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Abstract. Digital auscultation, integrating digital signal processing and
machine learning algorithms, has garnered significant attention in the
field of automated disease diagnosis due to its simplicity, speed, and
non-invasiveness. In our research, we introduce a multi-modal hybrid
model that merges a wavegram logmel CNN, initially trained on the
extensive audio dataset, with demographic data processed through an
autoencoder. Additionally, we analyze the impact of two encoding meth-
ods on demographic information and integrating different numbers of
snapshot models in the snapshot ensemble method on the model scores.
The experimental results demonstrate that both the wavegram logmel
CNN and multi-modal hybrid model with two encoding methods ex-
hibit improvements of 2.1%, 3.3% and 2.8%, respectively, compared to
a single model when utilizing four snapshot models. Through a 10-fold
cross validation on the ICBHI dataset, the multi-modal hybrid model
with one-hot encoding achieves a remarkable model score of 82.5% in
the four-classification task, surpassing previous research outcomes and
achieving a 1.2% enhancement over the wavegram logmel CNN model,
which solely employs respiratory cycles as input.

Keywords: ICBHI dataset, neural networks, respiratory sounds classi-
fication, multi-modal

1 Introduction

The World Health Organization (WHO) [27] reports that over 8 million deaths
in 2019 were attributable to respiratory diseases. The distinction between nor-
mal and abnormal respiratory sounds can provide valuable information for the
diagnosis of respiratory diseases [22]. Among the abnormal sounds, crackles and
wheezes are notably prevalent. Crackles, characterized as explosive, short-lived
discontinuous sounds, are often linked with conditions like Interstitial lung fibro-
sis, Pneumonia, and Congestive heart failure. Wheezes, which are high-pitched



continuous sounds, occur in airflow-restricted airways and are associated with
diseases including Asthma and COPD [26].

This article proposes a multi-modal hybrid model aimed at classifying respiratory
sounds as normal, crackle, wheeze, and both on the ICBHI dataset. The model
is based on wavegram logmel CNN [13] with an additional autoencoder struc-
ture to extract features from the demographic information of the subjects. Based
on the dataset’s missing demographic information, we implemented one-hot and
dummy encoding methods into our model design. The findings demonstrated
that the one-hot encoding method yielded superior results. Utilizing the snap-
shot ensemble method to evaluate the integrated models’ efficacy, we observe
performance improvements in both the wavegram logmel CNN and multi-modal
hybrid models to varying degrees, particularly when using 4 snapshot models.
Our results surpass previous work under the same dataset partitioning condi-
tion, with the multi-modal hybrid model achieving a classification accuracy of
up to 82.5%.

2 Related work

2.1 Multi-modal data in deep learning

The rapid acceleration in data collection in recent years has introduced multi-
modal data in structured, semi-structured and unstructured formats become a
new topic in the field of deep learning. Multi-modal data, as the name suggests,
is data consisting of multiple modalities, each covering a partial description of
the same thing of interest. Information fusion of multi-modal data can help to
better understand the thing of interest in the presence of information deficit in
any of the modalities [7].

The multi-modal autoencoder proposed by Ngiam et al. [18] learns the correla-
tion between modalities, and some of the data that have only a single modality
but complement the rest by adding zero values are likewise fed into the model to
learn features. [15] features an image CNN for image representation, a matching
CNN for encoding images and words into a joint representation, and multi-layer
perceptron (MLP) for scoring image-sentence matches, enabling image retrieval
and sorting via natural language queries. [25] applies multi-modal data measured
by wearable devices to recurrent neural networks to help improve people’s sleep
characteristics.

In addition to the work mentioned above, several studies have used demographic
information of subjects collected in the clinic to participate in the construction
of multi-modal neural network structures. In classifying skin lesions, [28] not
only trained the datasets acquired from two different imaging modalities sepa-
rately in Resnet50, but also added the demographic data of the corresponding
patients to the fully connected layer and fused it with the features learned from
the other two modalities. [3] trained and extracted features from the four modal-
ity data in different network structures or settings, respectively, and predicted
single cancer and pancancer overall survival by calculating the similarity loss
for each modality pair. The features extracted from the Chest X-ray images by



pre-trained CNN and demographic data were concat and continued to fed into
the hidden layer in [9], and the output was used to determine the presence of TB
in chest radiographs. For incomplete multi-modal data, [4] introduced modality
dropout to randomly discard the modality being trained and use mean vector
method to average only the available modality data during feature fusion.

