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Abstract: - The present study is aiming to develop a simulator of the mixing process in production installations 

of raw meal comprising all the main characteristics of the process and raw materials. The system is described 

by a TITO process regarding the adjustment of the two main quality indicators of the raw meal and regulated 

via PID controllers. The M - Constrained Integral Gain Optimization (MIGO) method is used to tune the 

controller parameters. Based on actual industrial data the simulator is implemented to determine the optimum 

PID parameters according to the subsequent criteria: (a) specified robustness constraint and (b) minimum 

variance of the raw mix chemical modules in raw mill outlet and kiln feed. The simulator offers the possibility 

to analyze the effect of the process parameters on the raw meal homogeneity. Other digital PID 

implementations except the one utilized or other control laws can be investigated as well.  
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1   Introduction 
Historically, advanced process control efforts in 

cement products quality have focused on raw meal 

homogeneity as it is the main factor influencing the 

clinker activity [1]. Primarily the control and 

regulation is performed in the raw mill outlet. 

    In Figure 1 a typical flow chart of raw meal 

production is shown, including three raw materials 

feeders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of raw meal production 

 

    In the demonstrated closed circuit process, the 

crusher and mill outlets go through the recycle 

elevator to a dynamic separator. The fine exit stream 

of the separator is the main part of the final product. 

The coarse separator return, is directed to the mill, 

where is ground again. The material in the mill and 

classifier are dried and de-dusted by hot gas flow. 

This is a standard flow sheet encountered to the 

most of the raw meal dry grinding processes 

performed in ball mills.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

      

     

     

 

    Because the raw mix composition affects clinker 

reactivity, clinker formation conditions, kiln thermal 

consumption and bricks lining, it is of high value to 

keep the raw meal quality variance in the lowest 
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feasible level. Due to complexity and significance of 

the process, various automated systems are available 

for sampling and analyzing the raw mix as well as 

for adjustment of the mill feeders according to the 

raw meal chemical modules in the mill (RM) outlet. 

The regulation is mainly obtained via PID and 

adaptive controllers [2, 3]. As clearly Kural et al. [3] 

declare, the disturbances coming from the variations 

in the chemical compositions of the raw materials 

from long-term average compositions cause the 

changes of the system’s parameters. Tsamatsoulis 

[4] built a reliable model of the dynamics among the 

chemical modules in the outlet of a raw meal 

grinding system and the proportion of the raw 

materials. This model was utilized in [5] to feed 

with inputs, techniques of advanced automatic 

control, in order a robust PID controller to be 

achieved, able to reject disturbances affecting the 

raw meal quality. The conclusion of these efforts is 

that to design a robust raw meal controller, 

furthermore satisfying a given sensitivity constraint 

[6, 7], an efficient modeling of the process is 

obligatory.  

    Adaptive controllers of varying degrees of 

complexity have been also elaborated [8, 9]. 

However in the industrial process control more than 

95% of the control loops are of PID type [10] and 

moreover only a small portion of them operate 

properly [11]. Tsamatsoulis [12] tuned a classical 

PID controller among chemical modules in the RM 

output and raw materials proportion in the mill feed, 

using as optimization criterion the minimum 

variance of these modules in the kiln feed. He 

concluded that the application of stability criteria is 

necessary. He also proved that the variance of the 

kiln feed composition not only depends on the raw 

materials variations and the mixing capacity of the 

silos but also it is strongly related with the 

effectiveness of the regulating action. A widely 

applied methodology to derive robust and operative 

controllers is the loop shaping method [13, 14, 15, 

16, 17]. An extremely efficient loop shaping 

technique to tune PID controllers is called MIGO 

(M- constrained integral gain optimization) [10, 18, 

19]. The design approach is to maximize integral 

gain fulfilling a constraint on the maximum 

sensitivity.     

    The aim of the present analysis is to try to 

optimize robust PID controllers regulating the raw 

meal quality, previously parameterized with the 

MIGO methodology. To reach this challenging 

target extensive simulations of the actual raw meal 

mixing process during grinding and storage are 

built. The developed simulators comprise the large 

majority of the process parameters and their 

uncertainty as well. As to the dynamical data of the 

mill and silos, the results of [4] are utilized, 

determined from the processing of long term quality 

data of Halyps cement plant. Actual raw materials 

compositions are also examined, involving their 

variance. The sets of PID computed for the same 

mill installation according to the MIGO technique 

[5], are used as inputs as well. 

 

 

2   Process Model  
 

2.1 Proportioning Modules Definition 
For the main oxides contained in the cement 

semifinal and final products, the following 

abbreviations are commonly used in the cement 

industry: C=CaO, S=SiO2, A=Al2O3, F=Fe2O3. 

