
Efficient In-Database Patient Similarity Analysis for Personalized Medical
Decision Support Systems

Araek Tashkandia,1,∗, Ingmar Wiesea, Lena Wiesea

aGeorg-August-University Goettingen, Institute of Computer Science, Goldschmidtstr. 7, 37077 Goettingen,
Germany.

Abstract

Patient similarity analysis is a precondition to apply machine learning technology on medical data.
In this sense, patient similarity analysis harnesses the information wealth of electronic medical
records (EMRs) to support medical decision making. A pairwise similarity computation can be
used as the basis for personalized health prediction. With n patients the amount of

(
n
2

)
similarity

calculations is required. Thus, analyzing patient similarity leads to data explosion when exploiting
big data. By increasing the data size the computational burden of this analysis increases. A real-
life medical application may exceed the limits of current hardware in a fairly short amount of time.
Finding ways to optimize patient similarity analysis and handling this data explosion is the topic
of this paper.

Current implementations for patient similarity analysis require their users to have knowledge
of complex data analysis tools. Moreover, data pre-processing and analysis are performed in syn-
thetic conditions: the data are extracted from the EMR database and then the data preparation
and analysis are processed in external tools. After all of this effort the users might not experi-
ence a superior performance of the patient similarity analysis. We propose methods to optimize
the patient similarity analysis in order to make it scalable to big data. Our method was tested
against two real datasets and a low execution time was accomplished. Our result hence benefits a
comprehensive medical decision support system. Moreover, our implementation comprises a bal-
ance between performance and applicability: the majority of the workload is processed within a
database management system to enable a direct implementation on an EMR database.

Keywords: Patient Similarity Analysis, Medical Data Analysis, Medical Decision Support
System, Personalized Medicine, Cosine Similarity, MIMIC-III, Column Stores

1. Introduction

The increasing amount and scale of available electronic medical records (EMRs) raises the in-
terest to gain valuable knowledge from them. Knowledge discovered from EMRs can favor patients

∗Corresponding author
Email addresses: araek.tashkandi@cs.uni-goettingen.de (Araek Tashkandi), asatashkandi@kau.edu.sa

(Araek Tashkandi), ingmar.wiese@stud.uni-goettingen.de (Ingmar Wiese), wiese@cs.uni-goettingen.de (Lena
Wiese)

1Also affiliated to King Abdulaziz University, Faculty of Computing and Information Technology, 21589 Jeddah,
Kingdom of Saudi Arabia.

Preprint submitted to Elsevier April 10, 2018

Figure 1: Patient similarity analysis process for medical decision support system

and medical staff by reducing costs and even saving lives. Patient similarity analysis is the basis for
further medical decisions. Finding a group of patients having similar features (for example, similar
lab results or similar diagnoses), helps medical staff with treatment decisions or health predictions.
This leads to the development of a personalized predictive model that can be incorporated into a
medical decision support system. In other words, patient similarity analysis is a decisive component
for diagnosis or prognosis prediction for an index patient from clinically similar patients.

The process of patient similarity analysis for medical decision support is as follows: patient
data from an EMR database are used in the patient similarity analysis method. The Patient
Similarity Metric (PSM) could be one of different algorithms that are described by [1, 2] such
as neighborhood-based algorithms and distance-based similarity metrics as Euclidean distance.
Computation of the PSM defines a cohort of patients similar to a given index patient. The data
of the similar patients are used to predict the personalized treatment or the future health of the
index patient. A schematic overview is given in Figure 1.

Accuracy of the data is one requirement for correct medical data analysis; as [3] put it: “Cur-
rent research is exploring ways to leverage the enhanced completeness and expressivity of modern
electronic medical records (EMRs) in order to improve prediction accuracy”. Most of the current
work is on the accuracy of PSMs while at the same time reporting an increase in computational
load as [4, 5]. The cause of this computational burden comes from the pairwise similarity compu-
tation of a PSM which is the basis for personalized health predictions. With n patients the amount
of
(
n
2

)
similarity calculations is required. Thus, analyzing patient similarity produces data explo-

sion when handling big data; this is a common observation also stated in [4]: “The computational
burden depends on the complexity of the PSM calculation, and the size of the EMR database”.
By increasing the data size the computational burden of this analysis increases. This personalized

2

prediction model produces high computational complexity and therefore entails longer run-times.
Thus, efficiency of analyses is another major requirement to enable personalized medicine. This
paper sheds light on optimizing the performance of pairwise patient similarity analysis.

