo simulations
in the time domain and the other uses random-vibration theory. The two methods complement each
other. Calculations with random-vibration theory require less computer time, whereas Monte Carlo
simulations are useful in applications that require time series and serve as a check on the assumptions
underlying the random-vibration approach. Both methods are summarized below; more detailed
descriptions are given by Boore (1983, 1986, 1987; Boore and Joyner, 1984a; Boore and Atkinson,
1987).

For both methods the spectrum of ground motion is given as a function of frequency f by

R(f) = CS(NANDNHI(S) : (19)

Where the factors C,S,A,D, and I represent, respectively, a scaling factor, the source spectrum, an
amplification factor, a diminution factor, and an instrument-response factor. Only S(f) depends on
seismic moment. C is given by

ReaFV

= AmpofaR

where Res is the radiation pattern averaged over an appropriate range of azimuth and takeoff
angle (e.g., Boore and Boatwright, 1984), F accounts for the free-surface effect, V represents the

(20)
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partition of energy from a vector into horizontal components (if needed), po and By are the density
and shear velocity in the source region, and R is the geometric spreading factor. F and V are
usually given values of 2 and 1/V/?2, respectively. For body waves within about 100 km R = r,
where r is hypocentral distance. For distances beyond 100 km, where the L, phase dominates, R
will be proportional to \/r. For teleseismic body waves a different treatment of geometric spreading
is required (Boore, 1986).

For the barrier model the source factor S(f) is given by Papageorgiou (1988). For the Hanks-
McGuire model S(f) is

S(f) = Mo/[1 + (f/f0)?] (21)
where Mj is the seismic moment and fo the corner frequency, given by
fo = 4.9 x 10°85(Ac/M;)!/3 (22)

Ao is a parameter with the dimensions of stress, fo is in Hz, fo in km/s, Ao in bars, and Mp in
dyne-cm (Brune, 1970, 1971).

A modified version of S(f) was given by Joyner (1984) to accommodate the breakdown of
similarity which must occur when the moment exceeds the critical moment Mg, corresponding to
rupture of the entire width of the seismogenic zone.

S(f) = Mo/(1 +if/ fB)'/? f<fa
3/2 23
=mo ()" jaisiner 521 (®)
where
Fa =49 x10°6A" Y4 (A0 M)}/3
f5 = 4.9 x 10°8,23/4(Ac/Mo) /3 Mo < My,
(29)

fa =49 x 10802~ V4ANM MY M2
fB = 4.9 x 10°80X%/4(Ac /Mo )3 Mo > Mo,

) is the ratio between the length and the width of the fault [assigned a typical value of 4 by Joyner
(1984)], and the other symbols are as defined for equation (22).

The amplification factor can be given in different ways. Perhaps the most familiar is the
frequency-dependent transfer function that results from wave propagation in a stack of layers (e.g.
Boore and Joyner, 1984b). Amplification can also be represented in terms of site impedance, as
discussed previously. Conservation of energy requires that amplitude increase as impedance decreases
in going from the source region to the recording site. The amplification factor can be approximated
by \/poBo/pr-Br, where the subscripts r refers to material near the recorder and the subscript 0 refers
to material near the source. Table 14 gives the logarithm of the correction factor as a function of
frequency for a typical western North American strong-motion recording site on rock, as estimated
by Boore (1986). The variations in density are expected to be minor for rock and were ignored in
Table 14. The frequency dependence of the correction arises from the assumption that p, and S, are
effective properties averaged over a depth equal to a quarter-wavelength (Joyner and Fumal, 1984).
Note that the correction can be greater than a factor of two even at rock sites.