Three proportioning modules are used to indicate the 

quality of the raw meal and clinker.  [1]: 

 

𝐿𝑖𝑚𝑒 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟   

𝐿𝑆𝐹 =
100 ∙ 𝐶

2.8 ∙ 𝑆 + 1.18 ∙ 𝐴 + 0.65 ∙ 𝐹
                       (1) 

 

𝑆𝑖𝑙𝑖𝑐𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠   𝑆𝑀 =
𝑆

𝐴 + 𝐹
                                (2) 

 

𝐴𝑙𝑢𝑚𝑖𝑛𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠  𝐴𝑀 =
𝐴

𝐹
                                   (3) 

    The regulation of some or all of the indicators (1) 

to (3) contributes drastically to the achievement of a 

stable clinker quality.  

 

2.2 Block Diagram and Transfer Functions 
The block diagram shown in Figure 2 and the 

respective transfer functions are presented and 

investigated in [5] and repeated here for elucidation 

reasons. 

 
Figure 2. Block diagram of the grinding and 

blending process. 
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    Each block represents one or more transfer 

functions: Gc symbolizes the transfer function of the 

controller. With Gmill, the RM transfer function is 

indicated, containing three separate functions. The 

raw meal sampling in the RM outlet is performed 

via a sampling device, accumulating an average 

sample during the sampling period. The integrating 

action of the sampler is denoted by the function Gs. 

The delay caused by the sample preparation and 

analysis is shown by the function GM. The raw meal 

is homogenized in overflow silo with transfer 

function GH. Then the raw meal before to enter to 

the kiln is stocked to a storage silo with transfer 

function Gsilo. 

    %Lim, %Add, %Clay = the percentages of the 

limestone, additive and clay in the three weight 

feeders. LSFMill, SMMill = the spot values of LSF and 

SM in the RM outlet, while LSFS, SMS, LSFM, SMM 

= the modules of the average sample and the 

measured one. Finally LSFH, SMH, LSFKF, SMKF = 

the corresponding modules in the homo silo outlet 

and in the kiln feed. LSF and SM set points are 

indicated by LSFSP and SMSP respectively, while 

e_LSF and e_SM stand for the error between set 

point and respective measured module. 

 

 
Figure 3. Transfer functions of the RM block. 

     

    The block of the raw meal mixing in the RM is 

analyzed in more detail in Figure 3.The functions 

between the modules and the respecting percentages  

of the raw materials are indicated by  GLSF,Lim, 

GSM,Clay, GSM,Add.  

    The GM function, representing a pure delay, is 

described by equation (4): 

 

𝐺𝑀 = 𝑒−𝑡𝑀∙𝑠                                                                    (4) 
 

    The delay tM is composed by the time intervals of 

sample transferring, preparation, analysis and 

computation of the new settings of the three feeders 

and finally transfers of those ones to the weight 

scales. The function Gs is defined by the formula 

(5): 

 

𝐺𝑠 =
1

𝑇𝑠 ∙ 𝑠
 1 − 𝑒−𝑇𝑠∙𝑠                                                 (5) 

 

    Based on previous results [4, 5] a second order 

with time delay (SOTD) model is chosen for each of 

the functions GLSF,Lim, GSM,Clay, GSM,Add described by 

the equation (6): 

 

𝐺𝑥 =
𝑘𝑔,𝑥

 1 + 𝑇0,𝑥 ∙ 𝑠 
2 ∙ 𝑒

−𝑡𝑑,𝑥∙𝑠                                     (6) 

 

    Where x = Lim, Clay or Add. The constant kg, T0, 

td symbolize the gain, the time constant and the time 

delay respectively. In the time domain the functions 

(6) are expressed by the equations (7) and (8):  

 

𝐿𝑆𝐹 − 𝐿𝑆𝐹0 = 𝑘𝑔,𝐿𝑖𝑚 ∙ (1 − exp −
𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 − 

𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
∙ exp −

𝑡 − 𝑡𝑑 ,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 ) ∙  𝐿𝑖𝑚 − 𝐿𝑖𝑚0  (7) 

 

      

    The parameters Lim0 and LSF0 symbolize the 

steady state values of the input and output variables. 

Clay0, Add0 and SM0 correspond also to steady state 

values. Clay0 is not an independent variable but 

given from the difference 100- Lim0-Add0. The LSF 

and SM variables of the functions (7), (8) represent 

the modules in RM outlet corresponding also to the 

homo inlet LSFH,In, SMH,In.   