Current implementations for patient similarity analysis use different tools for data pre-processing
and analysis. Moreover, works on optimizing patient similarity analysis for medical data like [6]
commonly use the power of data analysis tools – but thereby paying the latency cost of accessing
and processing the EMR data outside the database management system (DBMS). Using external
data mining tools for analysis and computation, the data access as well as pre-processing and
transformation causes several data management issues [7]. The benefits of in-database data anal-
ysis and dataset preparation (specifically in relational database management systems (RDBMS))
for analysis purposes are discussed in some works such as [8, 9, 7]. However, to the best of our
knowledge, there is no current effort focusing on the optimization of patient similarity analysis
with an in-database solution. In this work, data pre-processing and patient similarity analysis are
processed within a DBMS that holds the EMR. Thus, the cost of external tools is saved and data
transfer latency and data management problems are eliminated.

We implemented patient similarity analysis based on the common cosine similarity metric fol-
lowing the approach of [4, 10, 11]; cosine similarity exploits similarities between the patients along
multiple dimensions. Furthermore, we introduce a method for optimizing patient similarity cal-
culation in-database. In order to address the real-world medical analysis challenges, two real and
relatively big EMR datasets are used for testing. First of all, the commonly used ICU dataset
called MIMIC-III [12] is used. As a second dataset we used the diabetes dataset from the Health
Facts database [13, 14]. The two sets contain both demographic data (like gender) as well as lab
results.

1.1. Current State and Contribution

Researchers have done a lot of advanced work in the field of patient similarity analysis. However,
we tried a new in-database approach for implementation and analyzed options for performance
optimization:

• Different Evaluation Base: Accuracy is the main focus of current work applying patient
similarity analysis. This comes with an increase in computational load as in [4, 5]. However,
in the age of big data where EMRs get massively larger, the performance of such methods is
critical, too. For a real-life medical application we should attain a fairly short amount of time
for analyzing big data. Thus, in contrast to other work this paper focuses on performance
evaluation.

• A new Approach to Implement Patient Similarity Analysis: Furthermore, related
approaches work under synthetic conditions where the data are extracted from the database
and the analysis is processed in external tools such as R [4], Python [15] and MATLAB
[5]. However, several data management issues arise from using external data mining tool for
analysis, data access, as well as pre-processing and transformation [7]. Our study differs from
these approaches by implementing patient similarity inside a database management system
(DBMS). In-database data analysis and pre-processing has been discussed for example by
[8, 9, 7]. A NoSQL database is used in patient similarity analysis by [16]. However, to the
best of our knowledge until this moment in-database (specifically in-RDBMS) has not been
utilized in patient similarity analysis.

3

• Evaluating Column-oriented and Row-oriented Databases: Column-oriented DBMSs
have shown higher performance on analytical workloads [17]. We hypothesized that column-
oriented database management systems will outperform the row-oriented ones also for patient
similarity analysis. To test this assumption, we calculate our PSM by a SQL expression inside
the database system. We conducted the same analyses in one DBMS from each category.

• Optimizing Patient Similarity Calculation: Analyzing patient similarity produces data
explosion and computational burden when exploiting big data. Finding a solution for opti-
mizing patient similarity analysis is a key contribution of this paper. We propose different
methods to optimize calculation of patient similarity. Our developed method was tested
against two widely used EMR datasets. With support from our developed optimization
methods a low execution time of patient similarity analysis was accomplished.

• Direct Application on EMR database: In our implementation, data pre-processing and
patient similarity analysis are processed within the database that holds the EMR. SQL was
mainly used for the implementation. When the majority of the workload is processed within
a database, the cost of external tools is saved. Data transfer latency and data management
problems are eliminated. Thus, our most significant result was that applying our implemen-
tation directly within an already existing EMR relational database is attainable. The medical
staff will benefit from easier analysis applications within a real world medical system.

Consequently, we achieve a balance between analysis performance and applicability; our re-
sulting analysis method can be directly implemented under real-world conditions with a high
performance.

1.2. Paper Organization

The rest of this paper is organized as follows: Section 2 gives an overview about some of the
related literature on patient similarity. Section 3 presents the used datasets, the pre-processing
and the selected predictor variables for this study. All the normalization and formatting steps that
have been done on the datasets are described in Section 4. Section 5 describes the patient simi-
larity algorithm and its implementation in SQL for the numerical variables and for the categorical
variables. Section 6 presents the applied technology and approaches for computing and optimizing
the patient similarity analysis. Section 7 shows the evaluation result of the optimization method
to improve performance and compares the performance of two DBMSs. Moreover, a detailed dis-
cussion of alternative approaches to implement patient similarity analysis is also provided. The
results are followed by the final Sections 8 and 9 that conclude our work and give some prospects
of future work.