The diminution factor may be written

D(f) = exp[-=fr/Q(f)B)P(f) (25)

where Q is a frequency-dependent attenuation function, f is the propagation velocity averaged over
the path, and P is a high-cut filter. In western North America we use for Q the following function
that fits a number of observations collected by Aki (see Figure 2 in Boore, 1984):

1+ (£/0.3)%°

Q=204 (//0.3)2

(26)
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TABLE 14. AMPLIFICATION FACTORS FOR
ROCK SITES IN WESTERN NORTH AMERICA

log f log \/Bo/Br

-1 0.01
-0.5 0.04
0.0 0.13
0.5 0.34
1.0 0.37

The high-frequency behavior of this function is consistent with our analysis of response spectral
attenuation (Joyner and Boore, 1982), but, as referred to previously, we do not know to what extent
the agreement indicates that the Q function represents the true frequency dependence of Q and to
what extent the agreement is influenced by error in the assumed geometric spreading of 1/r. The
high-cut filter P is needed to account for the observation that acceleration spectra generally show an
abrupt depletion of high-frequency energy above some frequency f,, (Hanks, 1982). This filter can
be represented by a Butterworth filter [Boore, 1983, equation (4)] with a steep rolloff (approximately
24 db/octave) above the corner frequency fr,. Another form of the P filter is

P(f) = exp(—=xof) (27)

The form and notion is from Anderson and Hough (1984). For small distances or large Q, the
P(f) factor contributes most of the attenuation, and the filter D(f) is then roughly equivalent to
a step high-cut filter with a cutoff frequency f,, equal to 1/7x, (a relation pointed out to us by J.

Boatwright). A possible physical mechanism for the P(f) factor would be near-site attenuation in
the upper kilometer or so of the ray path.

Finally, the filter I(f) is used to shape the spectrum so that the output time series corresponds
to the particular ground-motion parameter of interest. For example, if pseudo-velocity response
spectra are to be computed, I is the response to ground displacement of an oscillator of frequency
Jr and damping (

O r—

(2= -i2ff)
with the magnification V given by 2xf,.. If Richter local magnitude M is to be computed, I is
given by equation (28) with f, = 1.25, ¢ = 0.8, and V = 2800, the values for the Wood-Anderson
seismograph used in defining the My scale. If peak velocity or peak acceleration are the quantities

of interest, then
I(f) = 2= fi)" (29)

where n = 1 or 2, respectively, for velocity or acceleration. The uncorrected response of an
accelerometer can be simulated by using equation (28) with appropriate f, and ¢ (typically, f, = 25
Hz and ¢ = 0.6) and V = (27 £,)2. The response equations for other instruments, such as the World
Wide Standardized Seismograph Network short-period instrument, can be used as desired.

(28)

Once the spectrum R(f) is determined, application of the time-domain method of ground-
motion prediction is very simple. Gaussian white noise is generated with a random-number generator.
The noise is windowed by either a shaping function or a box car whose duration Ty, is given by
1/fo + 0.05r for the Hanks-McGuire model and by 1/f4 + 0.05r for Joyner’s (1984) modification,
where r is the source distance (km). The distance-dependent term is included to account for the
spreading out of the source energy due to scattering and wave-propagation effects (Herrmann, 1985).
The amplitude of the window is chosen so that the mean level of the white spectrum is unity. The
noise sample is then filtered by the filter R(f) from equation (19). [This method differs from the
conventional engineering method for stochastic simulation in which white noise is filtered before
being windowed rather than after. Safak and Boore (1988) show that windowing filtered noise alters
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the spectrum, so windowing should be done first.] Fourier transformation back to the time domain
gives the simulated time series from which the peak value is obtained. The process is then repeated
with different seeds for the random-number generator. Between 20 and 100 simulations are generally
sufficient to give a good estimate of the peak motion. A spectrum of a single realization of the process
will not match the target spectrum, but the average of a number of realizations will match, as shown
in Figure 17. The time series for one realization for each of two different magnitudes are shown in
Figure 18; the only parameter that was changed between the simulations for the two earthquakes
was the magnitude.

