
Enhanced Processing of METS/MODS Library
Metadata in CouchDB

Araek Tashkandi
Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia.

Email: asatashkandi@kau.edu.sa

Lena Wiese
Institute of Computer Science

Georg-August-Universität Göttingen
Email: lena.wiese@cs.uni-goettingen.de

Abstract—Efficient metadata management is decisive for a
useful resource discovery for example in digital libraries. In
this paper, we present a transformation of library metadata in
METS/MODS format into JSON, so that it can be managed by the
CouchDB document database. In this way, metadata searching
and analysis became much faster and new features could be added
to the legacy system.

I. INTRODUCTION

Getting more evolved in internet technologies, online ac-
cess has become a norm in many fields. To cope with this
digital age, most of the libraries offer their physical resources
to be accessed virtually in digital libraries. Their goal was to
provide full access to their resources and collections. To reap
the benefits of technological development of the digital library
and to make effective use of digital collections, creation of
good quality metadata is required. Otherwise, without having
good metadata, matching digital resources cannot be easily
located by users and digital collections cannot be adminis-
tered effectively. Search engines for literature search systems
frequently rely on metadata over content especially when the
content cannot easily be scanned and understood. However,
library staff usually face many challenges managing these
metadata collections of digital resources whose size tends to
reach the big data border. This paper considers a literature
metadata collection of digitized works maintained by Georg
August University of Goettingen, Lower Saxony State and
University Library in Germany. To move beyond individual
repositories of digital resources, Goettingen university library
uses OAI metadata harvesting to collect and harvest METS
(Metadata Encoding and Transmission Standard) & MODS
(Metadata Object Description Schema) collections that de-
scribe the bibliography metadata collection of digital works
from different providers. In this way it allows the collections of
digital resources to be searched together in a federated fashion.
Thus, after the metadata collections are harvested, Goettingen
library provides them to aggregators such as ZVDD (Zentrales
Verzeichnis Digitalisierter Drucke; central repository of digi-
tized prints). The ZVDD provides library users with a search
system on top of a central index on these data [1].

II. PROBLEM STATEMENT

The ZVDD is a directory that acts as a public access point
for searching among collections of digitized objects, currently
comprising of approximately 1.2 million items (comprising
around 90GB) from the 15th century and newer, all digitized in
Germany. The role of the Goettingen Library is that it collects

METS documents about the digitized objects from various
data providers - other libraries - so they can be integrated
and then directly published to ZVDD. At the beginning,
all the METS documents are downloaded by OAI-PMH, a
protocol for metadata harvesting. Unfortunately, not all the
data providers are able to provide their data without validity
errors or other content and quality issues. Therefore, all the
gathered data have to be carefully processed, validated and
when no serious obstacles are found, finally forwarded to the
output repository. If successful, cleansed METS documents are
then ready to be provided to the ZVDD aggregator, once again
via OAI-PMH.

Metadata harvesting produces huge data files; large col-
lections of such metadata pose a performance problem to
existing literature search systems and searching for a required
resource in the traditional XML format (METS & MODS)
takes too much time. This is in particular due to the fact
that the search in the legacy system is performed on the
whole metadata file; each metadata file has three main parts:
descriptive metadata, administrative metadata, and structural
metadata and hence time is wasted by going through a lot
of unnecessary information. The objective of this project is
to propose improvements of managing and querying over a
collection of digitized objects maintained by the Goettingen
University Library and to make resource discovery by metadata
of ZVDD as efficient as possible. However at the same time it
must be ensured that the legacy systems relying on traditional
data formats remain productive.

III. APPROACH

The main idea is to extract from the long METS and MODS
metadata records only the metadata parts which are required
in the resource discovery process and transform it into Java
Script Object Notation (JSON; see [6]) – and then to improve
managing and querying over this collection by uploading the
output JSON files into the NOSQL database CouchDB (see
[10], [11]). The main part of the metadata that is needed
for resource discovery, is the information in the descriptive
metadata part that has the bibliography descriptions. This is
the information used when searching for a resource by details
such as the author name and the publication year.