 

𝑆𝑀 − 𝑆𝑀0 = 𝑘𝑔,𝐶𝑙𝑎𝑦

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 

−
𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
∙ exp −

𝑡 − 𝑡𝑑 ,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 
 

 
 

∙  𝐶𝑙𝑎𝑦 − 𝐶𝑙𝑎𝑦0 + 𝑘𝑔,𝐴𝑑𝑑

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 −

𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑

∙ exp −
𝑡 − 𝑡𝑑 ,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 

 

 
 

 

∙  𝐴𝑑𝑑0 − 𝐴𝑑𝑑                            (8) 
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    To avoid elevated degrees of freedom the 

following equalities are considered: 

 

𝑇0,𝐶𝑙𝑎𝑦 = 𝑇0,𝐴𝑑𝑑    𝑡𝑑 ,𝐶𝑙𝑎𝑦 = 𝑡𝑑 ,𝐴𝑑𝑑                           (9)   

  

    The homo and stock silo transfer functions are 

given by the first order equations (10) and (11) 

respectively: 

 

𝐺𝐻 =
𝑦𝐻
𝑦𝐻,𝐼𝑛

=
1

1 + 𝑇𝐻 ∙ 𝑠
                                         (10) 

 

𝐺𝑆𝑖𝑙𝑜 =
𝑦𝐾𝐹
𝑦𝐻

=
1

1 + 𝑇𝑆𝑖𝑙𝑜 ∙ 𝑠
                                    (11) 

 

    Where yH=LSFH or SMH, yH,In=LSFH,In or SMH,In, 

yKF=LSFKF or SMKF. TH and TSilo represent the homo 

and stock silo first order time constants. 

    The model parameters are evaluated in [5] using 

hourly data of feeders’ percentages and 

proportioning modules of the first seven months of 

2010. The procedure to estimate the mean 

parameters of the raw mill dynamics and their 

uncertainty as well is analytically described in [4]. 

As concerns the RM dynamics, the results are 

depicted in Table 1. 

 

Table 1. Average and standard deviation of the 

model parameters  

      Average    Standard Dev. 

Kg,Lim          2.96           0.82 

T0,Lim(h)          0.19           0.15 

td,Lim(h)          0.41           0.13 

Kg,Clay          0.036           0.030 

Kg,Αdd          0.437           0.291 

T0,Add(h)          0.33           0.18 

td,Add(h)          0.33           0.18 

 

    The time constants of the homo and stock silos 

transfer functions are found using the AM module 

silos’ input and output [5]. As the homo silo 

operates with overflow, it is always considered to 

be full. As to the stock silo, the empty meters 

during the operation are also taken into account. 

The processing of one full year data provides the 

following results: 

 

𝑇𝐻 = 3.0 ± 0.6 ℎ 
 

𝑇𝑆𝑖𝑙𝑜 = 16.3 ∙ 𝐻𝐸
−0.6  ± 1.3 ℎ                                (12) 

 

    Where HE= the empty meters of the stock silo. 

To notice that each meter of the stock contains 330 

tons of raw meal. 

 

 

3   Simulator Design 
 

3.1 Simulator’s Description 

All the main characteristics and steps of the raw 

meal production process are taken into consideration 

during the procedure of simulator preparation. The 

simulation starts from the materials’ input to the RM 

and ends when the raw meal is fed to the kiln.  

    Limestone and clay are fed to the mill via two 

silos: the first silo contains limestone while the 

second one a mixture of limestone and clay with 

volume ratio limestone/clay=0.5. The bulk densities 

of the two materials are considered the same. The 

third silo contains the corrective material composed 

from iron oxide and bauxite with a fixed volume 

ratio. The bulk density of the iron oxide is the 

double of the bauxite’s respective density. For the 

same time period that the RM dynamics is 

determined, the raw materials analysis is considered. 

From all the spot samples of limestone and clay, the 

average values and standard deviations of the main 

oxides and moistures are found. To calculate the 

standard deviations, the outliers are excluded by 

applying ISO 8258:1991. Thus, data represent the 

routine raw materials fed to the RM and because of 

the large number of analysis, the data distribution is 

normal.  

Table 2. Raw materials analysis 

      Limestone           Clay 

 Oxide  Aver. Std. Dev.  Aver. Std. Dev. 

  SiO2   1.25   0.35   43.32   4.80 

  Al2O3   0.50   0.12   7.52   1.08 

  Fe2O3   0.29   0.07   3.98   0.51 

  CaO   54.18   0.67   20.79   3.82 

%Moist.    3.4    1.2   10.2   1.7 

     N            31            112 

   LSF          1266            15.7 

        Average        Std. Dev. 

Lim./ 

Clay 

           0.5            0.1 

 Oxide       Iron Oxide        Bauxite 

  SiO2            1.0            4.1 

  Al2O3            0.5            38.9 

  Fe2O3            95.0            8.5 

  CaO            1.0            20.6 

Baux 

/Iron 

           3.0  
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    As to the corrective compounds, due to their low 

dosage, their analysis is thought as stable. The 

magnitude of the standard deviation constitutes the 

uncertainty’s measure. An uncertainty is also 

supposed to the limestone/clay ratio fed to the RM 

from the second silo. These data are presented in 

Table 2. As to the time constants and delay times of 

the RM dynamical model, the values shown in Table 

1 constitute the simulator inputs. All the times are 

expressed in hours.  

    Afterwards the simulator proceeds in the 

following way: A time period, Ttot, of raw mill 

operation is decided, not necessarily continuous. 

