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Abstract— Situated agents engaged in open systems continu-
ally face with external events requiring adequate services and
behavioral responses. In these conditions agents should be able
to improve their adaptivity over time, namely 1) to deal with
and anticipate relevant changes and critical situations, 2) to
temporally define relative priorities between goals varying their
importance over time and 3) to use informational feedback to
learn from experience and become better at achieving their goals.
This work provides an insight to model goal directed agents
with these adaptive and anticipatory abilities, based on context
awareness and growing experience at achieving their activities.
We propose an approach by which affective states are placed
as an integrated control mechanism in order to tight different
processes and computational modules underlying reasoning.

I. INTRODUCTION

A great variety of goal-directed models of agency, focused
at various level on representational, deliberative and action
selection mechanisms, have been developed over the last
two decades to design adaptive, autonomous and socially
interactive agents. We here refer to the goal-directed model
of agency, where agents are intended as autonomous, resource
bounded entities that attempt to arbitrate between several goals
interacting in dynamic, partially observable environments.
Typically goal-directed agents are engaged in deliberation to
select to which of the concurrent goals devote their resources.
Reflecting the original model proposed at the end of 80s
[1], traditional deliberative systems process their information
reacting in a procedural way: they choose in a repertoire the
action to execute according to filtering of conditions (matching
rules based on belief formulae, priority hierarchies etc.), whilst
the available plan library is handcrafted at design time. An
agent can change his environment through a given set of
actions and plan operators in order to reach a desired state of
affairs from the current state. According to the wide adopted
Belief Desire Intentions (BDI) model of agency [2], [3], an
action is performed when the agent has the intention to achieve
a given goal, and the beliefs indicating that the action helps
in achieving that goal. Whilst it is theoretically possibly to
specify an effective model of behavior in deterministic or
probabilistic environments, it is very troublesome to deal in
practice with real conditions where the agent has to face with
resource limitations (time, computation, memory), partial in-

Cristiano Castelfranchi
Institute of Cognitive Sciences
and Technologies, ISTC
CNR - Roma, Italy
Email: cristiano.castelfranchi @istc.cnr.it

Rino Falcone
Institute of Cognitive Sciences
and Technologies, ISTC
CNR - Roma, Italy
Email: rino.falcone @istc.cnr.it

formation (hidden state due to environments constraints, noise,
sensor weakness), time-varying goal importance, changing
probability distributions and non-stationary, non-probabilistic,
non deterministic environments. This negatively reflects upon
agent design process and requires the designer to fully under-
stand the dynamics and the complex cases that an agent may
face with, and then to implement solutions from scratch for
each critical situation may be encountered [4], [5].

The computational model presented here is an attempt
to bridge the existing gap between goal directed model of
agency and more situated models used in artificial life. Our
challenge is to endow deliberative agents with capabilities to
operate in open systems where dynamism, partial knowledge
and unpredictability of future events exact agents to quickly
anticipate decisions, facing with uncertainty and unexpected
events. As a general foundation for adaptiveness in artificial
entities [5], there is the need for a proactive adaptation of
the internal model over time, in order to exploit informational
feedbacks, to learn from experiences and become better at
achieving goals. To deal with adaptiveness and anticipation, we
refer on a cognitive models of expectations as causal precursor
of basic emotions [6], [7], as far as on recent convergent
studies that are pointing out the enhancement of adaptiveness
in introducing emotions in reasoning [8], [9], [10], [11].

On the basis of the formal definition of a series of affective
states, we provide a description of their functional role, assess-
ing a series of behavioral and mental changes that emotions
may induce within agent’s internal processes. Our approach is
intended at: /) Exerting a top-down modulation of emotional
reasoning as a result of deliberative process and adaptive
responses to relevant events and 2) Integrating adaptiveness
in decision making along with expectations and their causal
relation with appraisal/evaluation of events.

The remind of this work is organized as follows: in section 2
we present a model for active and surprise driven perception
and belief update, in section 3 we describe an expectation
based approach for decisions affected by emotions, in section
4 we present a model for situated reasoning enabling appraisal
and coping strategies to unexpected events, section 5 shows as
a long term effect of metal states can be integrated in decisions,
in section 6 we conclude presenting some related works and



providing a final discussion.