There are three main types of metadata (see [2], [3]):

1) Descriptive metadata: describes intellectual contents
(i.e. title, author etc.) to identify the resource.

2) Structural metadata: includes the information that
indicates the internal structure of a resource which is
comprised of multiple files. For instance, in case of a
book which is composed of many chapters and each
chapter is composed of ordered pages, the structural
metadata will indicate how these pages are ordered
to form chapters.

3) Administrative metadata: provides information to cu-
rate and manage a resource. It includes several sub-
sets such as: Rights management metadata for intel-
lectual property rights for instance who can access
the resource, and Preservation metadata that includes
information which is required for archiving and pre-
serving a resource. Another subset of the administra-
tive metadata is the technical metadata which contains
the necessary technical information for example, file
formats and when and how it was created.

A. METS

METS is the Metadata Encoding and Transmission Stan-
dard expressed in XML [4]. In 2001 the METS XML schema
was created sponsored by the Digital Library Federation (DLF)
and supported by the Library of Congress as its maintenance
agency; it is governed by the METS Editorial Board. METS
defines the metadata which is necessary for the digital objects
management within a repository and also for the objects
exchange between repositories or between repositories and
their users.

The METS root element contains seven major sections that
the METS document structure consists of:

1) METS Header element <metsHdr>: Contains meta-
data that describe the METS document such as infor-
mation about the creator of the document.

2) Descriptive Metadata Section <dmdSec>: Contains
descriptive metadata about the METS object, or mul-
tiple descriptive metadata sections for each compo-
nent of a METS object. METS provides means to
link this descriptive metadata section to the other
related metadata sections in the METS document
of a specific object. Therefore, descriptive metadata
can be expressed by using one of the many content
standards (i.e., MARC, MODS, Dublin Core, etc.) or
by producing a local XML schema. Consequently,
This descriptive metadata can be external to the
METS document by <mdRef>, internally embedded
by <mdWrap>, or both.

3) Administrative Metadata Section <amdSec>: Is par-
titioned into four sub-sections/elements: <techMD>
technical metadata about the component parts of
the digital object, <rightsMD> intellectual prop-
erty rights metadata which lists rights notices and
use restrictions, <sourceMD> analog/digital source
metadata which is about the source format or media
of components that is used to generate the METS dig-
ital object, and <digiprovMD> digital provenance
metadata which records the history of preservation-
related actions that are done on the various files
which contain a digital object. All of these elements
use the same attributes. We can express adminis-
trative metadata by content standards as the: NISO

Technical Metadata for Still Images, or MIX XML
Schema. Secondly, each of Administrative Metadatas
subsections can either be wrapped the metadata in-
ternally (by <mdWrap>) or be external to the METS
document (by referencing an external location by
<mdRef>) or both.

4) File Section <fileSec>: Includes a list of all files
that contain the content of the electronic version
of the digital object being described in the METS
document. Moreover, it provides the location of
each content file. An element of this section is a
<fileGrp> element which can be used to group
the files and then to provide subdivided related files
by such criteria as file type, or object version. Within
each <fileGrp> there is a <file> element for
each file that comprises the encoded document.

5) Structural Map <structMap>: Outlines a hierar-
chical structure for the digital object. For example,
in case of a book it outlines its hierarchical structure
according to its chapters. Moreover, it links each
structure’s element to its related content files and
metadata, which means it organizes the content of
the digital object that is represented by the <file>
elements in the <fileSec> into a coherent hier-
archical structure. For example, in case of a book,
if the <fileSec> of this digitized book includes
different groups of images then the structMap will
link each chapter of this book to its related content
i.e. images/file from the fileSec. StructMap provided
organization can be logical (such as a book divided
into chapters), or physical (a book divided into se-
quences of pages), or a mixture of both.