The limestone composition is supposed constant for 

a time interval, not exactly determined, but 

considered to be between TMin,Lim and TMax,Lim. Then 

by utilizing a random generator, a random number, 

x, between 0 and 1 is selected. To find the interval 

of constant limestone the formula (13) is applied. 

 

𝑇𝐶𝑜𝑛𝑠𝑡 ,𝐿𝑖𝑚 = 𝐼𝑛𝑡   𝑇𝑀𝑎𝑥 ,𝐿𝑖𝑚 − 𝑇𝑀𝑖𝑛 ,𝐿𝑖𝑚 + 1 ∙ 𝑥

+ 𝑇𝑀𝑖𝑛 ,𝐿𝑖𝑚                                    (13) 

 

    Exactly the same procedure is followed to find a 

time interval of RM operation with constant clay 

composition, TConst,Clay. The next step is to determine 

a constant composition for each raw material fed to 

the mill during TConst,Lim or TConst,Clay i.e. to determine 

oxides’ analysis belonging to the range shown in 

Table 2: As previously a random number, x, 

belonging to the interval [0, 1] is chosen. Then for 

each raw material and oxide the inverse of the 

normal distribution is applied, with probability x, 

and the oxide percentage is found by the formula 

(14): 

 

%𝑂𝑥𝑖𝑑𝑒 = 𝑁𝑜𝑟𝑚𝐼𝑛𝑣 𝑥,𝑂𝑥𝐴𝑣𝑒𝑟 ,𝑂𝑥𝑆𝑡𝑑𝐷𝑒𝑣        (14) 

 

    The same steps and equations (13), (14) are 

employed to define a period TConst,Dyn of constant 

RM dynamics, time constants and delay times for 

both LSF and SM dynamics, considering the 

dynamical data of Table 1. Therefore the period Ttot 

is partitioned in consecutive time intervals of 

constant limestone and clay feeding, TConst,Lim and 

TConst,Clay and stable RM dynamics, TConst,Dyn. 

Equation (14) is also utilized to estimate the 

moistures of the raw materials, during the constant 

compositions’ interval. 

    In the current level of development the simulator 

can regulate two chemical modules, LSF and SM. 

Consequently the respective target LSFT and SMT 

are defined. The sampling period Ts and 

measurement delay, TM are also identified.  

    As shown in Figure 1, the filter dust is mixed with 

the RM product and both are directed to the homo 

silo. Therefore the dust’s chemical composition 

constitutes simulator’s input. Actual long term data 

are processed and the mean values and standard 

deviations of the oxides are determined. Then 

equation (14) is activated for each sampling interval. 

The mill dry production, the kiln feed flow rate and 

the filter dust flow rate constitute also critical inputs. 

Their balance derives the filling degree of the stock 

silo. An initial filling level is supposed expressed in 

empty meters. A minimum and a maximum level are 

introduced to the software and then by the 

application of equation (13), applied for height 

instead of time, the initial empty meters are found.  

    The regular operation case is to have a total flow 

rate feeding the homo silo higher than the kiln feed 

flow rate. Consequently raw mill shall stop when the 

empty meters of the stock silo arrive to a predefined 

minimum level HMin and RM starts again to grind 

when the empty meters reach a maximum level 

HMax. These levels are introduced to the simulator as 

initial data as well as the quantity of raw meal per 

meter of the storage silo. Initial homo and stock 

silos’ chemical compositions are also introduced and 

the initial settings of the weight feeders as well. 

These initial conditions are usually selected near to 

the long term average or to the targets. As to the 

homo and storage silos dynamics, equations (12) are 

utilized. To cope with the uncertainties of the time 

constants, equation (14) is used for a more time.  

     LSF and SM modules are regulated using two 

independent PID controllers. Thus the TITO process 

is simplified to two SISO processes. The controllers 

are described by equation (15) in Laplace form:  

 
𝑢

𝑒
= 𝑘𝑝 +

𝑘𝑖
𝑠

+ 𝑘𝑑𝑠                                                    (15) 

 

    The variables kp, ki, kd represent the proportional, 

integral and differential gains of the controller. The 

other variables have the following meaning: e = 

LSFSP-LSFM or SMSP-SMM, u = %Lim or %Add, 

(kp,ki,kd) = (kpLSF,kiLSF,kdLSF) or (kpSM,kiSM,kdSM).This 

equation is expressed by equation (16) in discrete 

time domain, where as time interval, the sampling 

period is considered.  

 

𝑢𝑛 = 𝑢𝑛−1 + 𝑘𝑝 ∙  𝑒𝑛 − 𝑒𝑛−1 + Ts ∙ 𝑘𝑖 ∙ 𝑒𝑛  

+𝑘𝑑 ∙
1

Ts
∙  𝑒𝑛 + 𝑒𝑛−2 − 2 ∙ 𝑒𝑛−1                   (16) 
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    The integral and differential times Ti and Td are 

connected with the respective gains by equation 

(17). 