2. Related Work

Much research has been done on applying patient similarity analysis on medical data for differ-
ent predictive approaches such as discharge diagnosis prediction by [18] and future health prediction
by [19]. A common predictive model for Intensive Care Unit (ICU) patients is mortality prediction
as in [20, 4, 15]. Their implemented ICU PSM is one of the algorithms listed in [2]. Morid et
al. [20] applied a similarity-based classification approach with a k-nearest neighbor algorithm for
ICU patient similarity analysis. Similarly, [15] used Euclidean distance with a k-nearest neighbor
algorithm. The simple and commonly used approach of cosine similarity metric is used by [4] to

4

test their hypotheses on personalized mortality prediction. Moreover, patient similarity is applied
on other medical data for instance [21, 22, 5]. Table 1 summarizes the purpose of using patient sim-
ilarity, the used patient similarity metric and the evaluation metric along with the implementation
tools that are used by the surveyed approaches.

In all of the above mentioned research papers the patient similarity analysis is used as a basis
for developing a prediction model. The focal point of the evaluation was the accuracy of the
prediction. Either this research ignores a performance discussion or mentions the limitation of the
computational burden of their analysis algorithms. Their accuracy improvement comes at a higher
cost, namely an increase in computational complexity and load. Certainly, accuracy is a crucial
factor when the predictive basis relies on the PSM. However, in the age of big data where the
EMRs get massively larger, the performance of such methods is critical, too. High-dimensional
data (i.e. data with a huge amount of predictor variables like medical measurements) and a large
dataset would naturally lead to an increased computational burden. This can become a major
issue particularly for training prediction methods; these training sets rely on the calculation of
all pairwise PSM values between all patients in the training data. The pairwise PSM calculation
exacerbates the challenge of handling big EMR data to a data explosion dilemma.

In the surveyed related works, different tools are used for data extraction, pre-processing and
analysis. All the analysis calculations were done with an analytic tool or a developed framework
as shown in Table 1, while the data was obtained and pre-processed from a database. In contrast
to this related work, the majority of our calculations was executed on a DBMS. Implementation of
our approach directly inside a column-oriented database can be achieved with low execution time.
Hence, compared to related approaches the cost and the effort of external data analysis tools are
saved. Moreover, data management problems of exporting the dataset from the DBMS are also
avoided.

The surveyed articles however do not provide time measurements of how long PSM calculation
took. Thus, we can not really compare our final result to them. However, experiencing high
performance and optimization by our method we can say that these works and other works, which
use patient similarity as a basis for different predictive models, can benefit from our approach.
There are however a few articles on optimizing patient similarity analysis based on external data
analysis tools. For instance Barkhordari et al. [6] introduce MapReduce for optimizing patient
similarity analysis. Our method is not relying on the advances that data analysis technologies
provide. In contrast, it enables the integration of patient similarity metrics within the EMR
database to execute efficient analyses.

A general in-database approach for data analysis is presented by Ordonez [9]. Ordonez [23]
found that high-dimensional data in vertical layout (i.e. column layout) is not a good choice for
SQL. He considered a high-dimensional dataset with 50 dimensions. Moreover, he also discusses
the benefits of pre-processing the dataset within a DBMS in [7]. More specifically the use of a
columnar DBMS for analyzing big data is investigated by Sridhar [8].

3. Data Sets

We apply patient similarity analysis on two real datasets according to multiple dimensions (e.g.
medical measurements and the diagnosis code ICD-9). The two datasets were pre-processed and
transformed in order to construct a suitable dataset for a reliable analysis. In contrast to prior
work, the pre-processing was carried out within a DBMS. The datasets and the pre-processing are
described in the following two subsections.

5

Study Patient Simi-
larity for

Patient Similarity
Metric

Evaluation Metrics Implemen-
tation Tool

Sun et al. [19] Prognosis
prediction of
occurrence
of Acute
Hypoten-
sive Episode
(AHE)

Locally Su-
pervised Met-
ric Learning
(LSML), Maha-
lanobis distance

Accuracy of: Classifi-
cation, Retrieval, and
Prognosis

Developed
system

Wang et al.[21] Disease prog-
nosis

Euclidean dis-
tance

Classification per-
formance: precision,
Recall, Accuracy, and
F-measure

Developed
SimProX
system

Morid et al.
[20]