II. FROM EXPECTATIONS AND ACTIVE PERCEPTION TO
SURPRISE

Among all the activities an agent may perform during his
tasks, we identify two main typologies:

1. Purposive behavior, supported by practical reasoning,
is aimed at achieving terminal goals through the use of
practical actions and plans. A goal directed agent should use
informational feedback to learn from experience and become
better at achieving goals.

2. Situated behavior, supporting coping strategies, is aimed
at recruiting resources when some unexpected event require
services. A situated agent should re-define relative priorities
between goals varying their importance over time.

Therefore we here identify two integrated levels of reason-
ing, involving cognitive, slow deliberative processes as well
as fast automatic and associative ones. Both levels integrate
various mechanisms required to manage expectations, used
either to assess alternatives and choices, and to direct cognitive
resources towards anticipated events. In more detail, we distin-
guish between high level, active expectations and background,
passive expectations.

At an high level we deal with explicit expectations mod-
ulating decisions and thus goal deliberation: we include in
the reasoning process a quantitative influence on the terms
given by the expected utilities used for arbitrating between
alternative courses of actions [9]. As we will show later, these
influences can be adjusted on the basis of affective appraisal
and experiences and allow agent to learn from experiences.

Besides, in order to enhance agent’s adaptiveness, we model
situated, background expectations to elicit a loss of control of
certain deliberative processes and to reconsider the course of
agent activities. Typically, these particular kind of reasoning
is not part of the specification of an agent in his purposive
behavior, rather can be let to emerge as a result of the
interactions in his environments. In [12], Lazarus indicated
this particular process as a reflexive re-assessment of the
internal state under context awareness, rather than an explicitly
deliberated process.

Each of the aforementioned activities should be supported
by an adequate perceptive process. Traditional agent archi-
tectures use simplified approaches for perception (i.e. based
on hard coded rules for controlling sensor apparatus) thus
resulting in monolithic and domain specific mechanisms. On
the contrary, many evidences pointed out the need for a
more abstract, pro-active and goal-driven model of perception
[13], [14]. Unfortunetely, active perception is computationally
expensive for resource bounded agents. According to the
principle of minimal rationality [4], perception filtering should
not overload agent processes with continuous belief revision.
This exacts a less demanding strategy of reasoning from
precepts. To this end, a lighter peripheral filtering can be used
only when relevant information comes, even while the agent
is not actively searching for it. The agent can thus ignore all
incoming inputs which are not relevant with respect to the

current task and only consider those information which are
relevant [15]. In so doing, we identify two different perceptive
strategies that an agent may adopt.

1. Purposive tests relate to active perception and used
for belief update and control of purposive behavior. They are
aimed at signalling discrepancies between what is perceived
and what is expected in terms of high level, active expectation
upon terminal goals achievement. In this case, the agent
actively observes the fulfillment of his purposive actions trying
to confirm the validity of related expectations.

2. Situated tests relate to background perception. In order
to gather information of the near contexts, situated agents need
the ability to deal with unexpected events, namely events that
are not directly and actively under the focus of attention, but
that can strongly influence its course.

Many emotions are in tight relation with perception and
expectations. For example, surprise is conceived as an ex-
pectation based phenomenon: it has been given in terms of
a felt signal which provokes an immediate reaction/response
of alert and arousal due to an inconsistency (discrepancy,
mismatch, non-assimilation, lack of integration) between an
incoming input and prior expectations [16], [17]. Surprise has
been related to many effects aimed at solving the inconsis-
tency and at preventing possible dangers. Surprise strongly
affects attentive processes [18], while [15] show operational
advantages of a expectation-driven perception filtering for
belief update. We here refer to a particular form of surprise,
due to an experienced mismatch between a perceived fact
and a scrutinized expectation. A specific kind of mismatch-
based surprise can be associated to each type of expectation
and to each kind of attentive processes. We here identify
two different kind of surprise: the former is based on syn-
chronous mismatches appraised upon action completion (i.e.
on goal achievement) the latter when passively expected events
occurs asynchronously during practical behavior (i.e. action
execution)!. Bringing perception and expectations at the same
level of representation, a computational system can detect
and quantitatively evaluate the mismatches [18], [17], [15].
In the next sections we deal with expectations and surprise-
related behavior influencing goal directed agents at different
levels of reasoning. On an higher level, expectations help
to take decisions between alternative courses of actions. As
for situated cognition, surprise based on passive expectations
can enhance context awareness and elicit responses to recruit
operative resources to respond in advance to changes.