     

         

𝑘𝑖 =  
𝑘𝑝

𝑇𝑖
   , 𝑘𝑑 = 𝑘𝑝 ∙ 𝑇𝑑                                   (17)   

    The PID sets for the two controllers are selected 

among the computed ones in [5] for the same RM 

circuit. As robustness criterion in this previous 

analysis the Maximum Sensitivity was considered 

provided by equation (18): 

 

𝑀𝑠 = 𝑀𝑎𝑥  𝑆 𝑖𝜔                                                    (18) 

 

    The sensitivity, S, is expressed by equation (19) 

as function of the process transfer function Gp, 

consisting of mixing in the mill, sampling and 

measuring transfer functions and the controller 

respective function Gc as well.  

 

𝑆 =
1

1 + 𝐺𝐶𝐺𝑝
                                                            (19) 

 

    As mentioned in [5] one of the main advantages 

of the M-constrained Integral Optimization 

Technique is that the robustness constraint is 

implied. In this way for each predetermined Ms, a 

full group of (kp, ki, kd) parameters ranging from 

kd=0 to a maximum value fulfilling the Ms 
constraint are computed. The kp, ki values as 

function of kd and Ms for the two controllers are 

shown in Figures 4 to 7. 

 

   
 Figure 4. LSF controller. Kp as function of kd, Ms. 

 

 
Figure 5. LSF controller. Ki as function of kd, Ms. 

      

 
Figure 6. SM controller. Kp as function of kd, Ms. 

 

 
Figure 7. SM controller. Ki as function of kd, Ms. 

 

3.2 Operation of the Simulator 

    Afterwards the import of all data, the raw meal 

quality regulator runs as following: 

(1) RM starts to run with the predefined settings of 

the weight feeders feeding the homo silo 

(2) Te first average sample is taken after a Ts period 

and the composition is computed. 
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(3) Feedback is performed and both controllers 

provide the new settings to the feeders. 

(4) In time interval Ts the average and spot analysis 

of the raw meal and the respective two modules 

are computed. 

(5) The introduced raw meal to the homo silo is 

mixed with the existing one providing the 

material in homo outlet. To simplify the 

calculations, the material introduced to this silo 

is represented by the average analysis over the 

sampling period. 

(6) The homo silo outlet constitutes the entry in the 

storage silo. There it is mixed with the active 

material’s volume producing the raw meal 

feeding the kiln. Each Ts time interval the spot 

analysis of this raw meal is calculated. 

(7) The simulator is checking after each sampling 

whether the empty volume of the stock silo, HE, 

is lower than minimal permissible, HMin 

(8) If HE≤HMin, RM stops and homo silo is fed only 

with the filter dust. Simultaneously the software 

is checking each Ts if HE≥HMax.  

(9) When the above occurs, RM starts again to 

operate and the software compares continuously 

HE with HMin. Otherwise RM remains stopped 

until the condition HE≥HMax would be fulfilled. 

(10) During the time that material is supplied to 

the kiln all computations referred in steps (1) to 

(9) are permanently performed till the operating 

time of the mill becomes equal to Ttot.  

(11) During the operation, all the chemical 

modules results in the different points of the 

circuit are saved.  

(12) Afterwards their mean values and standard 

deviations are calculated. The total number the 

modules pass from the respective target – 

number of cuts – is also determined as it 

constitutes a significant quality indicator 

concerning the mixing performed in the homo 

silo. 

(13) Due to fact that the initial data are generated 

randomly with respect of some specified limits, 

for the same initial settings the simulator 

performs a defined number of iterations. Then 

the average results of all the runs are computed. 

In this way some undesirable noise can be 

avoided.  

    An example of simulator application is shown in 

Figures 8 to 10. The following PID coefficients are 

utilized for Ms=1.5: (kpLSF, kiLSF, kdLSF) = (0.152, 

0.219, 0.08), (kpSM, kiSM, kdSM) = (0.93, 1.15, 0.4). 

The simulation is applied for 240 hours of RM 

operation. In Figures 8 and 9 the LSF and SM in 

RM outlet are depicted. In the same Figures the 

settings of feeders are shown according to the 

controllers hourly actions. The LSF in RM outlet, 

homo outlet and kiln feed are demonstrated in 

Figure 10, where the mixing action of homo and 

stock silos clearly appears. The indicated hours 

correspond to kiln operation, including the hours 

where the mill does not function and homo silo is 

fed only with filter dust.  

 
Figure 8. LSF in RM outlet and limestone feeder 

settings 

      

 
Figure 9. SM in RM outlet and limestone feeder 

settings. 

     

 
Figure 10. LSF in RM and homo outlet and kiln 

feed.  
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4   Implementation of the Simulator 
 

4.1 Initial Simulations 

Before the full implementation of the simulator, 

some initial simpler simulations are attempted, in 

order to be examined the characteristics of the loop.  

The (kp, ki, kd) sets referred in section 3.1 are 

used.The set point tracking and the rejection of load 

disturbances are firstly investigated.  

    As a rule the chemical modules set points do not 

change frequently in raw meal milling systems. 