2.2 Related studies using the ICBHI dataset

The ICBHI 2017 challenge dataset [23] is extensively employed in the field of
digital auscultation as a public respiratory sound dataset for the comparison of
deep learning algorithms. Based on the four symptoms included in the respi-
ratory cycle (normal, wheeze, crackle and both (wheeze and crackle)), current
deep learning classification models being applied to the data set are convolutional
neural networks (CNN), recurrent neural networks (RNN) and hybrid models.
The spectrograms and scalograms obtained by [17] after preprocessing the respi-
ratory sounds were used as input to CNN, respectively, and the features extracted
by the network training were concatenated and input into the fully connected
layer. [14] defined the CNN and added an attention mechanism to it so that the
network training is mainly focused on some key features. A series of new tech-
niques such as fine-tuning on devices, augmentation through concatenation and
blank region clipping were proposed in [6] to preprocess the audio. For the class
imbalance problem in the dataset, [11] used conditional GAN to increase the
diversity of the dataset. The multi-stage CNN-RNN [1] model extracts abstract
feature representations from mel spectrogram by CNN and learns temporal re-
lations in RNN.

Despite the extensive usage of the ICBHI dataset, there is a lack of research
involving the inclusion of demographic information as one of the modalities in
the neural network workflow for classifying respiratory sounds.

3 Materials and Methods

3.1 ICBHI 2017 database

The ICBHI Scientific Challenge database (as briefly described in Section 2.2)
is a large database of labelled respiratory sounds [23]; it has a total duration
of 5.5 hours and contains 920 audio recordings from 126 subjects. The length
of each recording ranges between 10s and 90s, and they can be segmented into
various respiratory cycles based on the official annotation file that is provided.
Considering the symptom categories contained in the respiratory cycles, 6898
respiratory cycles in the ICBHI dataset were labeled by the respiratory experts
into four categories: normal, wheeze, crackle and both (wheeze and crackle).
Each category contains 3642, 886, 1864 and 506 respiratory cycles respectively.

3.2 Demographic data

In addition to the 920 audio recordings and corresponding annotated files, the
ICBHI Scientific Challenge database also provides demographic information for



each subject in five areas: age, gender, BMI, child weight and child height. There
are three cases of missing demographic information: (i) the subject does not pro-
vide the information; (ii) the subject is a child and therefore the corresponding
BMI information is not available; (iii) the subject is an adult and therefore child
weight and child height are not available. To leverage the demographic details of
each respiratory cycle in the neural network’s workflow effectively, we analyzed
the data distribution of respiratory cycles on four categories: normal, crackle,
wheeze and both, in terms of age, gender and BMI.

Following the grouping criteria outlined in Table 1, we organized subjects’ res-

Table 1. For the four categories of normal, crackle, wheeze and both, the data distri-
bution of respiratory cycles on different age groups, gender groups and BMI groups.

Demographic variables Age Gender BMI
Grouping criteria min,18)  [18,60)  [60,max| Female Male [min,18.5) [18.5,25) [25,30)  [30,max]
One-hot encoding  [L000] [0100] [0010] [100] [010] (L0000 (01000 00100 [00010]
Dummy encoding _ [100] 010 [001] [10 [01 [1000 [0100 [0010] [0001

Normal(3642) M?anistd 3.5543.79 55.32£6.86 70.91£6.31 - 16.90£0.30 22.75£1.70 27.8541.39 33.84£5.51
Number 642 500 2471 1239 2374 135 767 1393 652
Crackle(1864) M?anistd 4.554+4.29 54.70£4.39 73.53+7.80 - 17.02£0.20 22.12+1.66 27.444£1.26 32.79£5.17
Number 65 365 1415 760 1085 356 450 515 446
Wheere(856) M?anistd 1.98+2.14 57.35+0.91 72.23£6.62 - 16.81£0.30 21.46+1.99 27.754+1.23 32.88£2.63
Number 75 54 744 197 676 117 136 437 100
Both(506) M?anistd 3.0643.52 56.90£0.82 75.31£7.98 - 16.78+0.30 22.88+0.51 27.99+1.16 32.81£1.49
Number 6 29 471 156 350 123 142 191 4