6) Structural Link <structLink>: Is one of the el-
ements of METS used to archive hypermedia such
as Websites. StructLink records the existence of hy-
perlinks between nodes/components in the hierarchy
outlined in the Structural Map. Thus, it mainly links
each node in the logical structMap to its related
nodes in the physical structMap. Consequently, in
case of a digitised book, structLink links each chapter
or section of this book in the logical structMap
to its related pages in the physical structMap. To
express a hyperlink that exists between two nodes
in the structural map, structLink uses a <smLink>
element.

7) Behavior Section <behaviorSec>: Is used to asso-
ciate executable behaviors such as computer program-
ming code with the digital content of the digitized
object for many purposes such as for displaying the
digital object or for transforming its content files.

This paper focuses on the descriptive metadata sec-
tion <dmdSec>, and on the structural map section
<structMap>. These are the two sections that are required
to be converted from METS and MODS to JSON in order to
make the resource discovery more efficient.

B. MODS

In 2002, Metadata Object Description Schema (MODS)
[5] was developed by The Library of Congress’ Network De-
velopment and MARC Standards Office. In ZVDD metadata,

MODS is used as an extension schema to METS. ZVDD’s
METS metadata file uses MODS in the descriptive metadata
in <dmdSec>. Examples of MODS’s elements that are used
to describe a resource is the titleInfo element which has
subelements title (includes the title of the resource), name
(includes the author’s name) and typeOfResource (includes the
text type). Therefore, this paper also considers how to convert
MODS to JSON since the resource discovery process needs
the descriptive metadata section in <dmdSec>.

C. JSON

JSON (JavaScript Object Notation [6]) is a lightweight text-
based data-interchange format and very easy for humans to
read and write and for machines to parse and generate.

JSON is built on two structures:

1) JSON objects: a collection of name/value pairs that
are enclosed within curly braces ({})

2) JSON arrays: an ordered list of values that are en-
closed within square brackets ([])

Data can be represented as one of the simple value types:
strings, numbers, booleans and null.

IV. TRANSFORMATION

We built the JSON structure based on the rules of the
metadata standard i.e. METS and MODS. For example, when
an element in METS is repeatable, it is represented in JSON
as an array of objects. Moreover, in the ZVDD use case there
are many data providers who use different software to generate
the metadata, so we had to consider different representations
and semantics of the metadata.

We adapted the conversion patterns between XML and
JSON of [7] as well as the “friendly” (well readable and
processable) approach of conversion of [8] that leads to a flat
JSON structure. This means that XML element names become
JSON object names; XML children elements become JSON
objects fields (that is, a collection of name/value pairs) or
arrays (if the child elements are repeatable); and XML text
nodes become JSON simple values. Notably, the conversion
need not be round-trippable, because the original XML files
remain to support the legacy systems.

For the purpose of the transformation of the considered
METS & MODS metadata fields to JSON we use an XSLT
(XSL Transformations) script, which is then run in batch
by the Saxon parser [9]. XML transformation with XSLT
gives the ability to add/remove elements and attributes to
or from the output file, and the ability to rearrange and
sort elements. For example, XSLT helps us to select the
elements or sections out of the seven major sections that METS
document consists of to convert to JSON and remove all other
elements from the output file; we just select the two elements
<dmdSec> and <structMap> (where type=logical) to
be in the output file in JSON format. As another example,
we remove or hide some elements from the XML document
which are not be included in the output JSON file (such as
language element which has subelement languageTerm
which again has attributes type and authority), because
they are not needed for the search. Moreover, XSLT helps

to make the elements in JSON searchable by CouchDB
by type conversions. For example, originInfo element
has subelements about dates such as dateIssued and
dateCreated; sometimes the date value is not a number
but a string so we developed a function <xsl:function
name="json:dates_2_number"> to convert the date to
a number. In case the date value is a string, this function
extracts the four digits of the year out of the date string and
puts the value in an element in JSON, that makes the date
element searchable in CouchDB when we search by the year
of publication.

Most importantly, this transformation saves storage space:
the entire metadata collection of 1.244.507 files in JSON
format occupies only 6.3 GB, whereas in METS format their
size is 90 GB. Rather than having the METS XML metadata
in the file system which is hard to manage, by converting them
to JSON we have the ability to store them in CouchDB which
makes their management much easier.