The method of random-vibration theory can be used to obtain peak values without doing
simulations. The method is based on the work of Cartwright and Longuet-Higgins (1956). To
estimate the peak value ymas of the ground-motion parameter y, we obtain the spectrum R(f) of y
from equation (19) as in the simulation method. The zeroth, second, and fourth moments, mg, ma,
and my, of the energy density spectrum are calculated from the equation

m= 1 /o ” W R(f) Pl (30)

where w = 27 f. The rms value of the ground-motion parameter is given by

Yrms = ("nD/Tr)l/2 (31)

For predicting peak acceleration or velocity T is the same as Ty, the time duration of the motion
determined as described for the simulation method. The determination of T, for predicting response
spectral values is described later. The expected value of the peak [E(ymaz)] is calculated either by
an exact or an asymptotic formula depending on the values of the bandwidth parameter § and the
pumber of extrema N, where

= mg/(mom4)1/2 ' (32)
and N is the largest integer contained in the number 2 fT.,, where

f = gotmefma)'’? (33)

If N is less than 14.7/€ — 8 then the expected value of the peak is given by the exact formula

N N
E(ymaz:) = YUrms \/-3;2("1)'“ "C:}-i'fl (34)
I=1

where C}V are the binomial coefficients (= N Y/IN —1)}). For larger values of N there may be
numerical problems with the exact formula and the asymptotic solution

E(Ymaz) = Yems {21I(N)/? + 7/[2In(N)]'/?} (35)

where ¥ = 0.557216 (Euler’s constant), is recommended. For the asymptotic approximation, the
quantities f and N are recalculated as follows
i1 1/2
f = gg(ma/mo) (36)
N =2fT,

The cutoff between the exact and asymptotic solutions was determined from numerical experiments,
with the criteria being that at the transition the difference between log E(Ymaz) from the two
equations was less than 0.01 units.

When estimating response spectra a further refinement is required to the basic random-vibration
theory described above. The random-vibration approach assumes a stationary time series. For small
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FIGURE 17. Fourier amplitude spectrum of acceleration at 10 km for magnitude §.0. (Top) Smooth curve, given
spectrum; jagged curve, spectrum for one realization of the simulation process. (Bottom) as above but averaged over
20 realizations (the average is the square root of the arithmetic mean of the squared moduli of the individual spectra).
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FIGURE 18. Simulated time series for magnitude 4 and 7 earthquakes at a distance of 10 km. Values given for
peak motions are the average of peaks from 20 such time series. A low-cut filter with a cutoff frequency of 0.10 Hz
has been applied to the velocity time series.

to moderate earthquakes, or low oscillator frequencies, or light damping the duration of motion may
not be long enough to generate a pseudo-stationary response. We have developed an empirical
correction to the duration of motion T}, to be applied in equation (31) [but not in the estimates
of N] to account for the distribution of energy content beyond the ground-motion duration (Boore
and Joyner, 1984a). We define the ground-motion duration Ty, as before, as 1/fo + 0.05r for the
Hanks-McGuire model and as 1/f4 + 0.05r for Joyner’s (1984) modification. The duration T; to be
used in equation (31) for computing yrm, is given by

T 7
T, =T, + 5;"? (m) (37)

where Ty is the period of the oscillator in sec, ¢ is the damping of the oscillator as a fraction of
critical, and 7 = Ty /To. Equation (37) was developed and verified by comparing the results of
random-vibration theory with the results of Monte Carlo simulations.

As previously noted, the Hanks-McGuire model gives predictiohs in good agreement with the

strong-motion data set collected in western North America. Encouraged by this agreement, Boore
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FIGURE 19. Predictive relationships for hard-rock sites in eastern North America giving peak horizontal
acceleration and pseudovelocity response at three periods for 5 percent damping (from Boore and Atkinson, 1987).

and Atkinson (1987) used the model to predict ground motion at rock sites in eastern North America,
aregion where there are few ground-motion recordings within 100 km of damaging earthquakes. They
chose a @ function and a value for f,, appropriate for eastern North America. They ignored the
amplification factor A(f) on the grounds that near-surface shear velocity in rock in eastern North
America is large enough to make the factor negligible. For a stress parameter Ao of 100 bars the
model agrees with the limited available data. Figure 19 shows the predictions they made for peak
horizontal acceleration and spectral response at 0.5, 2, and 10 Hz. Toro and McGuire (1987) also
made a study applying the Hanks-McGuire model to the prediction of ground motion in eastern
North America.