What habitually happens is the fact that during the 

RM start up, feeders’ set point does not provide the 

module target, even if the raw materials composition 

is extremely stable.  Thus a transient period appears, 

where the settling time and overshoot depends on 

the controller action. This situation is simulated in 

the following manner. The LSF target is put equal to 

97.6. All the simulator parameters are considered 

that they have negligible variance and limestone 

feeder is initially located in a position deriving 

LSFIn=78.8, around 20 points less than the target. A 

continuous 64 hours RM operation is considered, by 

equating the RM productivity and kiln feed flow 

rate. As settling time it is defined the time where the 

mill outlet LSF remains constantly near to LSFT in a 

region ±2% of the difference LSFT-LSF0. The 

overshoot is provided by the formula (20): 

 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =  
𝐿𝑆𝐹𝑀𝑎𝑥 − 𝐿𝑆𝐹𝑇
𝐿𝑆𝐹𝑇 − 𝐿𝑆𝐹0

− 1 ∙ 100       (20) 

 

    The simulation is applied for all the PID sets 

presented in Figures 4, 5. The settling time and 

overshoot results as function of Ms and kd are 

presented in Figures 11, 12.  

 
Figure 11. Set point tracking settling time as 

function of kd, Ms. 

    The minimum settling time is found for Ms, kd 

located in the diagonal of the [Ms, kd] surface: As 

Ms augments, kd shall be decreased to provide a 

settling time belonging to the region of minimum. 

The overshoot remains less than 1% for Ms ≤ 1.6, 

for all the kd range. Then, as Ms increases the kd 

interval providing overshoot ≤ 1% becomes 

narrower. 

    The closed circuit response to a load disturbance 

has been treated as follows: 

(a) The constraint of constant raw materials 

composition is relaxed and the raw materials 

compositions is computed according to section 

3.1 

(b) A 30 hours period is chosen as constant raw 

materials composition interval. Therefore the 

raw materials are kept constant for 30 hours and 

then their composition is altered for the next 30 

hours. The above constitutes the load 

disturbance. A total running time of 60 hours is 

selected. 

(c) All the other parameters are kept stable. 

(d) After the initial period of 30 hours the load 

disturbance appears. To evaluate the controller 

performance for the various sets of (kp, ki, kd), 

the maximum error from LSFT and the settling 

time are determined. The latter in this case is 

defined as the time where the LSF in the mill 

outlet remains constantly near to LSFT ± 0.2. 

The results are shown in Figure 13, 14. 

 

 
Figure 12. Set point tracking overshoot as function 

of kd, Ms. 

    The impact of Ms and kd onto the settling time 

after a load disturbance is exactly the same as in the 

set point tracking case. The maximum error 

gradually decreases as Ms and kd are rising. 
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Figure 13. Load disturbance. Settling time as 

function of kd, Ms. 

    To investigate deeper the achieved results, 

Figures 11 to 14 are combined in order to determine 

a region where: (a) Set point tracking settling time 

and overshoot are minimal. (b) Load disturbance 

settling time and maximum error are minimal. The 

areas of minimum for the four variables are shown 

in Figure 15.  As it can be seen from this figure, a 

common region exists, where all the four parameters 

have minimum values. It is extended between 0.04 

and 0.08 as to kd and 1.5 and 2.1 as to Ms. In general 

as Ms increases, kd is reduced to be the parameters 

minimal. 

 

 
Figure 14. Load disturbance. Maximum error as 

function of kd, Ms. 

    The implementation of these initial simplified 

simulations offers a picture of the PID sets that 

could lead to a minimum standard deviation of the 

modules in RM outlet. 

     

 

 
Figure 15. Regions of minimum settling time, 

overshoot and maximum error. 

 

4.2 Implementation of the Process 

Simulation in Full Range 
The application of the simplified simulations 

provided an initial approach to the optimization 

problem. It is expected that the implementation of 

the complete simulation not only will provide the 

optimum PID parameters but a further study of the 

system’s parameters can be achieved as well.  

 

Table 3. Simulation data 

Total RM Run Time (h)                 100 

Constant  

Composition 

   Limestone        Clay 

Min. Time (h)           4            4 

Max. Time (h)          16          16 

           Period of Constant RM Dynamics 

Min. Time (h)                  8 

Max. Time (h)                 20 

Sampling Measurement 

 Delay Time (min) 

                20 

Volume Ratios     Average     Std. Dev 

Lim. / Clay          0.5            0.1 

Baux./ Iron          3.0   

                      RM LSF Dynamics 

         T0 (h)         0.19          0.15 

          td (h)         0.41         0.13 

                      RM SM Dynamics 

         T0 (h)         0.33         0.18 

          td (h)         0.33         0.18 

Sampling Period (h)                1.0 

          LSF Target               97.6 

          SM Target               2.5 

Sample Preparation and XRF Reproducibility 

              LSF               0.69 

              SM               0.018 
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Table 3. Cont. 