III. EXPECTATIONS AND DECISION MAKING

Current BDI oriented implementations provide mechanisms
for deliberation (goal selection and intention filtering) but
don’t share common strategies for decision making. Our model
builds on top of a BDI engine an expectation-driven decision
making process, thus combining deliberative, logical aspects
of a BDI model with more quantitative, numerical aspects of

'Deeper forms of surprise rely on deducibility [18] plausibility [17] of the
incoming percept inferred on the basis of the prior knowledge.



decision theory. We identify slower forms of reasoning with
high level cognition, decisions between alternative courses of
actions used by agents to arbitrate goal selection. To allow
agents to take decisions based on the related expectations
we model a long term memory entertaining endogenous
anticipatory representations. Each (sub)goal is given along
with the representation of its activation formulae (typically
first-order belief formulae [19]) and a network of inhibition
links (indicating if a given goal has the priority on another
goal and under which conditions this priority is applicable
[20]). Filtering can be managed through a dynamic arbitration
network, providing disambiguation between the precondition
rules and the relative dependencies (inhibition links) between
the concurrent goals. A deliberation engine reacts to changes
in the belief base (i.e. internal events thrown by a belief
update) and uses the current internal state to filter out enabling
conditions for arbitrating the goal adoption.

As for the decision theoretic paradigm of ‘rationality’
[21], [22], an artificial agent may act in order to maximize
the expected utility, given multiplying utilities (desirability)
and probabilities (likelihood). In our model this strategy is
delivered at a meta-level reasoning, typically when the agent
has to select between alternatives to achieve mutually exclusive
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Fig. 1. Given a terminal goal, Expectation Driven Deliberation compares

Subjective Expected Utilities to choose the most promising course of actions

Imagine an agent being engaged in a foraging task. In
normal conditions, the terminal goal is to look for valuables
moving to a series of rooms towards some Location of Inter-
est(LOI). Expectation-driven deliberation allows the agent to
decide on which LOI to look for considering how the various
alternatives are ‘promising’ (Fig. 1). The scrutinized expecta-
tions are built upon two independent quantitative dimensions:
Belief strength, as a degree of subjective certainty placed in
terms of likelihood (the agent is more or less certain about
their content) and Goal value, a subjective importance strictly
dependent on desirability of the goal state and the related
motivating forces, but also on context conditions and mental
attitudes [6], [7]. Given this, Subjective Expected Utility (SEU)
can be placed as:

>

SEU(GZ) = U(Ogi)P(Oaj|aj) (1)
ajePlan(G;)

where G; is the i'" goal to adopt between candidates, O,
is its related outcome, U(Og,) is the subjective utility of that

outcome, a; the j*" action of the plan triggered by G; and
P(Oq,aj) is the probability of that outcome, given that the
jth action of the plan will have the proper Oq, outcome.

Utilities are coupled to rewards obtained upon goal comple-
tion and quantitatively assessed in relation to past experiences.
U(Og;) is calculated according to the extent to which an
intention (i.e. a given sequence of actions) has fulfilled a
subjective desire Og,?. This makes it possible to endow
expectations with their valence: expectations can be consid-
ered positive (or negative) according to their contribution (or
determent) to the ongoing intentions and mental states (e.g.
Goals, Beliefs).

Likelihood are subjectively assessed as predictions through
a forward model mechanism. In the actual implementation,
we are testing different mechanisms for unsupervised learning
to determine conditional probabilities of future events, given
a sufficiently wide open knowledge base (i.e. EM algorithms
for Bayesian networks [23]). Feedback of mismatches between
expectations and experienced outcomes are then used to adjust
either utilities and predictions. In so doing, even in the same
environment, different agents build different subjective models
based on their past experiences, thus resulting with different
epistemic and motivational states.

A. Emotions modulating high level expectations

Among the consequences of scrutinizing an expectation
there is the increment of epistemic activities, aimed at ac-
quiring information from environment to know whether the
expectation can be validated or disconfirmed [24], [25], [7].
As mentioned, this mechanism is at the basis of any mismatch-
based surprise. The idea behind the modulation of expectations
with emotions is that an agent can affect the desirability of
an outcome by introducing an additional motivation based on
an anticipatory feeling®: given an active expectation upon a
possible reward, agents can appraise their experiences com-
paring the expected utility and the effective achieved reward.
Six cases of mismatch are possible:

1) Positive increase (S+): the achieved reward is stronger
than the one expected. Can be related to excitement.