piratory cycles into age, gender, or BMI groups. “Min” and “max” in Table
1 represent the minimum and maximum values for age and BMI among the
subjects. Our study involved the exploration of two encoding methods. One-
hot encoding employs an N-bit state register to encode N states. Notably, this
method accounts for missing demographic information by treating it as a dis-
tinct state, which is also included in the encoding. For instance, subjects’ ages
are encoded as [1 000],[0100],[0010],[0010], and [00 0 1] for the age
intervals [min, 18), [18, 60), [60, max], and missing values, respectively. Like-
wise, missing information for gender and BMI is encoded as [0 0 1] and [0 0 0
0 1]. Dummy encoding shares a similar concept to one-hot encoding. However,
it excludes the states with missing demographic information from the encoding.
Based on information from the ICBHI database, subjects have the option to
provide demographic information anonymously to avoid privacy implication.

3.3 Proposed method

We now describe our multi-modal hybrid model workflow (see Figure 1). The
ICBHI database was divided into 6898 respiratory cycles according to the official
annotation file (Table 3). Next, the respiratory cycles and the corresponding



demographic data were converted into data structures suitable for neural network
inputs by different preprocessing methods. Different data categories were fed into
autoencoder and wavegram logmel cnn for training. The extracted features are
mapped to the corresponding categories by a concat operation.
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Fig. 1. Proposed multi-modal hybrid model workflow

Preprocessing To facilitate the pre-processing of the continuous audio signal in
the workflow of Figure 1, the librosa library [16] reads the 6898 respiratory cycles
divided according to Table 3 and generates discrete audio signals in JSON format
at a sampling rate of 16 kHz. The newly generated data contain information
on the corresponding labels as well as subject number, recording index, chest
position, recording mode, recording device, and cycle number. From the discrete
audio signal to the data structure suitable for wavegram logmel cnn input, three
pre-processing methods were used: splitting and padding, data augmentation and
normalization. Table 2 presents the results from four representative respiratory
cycles (normal, crackle, wheeze and both) following various preprocessing steps.

Splitting and Padding Previous research [13,6] has investigated the impact of
varying respiratory cycle lengths on neural network performance. It has been
observed that the neural network achieves optimal results when the respiratory
cycle duration is set to 8s. However, the ICBHI dataset contains respiratory
cycles with diverse durations, ranging from a minimum of 0.2s to a maximum of
16.1s. Figure 1 illustrates the preprocessing module, which outlines the process
of standardizing respiratory cycles to a consistent length. T'wo scenarios are
considered: for the length of the original respiratory cycle longer than 8s, the
librosa library [16] is applied to randomly retain either the initial 8s or the
final 8s; for the length of the original respiratory cycle shorter than 8s, they



Table 2. Waveforms of original respiratory cycles are shown in (a), followed by pre-
processing steps: data augmentation (b), splitting and padding (c), normalization (d).
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are duplicated until reaching a length greater than 8s, followed by preprocessing
based on the first scenario.

Data augmentation The rollaudio method implements data augmentation by
randomly changing the starting position of data reading. It achieves this by gen-
erating a random index within the range of the respiratory cycle length. Sub-
sequently, the respiratory cycle is read starting from the position corresponding
to the generated index, continuing until just before reaching the initial starting
position.

Normalization Due to the diversity of data sources, data containing different
scales for features must be put on a common scale to prevent any adverse im-
pacts on the model’s performance. Z-score normalization, as a method of data
normalization, converts the data to the same scale. The normalized dataset has a
mean of 0 and a variance of 1. To achieve this, mean (u) and standard deviation
(6) values are computed individually for each respiratory cycle and subsequently



Table 3. Annotation file containing start and end time of some respiratory cycles and
corresponding labels

Cycle  Start (s) End (s) Crackle Wheeze Label Symptom

incomplete 0 0.662 - - - -
1 0.662  3.483 0 0 0 normal
2 3.483 5.218 1 0 1 crackle
3 5.218 9.072 0 1 2 wheeze
4 9.072 12.647 1 1 3 both

incomplete 12.647 13.251 -

averaged across ICBHI dataset to determine the global y and §. For any respi-
ratory cycle x, 2’ is the new respiratory cycle after normalization: 2’ = *5%.