V. COUCHDB

Apache CouchDB is a database management system that
manages multiple collections of JSON documents that are
easily accessed via a RESTful HTTP API and queried by
views which are MapReduce JavaScript functions. B-tree is
the data structure that is used in CouchDB for database file
storage, document indexes and view indexes. In the B-tree
data structure, the data of documents and views is sorted
and queried by a key. SQL-experienced users are usually not
familiar with all of these features. Nevertheless we believe that
CouchDB and its data structure B-tree are a good fit for our
project goal to improve managing and querying a big collection
of digitized objects.

A. Document IDs

Each document in CouchDB has a unique ID per database
which is the key for sorting the documents. This unique
ID has the same role as the primary key in the relational
database system. In general, the user is free to choose any
string to be the ID of a JSON document. Yet, the choice
of ID has a significant impact on the layout of the B-tree
[10], [11]. For example, using a sequential ID algorithm
while uploading a large batch of documents will avoid the
need of rewriting many intermediate B-tree nodes. A random
ID algorithm may require rewriting intermediate nodes on a
regular basis, resulting in significantly decreased throughput
and wasted disk space due to the append-only B-tree design.
In the case of ZVDD metadata files, the value of MODS
element <recordIdentifier> is unique. Therefore, for
ZVDD metadata, we decide that the JSON document ID should
be assigned the value of <recordIdentifier> which is
the same as the XML metadata file name which is also used
to be the JSON file name.

B. Bulk loading

We use a simple yet efficient approach to upload a bulk of
thousands of JSON documents to CouchDB which is by using
this bash script as in [12]:

#!/bin/bash

FILES=/filepath/*
for filepath in $FILES
do
jsonfilename=$(echo $filepath |
sed -e ’s/\/folderpath\///g’)

docname=$(echo $jsonfilename |
sed -e ’s/.json//g’)

url="http://IP:port/dbname/${docname}"
curl -X PUT "$url" -d @"$filepath"
done

To upload an entire folder to CouchDB, the bash script
loops over the file in the folder. First, the for loop gets the
JSON file name where sed replaces the file path to the file
name. Secondly, it gets the docname which is the file name
without the extension .json. Finally, it uploads the JSON file
to CouchDB by the curl command.

In case the JSON file is valid and is uploaded to CouchDB,
the server replies as follows:

{"ok":true,"id":"PPN3303600759",
"rev":"dca1f87ea3b9ef986b48c8debbbbdfc6"}

While uploading JSON files to CouchDB, some JSON files
were not uploaded to CouchDB and the server returned the
following error message

{"error": "bad_ request",
"reason" :"invalid_json"}

although these files were valid according to the Oxygen
program (the program that was used to transform METS files
to JSON). The problem was that JSON numbers must not
have leading zeros, a case which however occurred in some
of the METS files in the order element. Therefore, we had
to change the XSLT code by removing the leading zeros from
this element

<xsl:value-of select=
"replace(./@order, ’ˆ0+’, ’’)" />

and then re-transform the METS files to JSON.

C. MapReduce

CouchDB provides a Spidermonkey-based JavaScript view
engine that supports creating ad hoc views [13]; views are
defined by MapReduce functions in JavaScript which perform
aggregations or joins on database documents. In CouchDB,
queries are described as views and expressed using the MapRe-
duce processing paradigm. This means each query is defined
in term of two functions: first, a Map function is called on
the stored documents in order to emit key-value pairs (by
emit(key, value)); then (in this case optional) a Reduce
function is called on the result (i.e. key and value pairs) and
aggregates the values with the identical key component to a
single value.

