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Abstract. Bronchodilators serve as a pivotal intervention for ameliorating symp-
toms associated with Inflammatory and allergic lung diseases. The objective as-
sessment of bronchodilator efficacy is critical for therapeutic optimization. Mea-
suring airflow volume through precision cut lung slices (PCLS) imaging at varying
time intervals provides a quantitative means to assess airway patency. To enhance
the efficiency of this evaluation process, our study extends the existing image
segmentation workflow to encompass a wider range of neural networks. Exten-
sive experiments have been conducted across varied data preprocessing methods
and loss functions. Furthermore, we contrast the performance differences between
single and ensemble models, alongside a visual comparative analysis of their de-
tailed variances in image segmentation. This refined workflow not only surpasses
previous experimental results but also enhances the accuracy of lung treatment
programs, offering a broader array of choices for future image segmentation tasks.

1 Introduction

Bronchodilators relax bronchial smooth muscle, dilate the bronchi, and alleviate airflow
limitations. They constitute a vital therapeutic tool for managing inflammatory and
allergic lung diseases. Evaluating the effectiveness of various bronchodilators can be
achieved by measuring the airflow capacity of PCLS. During image acquisition, factors
such as petri dish movement, changes in illumination conditions, out-of-focus images,
or obscured airways can adversely impact the image quality of PCLS [1], affecting the
accuracy of assessment results. Hence, this study focuses on the precise and efficient
segmentation and calculation of airway areas in images of varying quality.

Deep learning, as a branch of machine learning, boasts remarkable capabilities in
pattern recognition and feature learning, making it highly applicable in medical im-
age analysis. Within the realm of medical image analysis, image segmentation stands
as a crucial application, giving rise to a plethora of neural networks that exhibit out-
standing performance. The skip-connection structure, introduced in [2, 3], establishes
connections between the encoder and decoder, harnessing information at multiple lev-
els. Furthermore, it seamlessly integrates shallow and deep features to bridge potential
semantic gaps. Atrous convolution, as discussed in [4, 5], enhances the receptive field
of feature map points without introducing additional parameters. PSPNet [6] achieves
rapid segmentation results while maintaining high-quality image segmentation. Linknet
[7] and FPN [8] share similarities with Unet in their architectures. However, Linknet
adopts the resnet structure for its encoder block, while FPN accomplishes feature fusion
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by up-sampling feature maps at varying scales. In PAN [9], the FPA module signifi-
cantly expands the receptive field, while the GAU module extracts global context from
high-level features, guiding the weighting operation of low-level features. MAnet [10],
similar to the Unet structure, seeks to capture spatial dependencies between pixels on a
global scale and channel dependencies among arbitrary feature maps through multi-scale
semantic feature fusion.

Utilizing the bronchoconstriction dataset collected from PCLS, [11] employed Unet
for image segmentation across four categories: background, airway, blood vessel, and
airway boundary. This approach significantly accelerates image segmentation com-
pared to manual methods. [1] expanded the scope of user-oriented web applications
to include Unet, PSPNet, LinkNet, and FPN, constructing a comprehensive end-to-end
image analysis framework. This study introduces new data preprocessing methods, neu-
ral network architectures and loss functions building upon prior research, ultimately
yielding superior outcomes across a spectrum of evaluation metrics. Moreover, we con-
duct a comparison of segmentation performance between single and ensemble models,
demonstrating that the ensemble approach enhances the model’s ability to discriminate
image details without incurring extra training costs.

2 Materials and Methods

2.1 Dataset and experimental setup

Inverted microscopes and digital video cameras were employed to capture images of
the airway region in PCLS samples contained in petri dishes, which had been treated
with bronchodilators. The experimental design encompassed a wide range of variations
in compounds, doses and samples, resulting in a total of 420 different experimental
setups. The bronchoconstriction dataset, comprising 420 images, consists of images
captured under various experimental conditions. Each image includes components such
as background, airway, airway boundary, and possible blood vessels.