2) Negative increase (S—): the punishment is greater than
expected. Can be related to distress or strong disap-
pointment.

3) Positive reduction ($+): the agent achieve less reward
than the one expected. Can be related to disappoint-
ment.

4) Negative reduction ($—): less punishment than expected.
Can be related to relief.

5) No Surprise (N S): goal reward matches the expectation
and is exactly the one expected.

2In more details, for any given goal G;, the agent stores achieved rewards
and calculates U(Og, ) by inferring the next value based on an average, or
on a linear projection.

3In the field of decision theory, a similar solution has been formally
proposed by Gmytrasiewicz and Lisetti [9], while Busemeyer et al. [26]
formalized how needs change over time under the pressure of external
stimulation and internal deprivation



6) Surprise due to ignorance (15): the reward is not de-
ducible from prior knowledge due to lack of experiences.

Once appraised, agent can use these feelings to give more
or less preference to a certain alternative. The agent may
introduce an affective bias providing an intrinsic anticipatory
effect (the experienced surprise enhances the importance of a
certain goal, hence the agent believe to obtain more value from
its achievement). We define an Affective Expected Utilities
(AEU) in terms of:
>

AEU(G;) = [Ap x U(Og,)] X P(Oq,la;) (2)
ajePlan(G;)

where, respect to the SEU given in (1), A; represents a qualita-
tive and a quantitative appraisal of the experienced mismatch.
It introduces an additional, quantitative reinforcement into
the deliberation process and further modulates the expected
utility in affective terms. The positive increase (S+) and
the negative reduction ($—) of the monitored signal give a
positive indication about the progression of the goal value.
Hence, when associated with a specific decision, they present
a positive feeling towards the related outcome. Contrarily, the
negative increase (S—) and the positive reduction ($+) cause
the agent to experience a negative feeling towards that choice,
thus inhibiting its value. This is implemented by reinforcing
the utility of a choice with an additional factor, in case of a
positive feeling, and diminishing it in the case of a negative
feeling. A, is positive for positive feelings and negative for
negative ones:

0.0
(v4) * Er(Gi)
(’7*) * ET(G’L)

where F,(G;) comes from the last appraised mismatch on G;’s
reward, F,.(G;) is the distance between expected reward and
sensed reward, v4 and y_ are discount factors (with v, <

=)

if E,(G,) is in {NS, IS}
Ap(Gi) =

IV. BACKGROUND EXPECTATIONS AND SITUATED
REASONING

A central claim of appraisal theory is that emotions are
associated with subjective judgments for the significance of
external events (e.g. was the event expected in terms of prior
beliefs? is the event congruent with adopted goals? is there
the power to alter the consequences of the event?). As shown
above, background appraisal allows particular contexts and
events to be recognized in order to activate background (tacit,
passive) expectations. Agent’s situated perception envisages
causal interpretation of situated events by filtering their fea-
tures into percepts. The events can then be compared with
agent goals and endogenously valued as positive (indicating
that some event establishes the preconditions for achieving
goals or create a new opportunity) or negative (some event
represent a threat or thwart agent current goals). The idea
behind the situated control is that clusters of different coping
responses can be arranged around how a situation is appraised.
Adopting the model of situated reasoning, coping strategies

if F5(G;) is a pos. feeling €{S+,$—}
if E4(G;) is a neg. feeling € {S—, $+} }

elicited by different kind of surprise can be modeled as a
momentary interruption of deliberative and practical reasoning
processes, e.g. diverting attention to past episodes or focusing
sensors and effectors to a restricted area.

A. Mental States and affective control

Stored in an associative memory, noticeable events can be
exploited to infer local environment features and activate a
passive form of expectations. In so doing, an event that is
supposed to thwart an active goal is assessed as a potential
undesirable (negative) item, hence the agent reconsider his
intentions trying to adopt an alternative action to avoid a
threatful state. Otherwise, in case of a positive event, the agent
can reconsider his intention in order to exploit an opportunity,
or to maintain a desirable state. At any instant of time, agent’s
situated perception filters the world and store surprising events
adding items to a Situated Associative Memory (SAM). In this
case surprise is referred to passive expectations and arises
when the agent relieves a mismatch from an unexpected input
coming from the the situated perceptual component. For each
of these surprising events, the agent stores in the SAM a
perceptual report. Reports contain descriptions of a defined
set of situated properties: they have a symbolic representation
including time-stamp, positive or negative valence of the
originating event, location where the event has been detected
and other specialized fields*:

evitem { wvalence: enum value="pos/neg"

time-stamp: class="Time"
location: class="Location"
helps: class="Goal"
thwarts: class="Goal"