Moreover, there are two kinds of views in CouchDB:
permanent and temporary views. [14] The permanent view’s
result is preserved in the database, which saves the time of
recomputing the unsaved temporary view each time it gets

queried. When a database is updated (e.g. new documents are
added), there is no need to evaluate the views from scratch but
only recompute the MapReduce function for the new or the
updated documents since the last time the view was queried.
This feature obviously turns out to be very important with
respect to handling of large data volumes and provides efficient
use of physical resources. The second feature is, the very
efficient look-up operations when accessing data according to
keys, by which the values inside these B-trees are organized
and ordered. This efficient key look-up can be performed for
the JSON documents as well as for the views which are all
stored in the B-tree structure. In case of the view, the look-up
key can be any data field in the document that is emitted by
the emit function, whereas in the document it is the unique
ID of the document. Once the views are prepared, they become
available for access via HTTP REST API.

The querying of our considered library metadata is mainly
one of two kinds. The first query or view type is based on
the fields that appear in the public search interface of ZVDD
[1]: here the user is able to search for all MODS elements
in the dmdSec such as mods:titleInfo, mods:name,
mods:originInfo and also for the type attributes in the
mets:div in the structMap. For example, to view the doc-
uments of digital works by their year of publication (i.e. start
date of any mods:dateIssued, mods:dateCreated,
and mods:dateOther), a permanent view which executes
once on each document is created and its map function emits
the key as the year of publication and the value as the ID of
the document. This map function is recomputed only for the
new or updated documents (i.e. incremental update).

The second kind of views are about the internal analytical
queries for the library staff. They are meant for analyzing the
data to check for data errors. We created a particular view
that is capable of verifying the presence of all the compulsory
metadata fields during the integration process. The library staff
can easily distinguish the invalid metadata file in case of a
missing element that is required. For example, the library
staff requires a view that represents the existence of these
compulsory elements: document type (which is inside logical
structMap), title (that is inside titleInfo element), and from
relatedItem element they want to check existence of the record
identifier.

Furthermore, the library staff requires views that give some
statistics information about their metadata records. For exam-
ple, a view that gives information on all the different struct
types of their metadata (such as monograph, multivolume
work with the numbers of the records with a corresponding
type), and a view that gives a summary of languages of their
collection and how many literature resources are written in
each language. This view is a map function that gives key and
value pairs where keys are the <language> element, then the
reduce function uses the function sum to aggregate the emitted
values with the identical key component into one value. For
example, in our database, there are 309341 documents written
in German language.

VI. EVALUATION

According to the experiments we conducted on standard
hardware on the considered collection of all the 1.2 million

METS documents (exactly 1.244.507 JSON files in CouchDB),
our newly proposed approach really brings advantages. The
view for the analytical purpose (verifying the presence of all
the compulsory metadata fields during the integration process
like a document type, title, record identifier etc.) as well as
the query view that is based on a field of the search interface
of ZVDD (e.g. viewing the documents by their titles) were
both materialized into permanent views each in just 10 to 30
minutes on average for the entire collection. Querying these
permanent views then takes only some milliseconds.

For example, the library staff need a view for analysis
purposes that presents document type, title, record identifier
elements. The time to run the view creation over the entire
collection and to construct its B-tree took 26:45.809 minutes.
Moreover, one example of a query on this view takes 117 ms:

/_view/analysisview?key=["ContainedWork",
"Patrick Kennedy’s journal up the Illinois
river"]

Furthermore, the views that give statistics information
about the metadata are easy to implement by MapReduce
functions. For example, we implemented the MapReduce func-
tion that gives the list of all the different languages that the
digital works are written in as well as how many documents
are written in each language. View creation takes 13:31.368
minutes to run over the entire 1.2 million records.

Hence, by this kind of view the metadata analysis becomes
an easy process with CouchDB. Without CouchDB, this was a
difficult process where library staff had to execute the analysis
directly over the METS collection stored in file system. They
had to transform the data to raw data which took days for
transforming some metadata records. Moreover, the major
problem with the tedious transformation method is that the
records get flattened and they lose some information so if
a compulsory element in the metadata record is missing, it
was hard for the staff to figure out the cause of the error:
is it an error from the data provider or is it lost during data
transforming into raw data? Last but not least, the result of
this transformation process was not as easy to be read as the
view of CouchDB.