In this study, we employed 9 popular image segmentation networks defined in the seg-
mentation models pytorch [12], which include Unet, Unet++, Deeplabv3, Deeplabv3+,
FPN, Linknet, PSPNet, PAN, and MAnet. The training process for these models utilized
an SGD optimizer, trained for 80 epochs with a learning rate of 0.1. Early Stopping
was implemented with a threshold set to 20 epochs. To ensure the comparability of
experimental results, we adopted the dataset partitioning approach from references [1,
11] and conducted 10-fold cross-validation.

2.2 Proposed workflow

In this section, we detail the enhanced workflow for image segmentation. Fig. 1 illustrates
the process wherein a given input image, along with its corresponding ground truth, is
subjected to a preprocessing step before being fed into a neural network for training.
Following this, the neural network’s output is processed through a softmax function
prior to the computation of the loss function against the ground truth. Distinct colors in
the output image represent the various components of the PCLS. Furthermore, images
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can undergo testing using either a single neural network or ensemble neural networks
by adjusting the respective weights.

The preprocessing step encompasses resize, online data augmentation and normal-
ization. To enhance the dataset, which was resized to 512x512, we employed 6 methods
from the albumentations library [13] for online data augmentation of the training set, as
illustrated in Fig. 1(a-f). These data augmentation methods can be applied independently
or in combination to the images, with the application likelihood and intensity modifiable
through parameter adjustments. Normalization serves to equalize the variations among
disparate data volumes and to optimize the data distribution, thereby accelerating the
convergence of the model.

The nine neural networks utilized for the image segmentation task comprise an
encoder, a decoder, and a segmentation head. The encoder is charged with extracting both
global and local features from the image. We selected the pretrained resnet101 model
as the encoder to expedite model convergence. The decoder incrementally enhances
the resolution of the feature maps through up-sampling or deconvolution, integrating
them with feature maps from various stages of the encoder. Positioned subsequent to the
decoder, the segmentation head guarantees that the output channel count of the network
corresponds to the number of categories to be predicted. Images are tested by using
trained neural networks with varying weights, adhering to the condition:

∑𝑛
𝑖=1 𝑤𝑖 = 1.

When testing is conducted on a single model, the weight assigned to that model is set to
1, while the weights for all other models are set to 0.

The loss function, a vital indicator of model performance in deep learning, assesses
the degree of divergence between the model’s predictions and the actual values. During

Fig. 1. Image segmentation workflow based on bronchoconstriction dataset, where a-f correspond
to 6 data augmentation methods: Flip, BrightnessContrast, GridDistortion, OpticalDistortion,
CLAHE and RandomGamma. The annotations in the lower-left indicate the categories associated
with the various colored regions in the predictions.
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Tab. 1. Comparative analysis of Unet performance with various data augmentation methods.

Original a a+b a+c a+d a+e a+e+f
IoU 94.95 95.40 95.30 94.87 94.63 95.48 95.55
Dice 97.37 97.61 97.56 97.32 97.19 97.66 97.71
ASD 5.02 3.00 2.82 3.35 3.62 2.95 2.80

Tab. 2. Comparative analysis of Unet performance with various loss functions.

Cross entropy loss Focal loss Dice loss Tversky loss
IoU 94.95 92.44 94.66 94.79
Dice 97.37 96.01 97.20 97.27
ASD 5.02 5.75 6.89 5.39

the training of neural networks, we examined the model’s performance across four loss
functions: cross-entropy loss, focal loss, dice loss, and tversky loss, comparing the
variances in outcomes to identify the most effective loss function.