Autoencoder Multi-modal data has been widely used in the field of deep learn-
ing to help models perform better prediction tasks. In the use case of this work,
we use two modalities, respiratory cycle and demographic data from each sub-
ject, to predict the category of respiratory cycle. An Autoencoder consists of an
encoder, which learns how to interpret the input and map it to a low-dimensional
representation called “latent space”, and a decoder, which learns how to recon-
struct the original input data from the latent space representation. To extract the
information in the demographic data, the encoded demographic data is used as
the input to autoencoder. By minimizing the reconstruction loss, autoencoder
learns to capture the most important features of the input data in the latent
space. The latent space representation is concatenated as the extracted informa-
tion into the fully connected layer of wavegram logmel cnn. Table 4 shows the
architecture of the autoencoder used to extract the demographic information.

Table 4. The proposed autoencoder architecture

Architecture Layers Output (one-hot/dummy)
Input layer (b,1,12)/(b,1,9)
Encoder ConvlD+BN+LeakyReLU (b,64,10)/(b,64,7)
ConvlD+BN+LeakyReLU (b,128,8)/(b,128,5)

Input layer (b,128,8)/(b,128,5)
Decoder ConvlD+BN+LeakyReLU (b,64,10)/(b,64,7)
Conv1D+Sigmoid (b,1,12)/(b,1,9)

Wavegram logmel CNN Transfer learning allows a model to transfer what it
learns in one task to another related or different task, thus reducing the training
time of the model in the new task and improving the generalization ability



of the model. Transfer learning is particularly useful for smaller data sets. The
Wavegram logmel CNN [13] in Figure 1 is loaded with pre-trained weights trained
on the Audioset [8] and fine-tuned at fully connected layers of the model so that
it can fuse features with the latent space representation from our autoencoder.
The prediction results of the respiratory cycle on the four-classification task
(normal, crackle, wheeze and both) were obtained after the activation function
log softmax. The raw input waveforms are separately trained on two branches;
the combined results are subsequently passed through five dropout layers and
five blocks comprising conv2d, batchNorm2d, relu and avg_pool2d.

Branchl: The 1D-data, after undergoing processing by the convolutional
layer and batch normalization, is then passed through three identical blocks.
Each of these blocks comprises convolutional layer, batch normalization, ac-
tivation function, and pooling layer, resulting in the output for next step.
Branch?2: The input raw waveforms undergo Short-Time Fourier Transform
(STFT) to generate Mel spectrograms. The branch’s outcomes are derived by
progressing through the convolution layer, batch normalization, activation
function, and pooling layer, all of which are applied to process 2D data.

Loss function The loss function of the multi-modal hybrid model proposed in
this paper consists of two terms: the mean squared error (MSE) loss function,
which enables the output of autoencoder to maximize the reconstruction of the
original input; and the cross entropy loss function, which is used in the classifi-
cation task to measure the dissimilarity between the true label and the predicted
probability. The overall loss becomes:

N K
Loates = 3¢ S0l — )+ 3 yiclog(uf,)] (1)
i=1 c=1
K is the number of categories contained in the dataset and N is the total number
of respiratory cycles. For a respiratory cycle 4, x;, x} correspond to its demo-
graphic data (in one-hot encoding format) and its predicted value on autoen-
coder, respectively; y;c, .. correspond to its true category and wavegram logmel

CNN’s predicted probability on category c.

3.4 Evaluation metrics

Our work adopted the evaluation metrics officially provided in [24] for catego-
rizing respiratory cycles into four groups. To simplify the expression, the four
categories, namely normal, crackle, wheeze, and both, are abbreviated as N, C,
W, and B, respectively. Consequently, the formulas for Sensitivity (Se), Speci-
ficity (Sp), and Score (Sc) are defined as follows:

Ccorrect + Wcorrect + Bcor'rect _ Ncorrect _ Se + Sp
) Sp - ’ SC - (2)
C'total + Wtotal + Btotal Ntotal

Se = 5

leorrect TEPTEsents the count of accurately classified respiratory cycles, and isotq;
corresponds to the total number of respiratory cycles within the respective class
when ¢ € {N,C, B,W}.



4 Experiments and Results

This section provides details of the experimental setup and subsequently com-
pares the score differences between the wavegram logmel CNN model and the
multi-modal hybrid model with 2 encoding methods using the snapshot ensemble
approach [10]. We compare the results of the model after 10-fold cross validation
with other works, based on the best configuration from the first experiment.