Moreover, this kind of view can help the library staff in
analyzing their data, since it gives the list of the keys that are
wrongly used. For example, <language> element of MODS
which specifies the language of the literature resource is
described in the record. The value of this element is expressed
by language codes from ISO 639-2/b, such as ger for German
language. The permanent view in CouchDB gives a list of all
the language values that are used in all the documents in the
metadata. Therefore, if there is any language value code used
incorrectly, then the library staff can spot the error easily. They
can use the view that lists the documents by the language key
to find the documents with the erroneous language code (one
such sample query only took 96 ms). Consequently, the user
benefits from the shortness of the query execution time.

Lastly, the compact feature of CouchDB for the database
and for the views saves storage space without negative effects.
For example, the analysis view files before compaction require
5,7 GB storage, whereas after compacting the view, only 313
MB are occupied.

VII. CONCLUSION

Metadata is the “core of any information retrieval system”
[3] – in this paper, the metadata is really the core for the
ZVDD portal. Metadata has profound implications for any
digital library, as described in [3], [15], [2]: it gives ability
to deliver objects in a meaningful way, it is the key to ensure
long-term ability to access and preserve the digital objects and
it plays a critical role in ensuring authoritative, scalable, and
interoperable cultural heritage information.

The main improvement of our approach lies in a fact that
we are able to perform complicated queries and internal library
analysis, which were previously nearly impossible to conduct,
or at most manually with difficulties. Faster execution times
were achieved primarily by choosing a modern database sys-
tem, together with pruning of the original METS documents,
from which we preserved only the descriptive and several other
metadata fields that are actually required to evaluate all the
relevant queries. Finally, JSON files are shorter and easy to
read, understand and modify on the fly by ordinary users.
Thus, big metadata files (1.2 million records) of ZVDD and
Goettingen university library significantly benefited from this
efficiency gain; they were managed with query latency of only
some milliseconds and support for incremental updates.

ACKNOWLEDGMENT

The authors would like to thank Alexander Jahnke, Stefanie
Rühle and Timo Schleier for their support.

REFERENCES

[1] Zentrales Verzeichnis Digitalisierter Drucke,
http://www.zvdd.de/dms/esuche/

[2] National Information Standards Organization, Understanding Metadata,
NISO Press, 2004.

[3] Richard Gartner, Metadata for Digital Libraries: State of the Art and
Future Directions, JISC: Bristol, UK, 2008.

[4] The Library of Congress, Metadata Encoding and Transmission Stan-
dard: Primer and Reference Manual, 2010.

[5] The Library of Congress, Outline of Elements and Attributes in MODS
Version 3.5, 2013.

[6] Ecma International, The JSON Data Interchange Format, 2013.
[7] Stefan Goessner, Converting Between XML and JSON, O’Reilly

XML.com, O’Reilly Media, Inc., 2006.
[8] John Boyer, Sandy Gao, Susan Malaika, Michael Maximilien, Rich Salz,

and Jerome Simeon, Experiences with JSON and XML Transformations,
Proc. of W3C Workshop on Data and Services Integration, Bedford, MA,
USA, IBM, 20-21 Oct. 2011.

[9] SAXON The XSLT and XQuery Processor,
http://saxon.sourceforge.net/

[10] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The
Definitive Guide 1st ed., O’Reilly Media, 2010.

[11] Apache CouchDB Documentation, The Apache Software Foundation,
http://docs.couchdb.org/

[12] Michael Lenahan, Document-Oriented Persistence with CouchDB,
Project Report, Birkbeck, University of London, School of Computer
Science and Information Systems, 2010.

[13] Joe Lennon, Beginning CouchDB, Apress, Berkeley, CA, 2009.
[14] CouchDB Wiki, Introduction to CouchDB Views,

https://wiki.apache.org/couchdb/Introduction_to
_CouchDB_views

[15] Tony Gill, Anne J. Gilliland, Maureen Whalen, and Mary S. Woodley,
Introduction to Metadata, Getty Publications, 2008.