                    Initial Feeding Feeders’ Settings 

         Limestone                0.5    

             Iron               0.02 

Mill Dry Production               145 

Electro-filter Flow Rate               8  

Kiln Feed Flow Rate               125 

Filter Oxides     Average     Std. Dev 

       SiO2         9.87         0.49 

       Al2O3         4.05         0.14 

       Fe2O3         2.25         0.09 

       CaO       43.63         0.15 

Homo Active 

    Quantity (tn) 

        428         92 

Stock Time Const. =16.3∙Empt_Met
-0.602

 ± 1.3 h 

           Initial Homo and Stock Compositions 

              SiO2               13.92 

              Al2O3                3.34  

              Fe2O3                2.23 

              CaO               42.58 

      Stock Silo tn/m                330 

           Min.     Max. 

Start up empty meters       4.0      6.0 

Empty to Stop RM (m)                  3 

Empty to Start RM (m)                  5 

 

    A basic data set used in the simulation appears in 

Table 3. These data are combined with the raw 

materials analysis shown in Table 2 and with the full 

set of PID parameters demonstrated in Figures 4 to 

7. For these settings the simulator performs 300 runs 

and the partial results are averaged. Due to the large 

uncertainty and to have a better approximation of 

the mean value the 300 runs are iterated three times. 

Then the three mean values are averaged once more. 

  

 
Figure 16. LSF standard deviation in RM outlet 

 

    For all the (kp, ki, kd) vectors LSF and SM targets 

are reached in average, but the modules variance 

differs considerably. The LSF standard deviations in 

RM outlet as function of Ms and kd are shown in 

Figure 16. A constant PID for SM is operating, not 

necessarily optimum with (kp, ki, kd)
T
=(0.93, 1.149, 

0.4)
T
 corresponding to an Ms=1.5.     

    The results indicate a narrow range of minimum 

standard deviation extended in the Ms interval 

[1.4,1.8] and kd ≥  0.07. The percentage of Number 

of Cuts the LSFT during the RM operation is shown 

in Figure 17. From this Figure it can be easily 

observed that as Ms and kd are increasing, the 

number of cuts augments. It can be concluded that a 

slow controller of small Ms, derives low number of 

cuts and high variance. On the other hand a fast 

controller, despite the high number of cuts, produces 

also a high variance. Between these two limits the 

optimum parameters area is located. The LSF in the 

homo silo outlet as function of Ms and kd appears in 

Figure 18. The minimum standard deviations of LSF 

are moved to higher values of Ms and kd. As to LSF 

variance in the kiln feed, similar results are 

obtained. The reason seems to be the high number 

of cuts as the controller becomes faster. The 

material’s layers in homo and stock silos become 

thinner and their mixing is better. It shall be 

reminded that the results are based on the 

assumption of first order transfer function of each 

silo. This issue needs further investigation because 

the time constants of the silos suffer from high 

uncertainty. 

 

 
Figure 17. LSF % Number of Cuts the LSF target in 

RM outlet    

    The SM standard deviation as function of Ms and 

kd is depicted in Figures 19 and 20. As in the 

previous case, the minimum standard deviation of 

SM in RM outlet appears in a relatively narrow 
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region of PID controllers. The optimum area in 

homo outlet is moved to higher values of Ms and kd.  

   

 
Figure 18. LSF standard deviation in homo outlet 

 

 
Figure 19. SM standard deviation in RM outlet 

 

     

 
Figure 20. SM standard deviation in homo outlet 

 

4.3 Impact of the Dynamics’ Gains on the 

Optimum PID Parameters 
As analyzed in section 2.4 of [5], the 

implementation of mix design to compute the 

composition of the raw meal leads to the calculation 

of the  the static gains between inputs and outputs, 

i.e. for 1% increase of each compound the increase 

or decrease of the modules is found. The raw 

materials average analysis shown in Table 2 is 

utilized. The gain from the limestone feeder to LSF 

is found equal to 2.64 while the respective gain from 

additives feeder to SM is 0.388. Even if these gains 

are found inside the confidence interval of the gains 

presented in Table 1 apparently they differ from the 

average values. Possible reasons of this difference 

are the following: 

(a) The dynamical parameters are determined from 

the data sets presenting a regression coefficient 

R ≥ 0.7. In this way all range of the raw 

materials analysis possibly is not detected. 

(b) Due to the sampling plan of the raw materials, 

probably the computed average analysis does 

not correspond to the real one during the 

mentioned period. For this reason a confidence 

interval is always necessary. 

(c) Probable feeders’ errors or model mismatches.  

To investigate the impact of the dynamics gain 

on the optimum PID sets providing the minimum 

variance in RM outlet, the next procedure is 

followed: 

(1) The LSF controller is considered as well as the 

PID sets shown in Figures 4, 5, found by 

applying the MIGO method to the dynamical 

data of Table 1. 

(2) The confidence intervals of the clay average 

analysis are determined.  