4.1 Experimental Setup

In deep learning tasks, optuna [2], an open-source automated hyperparameter
optimization library, efficiently automates the search and optimization of hy-
perparameters for model training. We configured three hyperparameters: batch
size, optimizer, and learning rate, each with specific search spaces in Optuna:
[16, 32, 64], [SGD, Adam], and (0.001, 0.1), respectively. The objective function
was defined as the model score, and we conducted a total of 100 trials. To ex-
pedite optimization, Optuna implemented early termination for trials with poor
objective function performance. The optimized hyperparameter configuration for
maximizing the objective function consisted of a batch size of 64, the Adam op-
timizer, and a learning rate of 0.001. These configurations were adopted for our
experimental setup. Regarding dataset division, we split the dataset, consisting
of 6898 respiratory cycles, into training and test sets with an 8:2 ratio. Moreover,
within the first experiment, the training set was further divided, allocating 80%
for model training and 20% for validation.

4.2 Performance comparison of wavegram logmel CNN model and
multi-modal hybrid model

The snapshot ensemble method saves multiple snapshots of the model at regular
intervals during the training of the neural network, enabling model integration
without incurring any additional training costs. This method divides the en-
tire training process into multiple cycles, each consisting of an equal number of
epochs. The learning rate converges in each cycle using cyclic cosine annealing,
which can be mathematically formulated as follows, where o denotes the initial
learning rate at the restart of each cycle, a(t) denotes the learning rate when
epoch is ¢, T and M are the total number of epochs and cycles, respectively

mmod [T /M]

at) = G+ (cos(pp i) +1) (3)

Whenever a new cycle begins, the model initiates the exploration of the local
optima and captures a snapshot at that specific location. At the end of each
cycle, the model snapshot obtained during that cycle serves as the initialization
for the subsequent cycle. During the model testing phase, the outputs of multiple
snapshot models are averaged and compared against the corresponding actual
labels, following the methodology outlined in Section 3.4.



Table 5. Performance of wavegram logmel and multi-modal hybrid models at different
cycle numbers M

Unimodal wavegram||Multi-modal hybrid|{Multi-modal hybrid
logmel CNN model (one-hot) model (dummy)
Se(%) Sp(%) Sc(%) ||Se(%) Sp(%) Sc(%)|[Se(%) Sp(%) Sc(%)
69.9 885 79.2 || 70.6 89.3 799 || 728 87.8 80.3
72.0 89.0 80.5 || 72.3 90.5 814 || 747 86.8 80.7
70.1 91.8 80.9 | 75.2 899 826 | 75.5 89.4 825
70.7 91.9 81.3 ||754 91.1 83.2| 75.8 90.3 83.1
70.4 91.7 81.0 || 746 90.8 82.7 | 75.2 89.9 826

SN I

Each cycle comprises 30 epochs; Table 5 shows scores of the wavegram logmel
CNN and multi-modal hybrid models with 2 encoding methods, ranging from
single model scores to five-model integrations. Among these, the multi-modal hy-
brid model incorporating subject age, gender, and BMI in one-hot encoding out-
performs the wavegram logmel CNN, which utilized only the respiratory cycle as
input, across all integrated models. When subjected to four-model integrations,
models achieve optimal performance of 81.3%, 83.2% and 83.1%, respectively.

4.3 Comparison to other works

Table 6 presents a comparison of the proposed method with existing approaches
using the ICBHI dataset, as evaluated according to the methods described in
section 3.4. A score of 64.8% [12] was attained by employing noise masking to

Table 6. ICBHI Challenge Comparison (four classes: normal, crackle, wheeze, both)

Method Se(%) Sp(%) Sc(%)

NMRNN [12] 56.0 73.6 64.8
RespireNet [6] 53.7 83.3 68.5

Hybrid CNN-RNN [1] 56.9 867 TL8
LSTM [20] 62.0 85.0 T4.0

MBTCNSE [29] 65.3 86.1 75.7
CNN+Snapshot Ensemble [19] 69.4 87.3 784
CNN-MoE [21] 68.0 90.0 79.0
Wavegram logmel CNN (this paper) 72.0 90.6 81.3