Once events are translated to their symbolic representa-
tion and stored in the SAM, they can be manipulated as
percepts. Items have a propositional content but a different
nature respect to the beliefs’. They are designed to provide
both episodic and semantic contents. The SAM is episodic
and allows the agent to cache a raw description of situated
events, thus enabling the reasoning process to exploit local
environment features. The percepts are exploited as a ‘fast’
source of information to adapt the behavior in the near future
and anticipate world changes. The presence of a time stamp
for each item ensures to relate each percept to a given time
and allow the content of the SAM to remain ordered at least for
a given field®. Besides, the memory is semantic and provides
a fast belief base to be handled to infer local environments
features. The intuition behind the mechanisms is provided
by the well known principle of spatial and temporal locality,

*In the case of the foraging scenario, also described in [27], we distin-
guished negative events as harmful collisions, fire threats, and positive events
as food objects, valuables and LOI discovering.

SNotice that situated percepts may hold to deceitful appearances [13]
including false positive or negative items.

Given the items 71,12 and I3, by selecting the time stamps we define
an ordered set upon SAM: 1) Either I1 < I2 or 12 <X Il (completeness); 2)
If 11 < I2, then 12 4 I1 (consistency); 3) If 11 < I2 and 12 < I3, then
I1 X I3 (transitivity).



according to which one may assess that recently cached items
of a certain class are likely to be retrieved in the near future.
The amount of item locally present in the SAM can be used
as an indication to infer passive expectations about the local
context’.

Transition Function and Information Fusion. SAM’s
content is constantly monitored by an appraisal process in
order balance the presence of items and thus decide which
is the MS to adopt. Passing from one state another depends
on how the events are relieved and appraised in real time.
This process can be described through a push down automaton
[27], [9]. Generally the agent supervises the buffers (through
a background process) by balancing their registered contents:
prevalence of negative items leads to passive expectation of
undesirable states (i.e. contingencies, risks), hence to cautious
attitudes, while positive events lead to positive expectations
(i.e. opportunities) and excitation (Fig. 2). In more details, the
current state is inferred by the previous state and the perceived
input with a transition function MsTrans : MS x IN* —
MS, where MS is the set of definite mental states and
IN™ the input events stored in the (possibly empty) SAM.
M sTrans realize an information fusion within the symbolic
items. Notice that the presence of items of different nature
may elicit inconsistencies to be resolved (i.e. presence of
elements of different meaning as, for instance, interleaved
sequences of positive and negative events). To address this
problem MsTrans uses a set of rules for combining and
aggregating the items of the same type and circumvent the
inconsistencies on the basis of the temporal sequencing given
by the time stamps. As suggested by [29], the rules used to
govern the fusion can be composed of meta-level and domain
specific information. For instance, a simple rule of balancing
may assert to aggregate the items of a given typology, in order
to circumvent the set of lower cardinality and to take into
account only the information related to the bigger aggregate.
By balancing the presence of items of a given type, the
appraisal process suitably distinguishes between positive and
negative expectations. A similar approach was used in [27],
where two buffers are handled to store positive and negative
events and the current sate is let to emerge on the basis of the
comparison of buffers sizes (Fig. 2). To prevent the agent to
switch to an inconsistent state, the transition function is built
to take into account a certain grade of inertia, thus providing
more robustness against occasional events, false positive or
negative items (i.e. due to noise or sensor faults etc.).

B. Functional description

On the basis of a principle of Analogy, one may asses that
an agent can predict with reasonable accuracy what actions
and changes to perform in the near future based on his recent
experiences and on the appraisal of local events. In so doing,
responses and coping strategies given to a given set of related
events can be classified an re-used in analogous situations.

7A Similar approach was used by Schank [28], where expectations are
generated on the basis of the agent’s knowledge encoded in scripts and frames.