A limitation of the use of stochastic models for ground-motion predictions as described above is
that the approach can be rigorously justified only for sites at distances large compared to the source
dimensions. Joyner et al. (1988) have developed a method of stochastic simulation that is applicable
at smaller distances. They start by generating functions over the rupture surface representing the -
total slip at each point. They do so by using Monte Carlo methods to obtain random-phase spectra
in two-dimensional wave-number space. The spectra have constant amplitude (determined by the
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moment M;) for wave-number vectors with modulus p less than a critical value and amplitudes
proportional to p~1'5 for p greater than the critical value. The critical value is controlled by the
stress parameter Ac and is equal to f4 /v, where f4 is given by equation (24) and v is the rupture
velocity. The function representing total slip is obtained by inverse Fourier transformation and
multiplication by a window smoothly tapered to zero at the boundary of the rupture zone. Ground
motion corresponding to a delta-function slip velocity at each point is calculated by assuming rupture
propagation at uniform velocity from the hypocenter. The ground motion is Fourier transformed
from the time to the frequency domain and multiplied by the filter 1/(1 + if/fg)'/? to obtain the
spectrum S(f) of ground motion corresponding to a slip-velocity function of the Kostrov (1964) type.
The spectrum S(f) is then multiplied by the factors C, A, D, and I in equation (19) and transformed
back to the time domain so that the peak value can be obtained. In the actual computations the
rupture surface is broken up into zones based on distance to the recording site so that the Q filter
can be applied for the appropriate site distance. The process is repeated as many times as needed
with different seeds for the Monte Carlo random-number generator. The ground motions resulting
from this method have w-square spectra at distant sites. Simulations of the 1979 Imperial Valley,
California, earthquake agree reasonably well with observed data at sites near the source for a rupture
velocity of 0.8 Bo. The results, however, are highly sensitive to the assumed rupture velocity, with
amplitudes at the fault lower by about a factor of two for a rupture velocity of 0.7 So.

Comparison of the Hanks-McGuire Model and the Barrier Model. The differences between
the Hanks-McGuire model and the barrier model represent essentially philosophical differences about
how best to describe the seismic source and do not necessarily imply large differences in predicted
ground motion. With the methods described in the preceding section it is possible to show just
what the differences are. Fourier spectra of horizontal acceleration for the two models are shown in
Figure 20. The solid lines in Figure 20 represent Joyner’s (1984) modification of the Hanks-McGuire
model for a critical magnitude Mo, larger than 8.0. The amplification factor is that in Table 14,
corresponding to western North American rock sites, the Q function is given by equation (26),
P(f) = exp(—=rof) with ko chosen as 0.02 to correspond to rock sites, and Ao = 50 bars. The
dashed lines represent the spectra appropriate for the barrier model as specified by Papageorgiou
(1988) with no amplification factor applied. The data used by Papageorgiou to obtain the spectral
shapes were recorded at the surface of the earth and therefore implicitly contain the amplification
factors. Using the random-vibration method described in the previous section, we computed peak
acceleration and response spectral values for both models. The values for peak acceleration are
compared in Figure 21 for both models with the results of regression analysis of strong-motion data
from western North America (Joyner and Boore, 1982). For magnitudes above 6 the results from
the two models agree well with each other and with the data. The values for the response spectrum
at 5 Hz and 5 percent damping are shown in Figure 22. The agreement is not quite so good in
this case but still reasonably good above magnitude 6 with the barrier model a little closer to the
observed data. The values for the response spectrum at 1 Hz and 5 percent damping are shown in
Figure 23, which shows two curves for data, the upper one for soil sites and the lower one for rock
sites. The curve representing Joyner’s modification of the Hanks-McGuire model agrees with data
for rock sites, which it should, given that the values of the amplification factor and xo correspond
to rock sites. The curve representing the barrier model agrees reasonably well above magnitude 6
with data from soil sites. Papageorgiou (1988) makes no distinction between spectra for rock sites
and soil sites, but most of the strong-motion data available for guiding the choices that control the
shape of the spectrum were recorded at soil sites. It is therefore not surprising that the predictions
of the barrier model agree better with data recorded at soil sites.