Multi-modal hybrid model with one-hot (this paper) 73.8 91.1 82.5
Multi-modal hybrid model with dummy (this paper) 73.7 90.3 82.0

mask abnormal sounds and utilizing RNN for respiratory cycle classification.
A comprehensive investigation in [6] was conducted, encompassing various pre-
processing techniques, resulted in an impressive score of 68.5% using a basic
CNN. [1] added a Bi-LSTM layer after the CNN to capture temporal relations,



leading to a score of 71.8% at the output of the fully connected layer. The RNN-
based learning framework proposed by [20] achieved a model score of 74.0%.
By integrating different types of neural networks, the model in [29] achieved a
score of 75.7%. In [19], the snapshot ensemble method was applied to a custom
CNN model, resulting in a score of 78.4%. [21] replaced the dense block in the
C-DNN with a mixture-of-experts (MoE) block, and the Softmax Gate decided
which expert to apply to which input region, achieving a score of 79.0%. Utiliz-
ing the experimental results presented in Section 4.2, we made the decision to
incorporate four-model snapshots for computing the prediction scores. To ensure
robustness, we conducted a 10-fold cross-validation on both the wavegram log-
mel CNN model and the multi-modal hybrid model. Subsequently, we conducted
a comparative analysis with other works in the same data partitioning scenario.
Notably, the classification outcomes obtained from the pre-trained wavegram
logmel CNN outperformed other research endeavors. Moreover, the utilization
of one-hot encoded demographic information during training in the multi-modal
hybrid model yielded the most advanced results.

5 Conclusion and future work

Our work presents a multi-modal hybrid model incorporating respiratory cycles
and demographic information (age, gender, and BMI) to accurately predict four
classes (normal, crackle, wheeze and both) of respiratory cycles on the ICBHI
dataset. To address the problem of missing demographic information, we con-
ducted a comparative analysis of the effects of one-hot encoding and dummy
encoding on model performance. Notably, the multimodal hybrid model utiliz-
ing one-hot encoding achieved an impressive score of 82.5%, surpassing previous
works. We also examined the influence of the number of snapshot models on the
model performance and determined the optimal number for our ensemble.

The promising results obtained from our multi-modal model indicate its po-
tential for future research. To enhance the performance of multi-modal models,
we intend to explore the impact of more encoding methods in our future work.
Moreover, we plan to extend our investigations to encompass diverse datasets
that contain various modalities. These efforts will contribute to a deeper under-
standing of multi-modal model and its applications in audio analysis.

Acknowledgements
This work was partially funded by the BMBF under project number 13GW0554B
(Digitalung). Figures were created with icons from [5].
References
1. Acharya, J., Basu, A.: Deep neural network for respiratory sound classification in

wearable devices enabled by patient specific model tuning. IEEE transactions on
biomedical circuits and systems 14(3), 535-544 (2020)



10.

11.

12.

13.

14.

15.

16.

. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-

generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
pp- 2623-2631 (2019)

Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pan-
cancer prognosis prediction. Bioinformatics 35(14), i446-i454 (2019)

Cui, C., Liu, H., Liu, Q., Deng, R., Asad, Z., Wang, Y., Zhao, S., Yang, H., Land-
man, B.A., Huo, Y.: Survival prediction of brain cancer with incomplete radiology,
pathology, genomic, and demographic data. In: Medical Image Computing and
Computer Assisted Intervention-MICCAI 2022: 25th International Conference,
Singapore, September 18-22, 2022, Proceedings, Part V. pp. 626—635. Springer
(2022)

Flaticon: Access 10.4m+ vector icons & stickers. https://www.flaticon.com/ (2023)
Gairola, S., Tom, F., Kwatra, N., Jain, M.: Respirenet: A deep neural network for
accurately detecting abnormal lung sounds in limited data setting. In: 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). pp. 527-530. IEEE (2021)

Gao, J., Li, P., Chen, Z., Zhang, J.: A survey on deep learning for multimodal data
fusion. Neural Computation 32(5), 829-864 (2020)

. Gemmeke, J.F., Ellis, D.P., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C.,

Plakal, M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio
events. In: 2017 IEEE international conference on acoustics, speech and signal
processing (ICASSP). pp. 776-780. IEEE (2017)

. Heo, S.J., Kim, Y., Yun, S., Lim, S.S., Kim, J., Nam, C.M., Park, E.C., Jung,

I., Yoon, J.H.: Deep learning algorithms with demographic information help to
detect tuberculosis in chest radiographs in annual workers’ health examination
data. International journal of environmental research and public health 16(2), 250
(2019)