(3) By adding selected multiples of confidence 

intervals to the average values of SiO2, Al2O3 

and Fe2O3 and by subtracting them from the 

mean value of CaO, new clay analysis are 

computed of lower LSF. 

(4) By implementing the mix design described in 

[5], the gains between limestone feeder and LSF 

are found for the all the clays computed in step 

(3). The results are shown in Table 4. 

 

Table 4. Clay’s analysis 

SiO2 43.32 45.12 46.92 48.71 50.06 

Al2O3 7.52 7.92 8.33 8.73 9.04 

Fe2O3 3.98 4.17 4.96 4.55 4.70 

CaO 20.79 19.36 17.33 16.50 15.43 

LSF 15.7 14.0 12.4 11.0 10.0 

Kg 2.64 2.74 2.86 2.97 3.06 
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(5) For each analysis the simulation is applied and 

the range of PID sets providing standard 

deviation in mill outlet, differing up to 2% of 

the minimum one is found. 

(6) All these optimum areas are plotted in Figure 

21. 

    From this Figure it is observed that as Kg is 

increasing, the optimum region generally is moving 

to lower Ms values. A common optimum area for all 

the gains appears, extending between 0.054 and 0.09 

as to kd and 1.4 and 1.7 as to Ms. This optimum area 

is more narrow than the one shown in Figure 15, 

meaning that the application of the simplified 

simulations provide an initial picture of the 

optimum region, while the full simulation offers a 

restricted region of the optimum location. 

 

  
Figure 21. Optimum PID regions for different gains. 

      

      For a further investigation of the effect of the 

dynamics gain on the optimum Ms and the 

corresponding parameters a second also procedure is 

applied: 

(i) The steps (3) and (4) of the previous 

procedure are implemented to define clays 

analysis which produce gains from 2.4 to 

3.0 with step of 0.1. 

(ii) For each Kg and the time constants 

presented in Table 1, LSF controllers are 

parameterized using the MIGO technique 

for Ms values belonging to the interval [1.3, 

1.8]. 

(iii) The simulator is implemented for each 

analysis and the corresponding (kp, ki, kd) 

group. As concerns the other data, the ones 

shown in Table 2 are utilized. 

(iv) For each analysis the PID deriving the 

minimum variance of LSF in RM outlet is 

determined as well as the (Ms, kd) region 

providing standard deviation up to 2% 

higher of the optimum one. 

 

 
Figure 22. PID optimum area as function of Kg. 

 

    The optimum (Ms, kd) area according to step (iv) 

is depicted in Figure 22. For all the controllers 

tested, tuned in accordance with the raw materials 

analysis, there is a common optimum area located in 

the Ms interval [1.43, 1.54]. The respective kd 

minimum and maximum limits are 0.07 and 0.09 

correspondingly. Consequently a PID controller 

with (Ms, kd) equal to (1.5, 0.08) belongs always to 

the optimum area. Apparently the above is valid for 

the given actual process and materials, with the 

existing uncertainties. Concerning the SM controller 

similar results shall be expected. This noteworthy 

conclusion could provide serious support to the 

construction of a Model Based Control scheme, 

combined with a PID controller tuned with the 

MIGO technique. 

 

 

5   Conclusions 
Based on a dynamical model of the raw materials 

blending in a closed circuit ball mill an analytical 

simulation of this grinding installation is developed. 

The mill dynamics is thoroughly analyzed in [4]. 

Not only the mill but the homo and storage silos 

operation is simulated as well. The simulator takes 

into account the actual variance of the raw materials 

analysis, by supposing time intervals of constant 

limestone and clay composition determined using a 

random numbers generator. The uncertainty of the 

dynamical parameters is also taken into 
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consideration. The filter dust and the chemical 

analysis noise are also incorporated to the simulator.  

    Two PID controllers are utilized to regulate the 

LSF and SM modules. The settings of the two 

independent feeders - limestone and additives - 

constitute the set of the two control variables. The 

two controllers tuning is realized by applying the M-

constrained integral gain optimization technique to 

the specific conditions of raw meal production and 

quality control as described analytically in [5]. For 

given mill and silos settings the simulator is applied 

to find the optimum PID sets among those 

determined by the MIGO technique. As optimization 

criterion the minimum variance of the two chemical 

modules in mill outlet and kiln feed is used. The PID 

sets with maximum sensitivity Ms=1.5 and 

differential coefficient kd in the region of its 

maximum value provide the minimum variance of 

the two modules under control. Therefore the 

simulator offers a strong guidance for the selection 

and implementation of a PID with optimum 

parameters satisfying simultaneously a robustness 

constraint and deriving a minimum variance to the 

process variable. 

    The development of this kind of simulation 

provides the possibility to analyze the effect of the 

process parameters on the raw meal homogeneity, a 

task which is probably unfeasible to be achieved in 

real process conditions. Other digital PID 

implementations, except the one presented here, or 

other control laws can be investigated as well.  
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