Hybrid Prediction

A method for predicting ground motion recently popular among seismologists is the summation
of recordings of small earthquakes, considered as Green’s functions, in an attempt to simulate
the ground motion from larger events (Hartzell, 1978, 1982; Wu, 1978; Kanamori, 1979; Hadley
and Helmberger, 1980; Mikumo et al., 1981; Irikura and Muramatu, 1982; Hadley et al., 1982;
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FIGURE 20. Spectra of horizontal acceleration at a distance of 20 km for the indicated magnitudes. Solid
line, Joyner's (1984) modification of the Hanks-McGuire model with the amplification factor in Table 14, Q given
by equation (26), P(f)=exp(-%xof), x0=0.02, and Ao=50 bars; dashed line, the barrier model as specified by
Papageorgiou (1988) with no amplification factor applied.

Irikura, 1983; Coats et al., 1984; Houston and Kanamori, 1984; Imagawa et al., 1984; Munguia and
Brune, 1984; Hutchings, 1985; Heaton and Hartzell, 1986). The small earthquakes (henceforth called
subevents) ideally are located near the hypothetical source and recorded at the site for which the
large-event simulation is desired. If these ideal conditions are met, then the method incorporates
wave-propagation effects over the whole path from source to recording site as well as local site effects.
Generally, however, these conditions are not met. Users of the method generally postulate some
distribution of subevents over a fault plane and sum them in accordance with an assumed geometry
of rupture propagation. Most users include randomness of some sort in their methods for summing
subevents. This randomness may be thought of as representing a degree of random heterogeneity
characteristic of large earthquakes. It also performs an important function in preventing spurious
periodicities in the simulated motion resulting from summing over uniform grids in space or over
points equally spaced in time. Irikura (1983), who did not use any randomness in his summation,
relied on a special smoothing technique to eliminate spurious periodicities.

In the spirit of the original concept of the subevent as a Green’s function, the corner frequency
of the subevent should be higher than any frequency of interest in the simulated motion. In that
case the subevent record will be a true impulse response, and the spectrum of the simulated event
will depend on how the subevents are distributed over the fault and in time. The quality of the
simulation will depend, accordingly on how well the distribution of slip is represented over the fault
and in time, in particular, how well the degree and kind of heterogeneity of faulting is represented.
In the general case, however, because of limited dynamic range in the subevent records, it may not
be possible to use subevents so small that their corner frequencies are higher than any frequency of
engineering interest and still maintain the desired bandwidth in the simulated motion. For example,
if we wanted to keep the subevent corner frequencies above 3 Hz, we could use subevents no larger
than a moment magnitude of about 4; if we wanted to keep the subevent corner frequencies above
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FIGURE 21. Peak horizontal acceleration at 20 km for the randomly oriented horizontal component as a function
of magnitude. Heavy line, data from shallow earthquakes in western North America (Joyner and Boore, (1982); light
line, predictions for Joyner's modification of the Hanks-McGuire model; dashed line, predictions for the barrier model
(see caption of Figure 20 for details).

10 Hz, we could use subevents no larger than a moment magnitude of about 3. Those who have
done simulations by the method of summing subevents have generally used much larger subevents,

a practice which suggests that it is generally necessary to consider frequencies above the subevent
corner. ‘

It is important to note that the effect of directivity will not be correctly modeled at frequencies
above the subevent corner frequency unless the angle between the rupture direction and the source-
to-recording-site vector is the same for the simulated event as the subevent.