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot
ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109 (2017)
Kochetov, K., Filchenkov, A.: Generative adversarial networks for respiratory
sound augmentation. In: Proceedings of the 2020 1st International Conference on
Control, Robotics and Intelligent System. pp. 106-111 (2020)

Kochetov, K., Putin, E., Balashov, M., Filchenkov, A., Shalyto, A.: Noise masking
recurrent neural network for respiratory sound classification. In: Artificial Neural
Networks and Machine Learning—ICANN 2018: 27th International Conference on
Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
III 27. pp. 208-217. Springer (2018)

Kong, Q., Cao, Y., Igbal, T., Wang, Y., Wang, W., Plumbley, M.D.: Panns: Large-
scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 28, 2880-2894 (2020)
Li, C., Du, H., Zhu, B.: Classification of lung sounds using cnn-attention. EasyChair
Preprint (4356) (2020)

Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for
matching image and sentence. In: Proceedings of the IEEE international conference
on computer vision. pp. 2623-2631 (2015)

McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E., Nieto,
O.: librosa: Audio and music signal analysis in python. In: Proceedings of the 14th
python in science conference. vol. 8, pp. 18-25 (2015)



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Minami, K., Lu, H., Kim, H., Mabu, S., Hirano, Y., Kido, S.: Automatic clas-
sification of large-scale respiratory sound dataset based on convolutional neural
network. In: 2019 19th International Conference on Control, Automation and Sys-
tems (ICCAS). pp. 804-807. IEEE (2019)

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep
learning. In: Proceedings of the 28th international conference on machine learning
(ICML-11). pp. 689-696 (2011)

Nguyen, T., Pernkopf, F.: Lung sound classification using snapshot ensemble of
convolutional neural networks. In: 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC). pp. 760-763. IEEE
(2020)

Perna, D., Tagarelli, A.: Deep auscultation: Predicting respiratory anomalies and
diseases via recurrent neural networks. In: 2019 IEEE 32nd International Sympo-
sium on Computer-Based Medical Systems (CBMS). pp. 50-55. IEEE (2019)
Pham, L., Phan, H., Palaniappan, R., Mertins, A., McLoughlin, I.: Cnn-moe based
framework for classification of respiratory anomalies and lung disease detection.
IEEE journal of biomedical and health informatics 25(8), 2938-2947 (2021)
Reichert, S., Gass, R., Brandt, C., Andres, E.: Analysis of respiratory sounds: state
of the art. Clinical medicine. Circulatory, respiratory and pulmonary medicine 2,
CCRPM-S530 (2008)

Rocha, B., Filos, D., Mendes, L., Vogiatzis, 1., Perantoni, E., Kaimakamis, E.,
Natsiavas, P., Oliveira, A., Jdcome, C., Marques, A., et al.: A respiratory sound
database for the development of automated classification. In: Precision Medicine
Powered by pHealth and Connected Health: ICBHI 2017, Thessaloniki, Greece,
18-21 November 2017. pp. 33-37. Springer (2018)

Rocha, B.M., Filos, D., Mendes, L., Serbes, G., Ulukaya, S., Kahya, Y.P., Jakovl-
jevic, N., Turukalo, T.L., Vogiatzis, I.M., Perantoni, E., et al.: An open access
database for the evaluation of respiratory sound classification algorithms. Physio-
logical measurement 40(3), 035001 (2019)

Sano, A., Chen, W., Lopez-Martinez, D., Taylor, S., Picard, R.W.: Multimodal
ambulatory sleep detection using Istm recurrent neural networks. IEEE journal of
biomedical and health informatics 23(4), 1607-1617 (2018)

Vyshedskiy, A., Alhashem, R.M., Paciej, R., Ebril, M., Rudman, I., Fredberg, J.J.,
Murphy, R.: Mechanism of inspiratory and expiratory crackles. Chest 135(1), 156
164 (2009)

World Health Organization: The top 10 causes of death. https://www.who.int/
news-room/fact-sheets/detail/the-top-10-causes-of-death (2020)

Yap, J., Yolland, W., Tschandl, P.: Multimodal skin lesion classification using deep
learning. Experimental dermatology 27(11), 1261-1267 (2018)

Zhao, Z., Gong, Z., Niu, M., Ma, J., Wang, H., Zhang, Z., Li, Y.: Automatic
respiratory sound classification via multi-branch temporal convolutional network.
In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 9102-9106. IEEE (2022)