Hence, library of coping strategies, action alternatives and
resource allocation policies can be clustered within a discrete
set of frames used as control states. Effects of coping can
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Fig. 2. Controller for Mental States: appraised positive (p) and negative ()
events are fed to a transition function in order to shift from different mental
states.

be modeled in different temporal scale, from immediate and
short term reactions, to most persistent long term effects.
Given in functional terms, coping strategies includes emotional
responses to overturn (in the case of negative emotions) or
trigger (in the case of positive ones) control signals to be
signalled to the reasoning process. Part of the effect of these
signals are conative: mental states, as particular aggregates
of control strategies, are modeled to activate particular goals.
Besides, MSs are suitable control mechanisms for intention
reconsideration. They embed a particular kind of goal activa-
tion, bypassing the underlying deliberation processes normally
used for practical reasoning. For example, on the short term a
MS may attempt to resign the agent to a threat by signalling
to the deliberative engine to abandon a goal (thus a related
intention) that is becoming inconsistent with the actual belief
base or the actual environment state. On the contrary, positive
events may elicit goal activation to exploit new opportunities.
Furthermore, each MS adopt a context dependent configuration
of resources (i.e. vision, speed, perception rate, belief update).

Becoming aware of his context, the agent can dynamically
adapt his control frame in order to reduce performance payoffs
and avoid wasting resources for useless activities. Control
frames are characterized by the following tuple of dynamic
values: Cf = (En,r,Sr,s,Gg), En indicating the current
amount of energy, r the range of vision where sensors can
retrieve data, Sr the situated perception filtering rate, s the
instant speed and G the situated goal to be activated in
order to pro-actively respond to the events to cope®. Each
frame defines the roles that the related MSs play in situated
adaptation to contexts and environment dynamism.

Imagine, in the foraging task presented in section III, that
the environment presents some threats for agent activities (i.e.
the fires, adversary agents etc.). Once the agent has deliberated
the best expected location to explore, through the evaluation of

8We assume that agents spend energy according to a combination of the
previous resource costs (e.g. the higher the speed and perception-rate, the
higher the spent energy).



MS Moods yms | Resources

T [S- |8
Default Exploitation 1.0 33 .33 .33
Excitement Reinforcement | 1.3 275 | 275 | 45
Caution Prudence 0.5 45 45 .10
Boredom Exploitation 1.0 33 33 .33
Curiosity Exploration 1.0 45 .10 45

TABLE I
MENTAL STATES ELICIT THE ADOPTION OF CONTROL FRAMES FOR
MOODS, CONFIDENCES AND RESOURCE ALLOCATION POLICIES

the related AEUs, it may happen he registers a close series of
harmful (unexpected) events, i.e. fire collisions (Fig. 3.a). This
elicit the negative expectation that the agent is approaching to
a dangerous area and thus induce him to pass to a Cautious
state (Fig. 3.b). This negative, background expectation causes
the agent to adopt a new control frame, re-allocating his
resources to cope harmful circumstances (Tab.I). Cautiousness
causes changes both in the long and the short term: firstly
it induces arousing by modulating attentive resources (i.e.
enhancing Sr, looking ahead and augmenting r and reducing
s, see Tab.I). A risk avoidance goal GG interrupts the ongoing
practical action to escape from threats and accordingly the
agents arranges activities to better check the situation. On
the long term, cautiousness brings to a watchful mood, by
reducing the self confidence on beliefs (yass), augmenting
the control (e.g. enhancing perceptive iterations Sr) and/or
performing the action in a less risky way(e.g. using safest
alternatives in repertoire). Prevalence of positive surprising
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events induces the agent to shift to Excitation, that on the
short term is used to arouse the agent, to augment epistemic
activities and to search for those ‘good’ events. A positive
surprise (i.e. valuables discovering) may induce the agent to
abandon a previous intention and to reformulate his behavior
to exploit the new opportunity triggering a new goal Gj.
On the long term, excited agent adopt an ‘optimistic’ mood
increasing the confidence (y,75) of those unexpected, positive

Avoid Fire

events’. The lack of surprise progressively empties the SAM
and reduces situated perceptive activities. In the long run, it
produces a special frame: Boredom. Boredom indicates that
the environment is almost stationary (no unexpected events
are happening) and that the agent can fully exploit his purpo-
sive behavior governed by the deliberation driven reasoning.
This enhances the subjective confidence in beliefs and in
building predictions. Further persistence of boredom leads
to Curiosity, a control state used to automatically arbitrate
from exploitation to exploration activities. The exploration
attitude is goal driven: once the agent does not recognize
relevant events in his SAM!?, he may infer the low-level
expectation that the environment is becoming more static,
hence biases his activities towards actions that shows promise
to perform a better field coverage and to maintain an updated
knowledge. Bypassing the deliberation of practical reasoning,
the curious agent pro-actively activates the epistemic G5 of
exploring new rooms searching for new facts and events. This
has a twofold effect: on the one side it enhances territorial
exploration augmenting the chances to discover new LOIs, on
the other side it improves knowledge and maintains updated
beliefs!!.