The necessity to consider frequencies above the subevent corner frequency introduces a strong
constraint on methods for random summation of subevents (Joyner and Boore, 1986). At very low
frequency the subevent spectra will add coherently and the spectral values of the simulated event
will be equal to the sum of the subevent values. At sufficiently high frequency the subevent spectra
will add incoherently and the spectral values of the simulated event will be equal to the square
root of the sum of squares of the subevent values. These rules in combination with seismic scaling
relations form the constraint on methods of random summation. We describe a very simple method
of random summation, and use it to illustrate the constraint.

In the method, 5 subevents are added together with their start times distributed randomly with
uniform probability over the source duration T and their waveforms scaled by a factor v. Although
randomly distributed in time the subevents can be considered to be distributed on a fault with later
start times at progressively greater distances from the focus, simulating the irregular propagation
of a coherent rupture front. At low frequencies the subevents add coherently, and the low-frequency
level of the simulated-event spectrum is proportonal to vn. At high frequency the subevents add
incoherently, and the high-frequency level of the simulated event will be proportional to v/7. Scaling
laws of earthquake spectra can be used to determine n and v. We are particularly interested in the
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FIGURE 22. Pseudovelocity response at 5 Hz and 5 percent damping for the randomly oriented horizontal
component as a function of magnitude for a distance of 20 km. Heavy line, data from shallow eathquakes in western
North America (Joyner and Boore, 1982); light line, predictions for Joyner's modification of the Hanks-McGuire
model; dashed line, predictions for the barrier model (see caption of Figure 20 for details).

Hanks-McGuire model, which has a self-similar w-square spectrum (Aki, 1967; Brune, 1970). The
equations for  and v, however, can be derived for arbitrary scaling laws. If the displacement
spectrum at high frequency falls off as f~, and if the scaling conforms to constant M f¢, then

_ (&)20/6
= MOe

. (—A@-)l—?a/é
- MDe

where My is the moment of the simulated event and Mg, is the moment of the subevent (Joyner
and Boore, 1986). For the w-square model @ = 2. If similarity holds, Mo f3 is constant for all
earthquakes, and § = 3. So, for the w-square model with similarity

(M 4/3
= (i)
v= (-—A{g-)-xla
MOe
Note that the exponent in the equation for v is negative. The subevent records must be reduced
in amplitude, and correspondingly larger numbers of them must be added together in order that

the low-frequency and high-frequency spectral levels of the simulated event scale in accord with the
w-square model with simularity.

(38)

(39)

Proper choice of n and v ensures that the low-frequency and high-frequency spectral levels
of the simulated event obey desired scaling laws, but intermediate frequencies may be a problem
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FIGURE 23. Pseudovelocity response at 1 Hz and 5 percent damping for the randomly oriented horizontal
component as a function of magnitude for a distance of 20 km. Heavy lines, data from shallow earthquakes in western
North America (Joyner and Boore, 1982) at soil sites (upper heavy line) and rock sites (lower heavy line); light line,
predictions for Joyner’s modification of the Hanks-McGuire model; dashed line, predictions for the barrier model (see
caption of Figure 20 for details).

for the method of simulating large events by summing recordings of small ones. The problem is
illustrated in Figure 24, where the light line represents the expected value of the spectrum obtained
by summing identical subevents according to equation (39) and the heavy line represents the w-
square spectrum corresponding to the moment of the simulated event. The spectrum obtained by
summing subevents falls significantly below the w-square spectrum in the vicinity of the corner
frequency of the simulated event. In our earlier paper, from which Figure 24 is taken, we did not
treat this difference as a significant problem (Joyner and Boore, 1986). We now believe that it is
significant and that it is inherent in any method of summing subevents distributed randomly with
uniform probability.
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FIGURE 24. Spectrum (light line) of the simulated event obtained by random summation of identical subevents
according to equation (39) for a difference of one unit in moment magnitude between simulated event and subevent
compared to the w-square spectrum (heavy line) corresponding to the moment of the simulated event. The axes have
been normalized by the long-period level and corner frequency (fo) of the simulated event.
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