3 Results

To determine the optimal data augmentation and loss function combinations, we con-
ducted a series of experiments using Unet. The effects of the 6 data augmentation
methods, as identified in Fig. 1, are presented in Tab. 1. Notably, the inclusion of the
horizontal and vertical flip methods significantly enhanced the model’s performance.
The implementation of the Flip method resulted in improvements of 0.45% in IoU
and 0.24% in Dice coefficients, along with a decrease of 1.98 in the average surface
distance (ASD). Subsequent experiments, building upon the Flip method, determined
that a combination of Flip, CLAHE, and Gamma augmentations (a+e+f) yielded the
highest performance on the bronchoconstriction dataset. Concerning loss functions,
Tab. 2 presents a comparative analysis of their impact on model performance when no
data augmentation is applied. The model utilizing cross entropy loss surpassed other
loss functions across all metrics. Relative to the least effective loss function, the cross
entropy loss registered enhancements of 2.51% in IoU, 1.26% in Dice, and 0.73 in ASD.

Tab. 3 presents the performance outcomes derived from 10-fold cross-validation
of nine neural networks, utilizing a consistent random seed. The enhanced workflow
demonstrates superior performance over previous work in terms of IoU and Dice coeffi-
cients, particularly for the Unet architecture, which exhibits improvements of 1.94% and
1.11%, respectively. Furthermore, additional architectures such as Unet++, MAnet, PAN,
Deeplabv3, and Deeplabv3+ were employed for image segmentation tasks within the
bronchoconstriction dataset. Of these, Deeplabv3+ achieved the most favorable results
across all three evaluation metrics. In the ensemble experiments, we compared three en-
semble strategies (Ensemble 1 contains Deeplabv3+ and Unet++; Ensemble 2 contains
Deeplabv3+, Unet++, Unet, FPN and Deeplabv3; Ensemble 3 contains Deeplabv3+,
Unet++, Unet, FPN, Deeplabv3 and MAnet). Each assigning equal weights to the mod-
els. The findings reveal that while the ensemble approach surpasses Deeplabv3+ in
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Tab. 3. Comparative analysis of neural network performance: our work versus previous work.

Previous work [1] Our work
IoU Dice IoU Dice ASD

Unet 93.14 96.34 95.08±0.32 97.45±0.17 3.74±0.44
PSPNet 92.95 96.27 93.14±0.45 96.38±0.24 4.03±0.55
Linknet 93.43 96.52 94.92±0.40 97.36±0.21 5.09±1.32
FPN 94.16 96.91 95.00±0.26 97.41±0.14 3.44±0.36
Unet++ - 95.14±0.47 97.47±0.25 3.73±0.53
MAnet - 94.96±0.27 97.38±0.15 3.55±0.37
PAN - 94.65±0.56 97.22±0.27 3.65±0.78
Deeplabv3 - 95.00±0.28 97.40±0.15 3.63±0.43
Deeplabv3+ - 95.18±0.43 97.50±0.23 3.11±0.45

Ensemble 1 95.42±0.29 97.63±0.16 3.08±0.29
Ensemble 2 95.55±0.20 97.70±0.11 2.79±0.13
Ensemble 3 95.53±0.21 97.69±0.11 2.79±0.16

terms of overall performance, indiscriminately increasing the number of models does
not guarantee improved image segmentation results. Fig. 2 illustrates the performance of
the single and ensemble models in segmenting background, airway and airway boundary.

4 Discussion

In this study, we executed a series of experiments on the bronchoconstriction dataset,
extending the existing workflow across four dimensions: data processing methods, neural
network architectures, loss functions, and evaluation metrics. These experiments aimed
to identify the optimal training strategy. The results indicate that the enhanced workflow
surpasses its predecessors in performance and offers a range of options for improving the
performance of image segmentation tasks. Within the ensemble strategy, the assignment
of model weights accurately reflects each model’s contribution to overall performance.
Notably, merely increasing the number of models while reducing the weights of existing
models does not positively impact model performance.

Given that images in the bronchoconstriction dataset featuring the blood vessel
category comprise merely 7.4% of the dataset, the influence of category imbalance on

(a) Ground truth (b) Deeplabv3+ (c) Ensemble 1 (d) Ensemble 2

Fig. 2. Comparative visualization of image segmentation on single and ensemble models.
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model performance cannot be overlooked. In view of this, future work will address this
imbalance issue to improve the segmentation of minority categories within the dataset.
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