V. CONFIDENCE AND MODULATION OF THE PROBABILITY
FUNCTION

Effects of MSs can be reconciled with the deliberative level.
The intuition behind this integration relies on the fact that
each MS endows a certain grade of self-confidence (due to
the ongoing mood) that can be related to the belief base.
Once we detailed beliefs with a certain strength, one may
introduce the self-confidence as a further discount factor to
affect the likelihood of the predictions. In so doing agents
can dynamically adopt a more or less confident’ capability
to build predictions. For example, positive moods provided
by excitation can induce the agent to optimistically over-
estimate the probability of a certain outcome. On the contrary,
negative moods like cautiousness may introduce pessimistic
under-estimations. On these basis, respect to the one given in
(2), the affective expected utility results:

>

ajePlan(Gy)

AEU'(G;) = [Ab x U(Og,)] % [7ars X P(Ou, |aj)]

3)
where y)ss is associated to the ongoing mental state (Tab.I).
By associating a given confidence to the subjective capability
to make predictions, vy,ss introduces a further affective mod-
ulation on agent rationality.

Notice that, differently from Excitement emerging on appraisal of an
achieved goal, Excitation has been related to a situated positive surprise.

10Heuristic thresholds define the k-length time window used for passing
from Boredom to Curiosity.

"IThe benefits of interleaving epistemic and practical activities are generally
accepted in situated cognition [24]. Different policies can be retrieved in
literature to manage exploitation Vs. exploration. Among others, Ahn and
Picard [30] proposed an affective signal to abandon exploitation and trigger
the process of exploration.



VI. DISCUSSION

Recent computational models are providing simple affec-
tive states in terms of their effects on agent’s reasoning,
behavior and attentive activities [31]. Their functional roles
may enable adaptive and situated behaviors and span from
reactive methods of control (similar to those employed in
primitive biological organisms [32]) to the control of com-
putational resources [33] and the decision making [22], [11].
In our model we propose a quantitative influence of af-
fective states upon the terms of a rational decision. As in
appraisal-inspired models, we provide emotions to coordinate
the different computational and physical components required
to effectively interact in complex environment [34], [35].
Appraisal based systems like Gratch and Marsella’s EMA
[35], [11], stresses different relations between emotions and
cognition, arguing that emotions are a causal precursor of
the mechanisms to detect, classify, and adaptively respond to
significant changes of environment. Differently from EMA, we
adopted a two step approach. First we distinguished between
long-term practical reasoning and situated reasoning. The
disambiguation of slow, decisional processes from situated
ones elicits a clear methodological separation of concerns and
may greatly assist the modeler by breaking down the work
into two separate and independent activities: while the former
is defined referring to the goal overview and clearly involves
decisional processes and deliberation of alternative goals, the
latter can be defined through control frames, clustering domain
dependent strategies, aggregates of heuristics and functional
even affective responses used to respond to local events. In
the second phase, we reintegrate the two processes by taking
into account the correlations and the relative interactions,
enlightening how low situated reasoning can be used to inform
higher decisional processes. To this end the contribute of MSs
is twofold: from the one side they can relieve the deliberative
and the attentive processes from the burdens to process weakly
relevant information in decision processes, excluding action
alternatives that are likely to be less promising or have
vanishing likelihood to be achieved. Besides, MSs provide
ready to use action selection and resource allocation policies
that may relieve agent’s need for resource-demanding and meta
decision processes. The emergent nature of affective states
enables agent to adopt a mental frame while both expectations
and emotions are conveyed to inform reasoning for redirecting
resources and adopt long term strategies once a disturbing
event is detected.

An additionally effect of modeling mental states is for
agent’s intention reconsideration. Traditional reconsideration
strategies indicate an agent to abandon an intention when
a related goal is achieved, when a goal become infeasible
or when the agent relieve some inconsistencies between the
world state and the external conditions necessary for goal
achievement. Our model allows basic emotions to elicit an
interruption on normal cognitive processes when unexpected
events require servicing. Once based on expectations of future
states, intention reconsideration becomes anticipatory and can

be used to coordinate behavior with prediction of future states.
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