Mortality pre-
diction

Classification
with K-Nearest
Neighbor algo-
rithm

Classification per-
formance: precision,
Recall, and F-measure

Developed
PPMF
Framework

Lee et al. [4] Mortality pre-
diction

Cosine Similarity
metric

Accuracy: Area under
ROC curve; area under
precision-recall curve

R

Hoogendoorn
et al. [15]

Mortality pre-
diction

K-Nearest Neigh-
bor, Euclidean
distance

AUC for: -Influence of
the number of patients
upon the predictions ac-
curacy and the compu-
tation time.
-Earliest Prediction
Time

Python

Panahiazar et
al.[22]

Medication
plan

Supervised and
unsupervised
clustering ap-
proaches with
Mahalanobis
distance

Sensitivity, specificity,
F-measure, and accu-
racy

Developed
framework

Gottlieb et al.
[5]

Predict the
eventual
discharge
diagnoses

Jaccard, Eu-
clidean distance

AUC and F-measure MATLAB

Table 1: Literature Review

6

3.1. MIMIC Dataset

As [24] state: “The intensive care unit (ICU) presents an especially compelling case for clinical
data analysis”. The breadth and scale of the ICU data that are collected on a daily and hourly
basis support significant ICU data analysis. Developing a decision support system based on an
ICU database produces valuable outcomes. Outcomes are not limited to prediction of the length of
hospital stay and mortality prediction, but can be extended to various results. Several advantages
from analyzing ICU data are discussed by [25] and [24].

The real-world critical care database MIMIC (Medical Information Mart for Intensive Care)
[12] is used in this study. The data set was collected from June 2001 to October 2012 from
patients admitted to critical care units at the Beth Israel Deaconess Medical Center in Boston,
Massachusetts. MIMIC is one of the largest and commonly used ICU databases. It is publicly
available with patient privacy protected by removing all the Protected Health Information and
with patient identity protected by de-identification. Nevertheless, the usage of the data must be
with care and respect. After a formal request via the MIMIC website [26] and a compilation of ethics
course the data access can be gained. We extracted patient data from the latest version of MIMIC.
MIMIC-III v1.4 was released by September 2016. MIMIC-III is an updated extension of the widely
used MIMIC-II. The unique MIMIC database is used to serve many advanced studies on medical
data analysis such as [27, 28, 20]. Comparing to the previous versions of MIMIC, MIMIC-III is
the most comprehensive dataset. It contains a larger number of patients with less inconsistency.
MIMIC-III comprises over 58,000 hospital admissions, and over 61,000 ICU admissions for adults
and neonates with thousands of medical data.

MIMIC-III provides a wide range of medical data from different ICU clinical care units [12].
Data are acquired from ICU monitoring such as vital signs, lab test results, billing data as ICD-9
code and notes and reports such as from Radiology report for an X-ray or Cardiology for ECG.
Demographic data from hospital admission are also provided such as gender. Additionally, dates of
out-of-hospital or in-hospital mortality are included in the dataset. In our study, all adult patients’
data (aged 15 years or above) from MIMIC-III are used. However, all the admitted patients’ data
with any null values of predictor variables were excluded. A total of 46,596 ICU admissions met
these criteria and are used in this study. All the ICU admissions from the ICUSTAYS table with
the care units Coronary Care Unit (CCU), Surgery Recovery Unit (CSRU), Medical ICU (MICU)
and Surgical ICU (SICU) were extracted. We exclude the admissions from the neonates care units.
Each record identifier (ICUSTAY ID) represents a separate patient in our study; no identity check
was done to differentiate ICU admissions from the same patient – a process which is analogous to
[4].

3.1.1. Predictor Variables

We had to combine the predictor variables from several tables of the MIMIC-III dataset. The
selection of the predictor variables is inspired by Lee et al [4] who extracted 76 variables for ICU
mortality prediction from the MIMIC-II data set. Numerical and categorical values are gathered.
Predictive variables include minimum and maximum values of some vital signs from each 6-hour
period of the first 24 hours in the ICU stay such as heart rate and mean blood pressure. Some
minimum and maximum lab variables from the first 24 hours in the ICU stay are also included
for instance white blood cell count and serum glucose. Categorical values such as the ICU service
type and ICD-9 code and some binary values such as the use of mechanical ventilation are also
extracted.

7

For testing the scalability of our optimized method we increased the amount of the predictor
variables. For instance, in addition to the minimum and maximum values of lab variables we
also extracted each 6-hour period of the first 24 hours in the ICU to take into account that each
minimum, maximum and each 6-hour period measure produces a separate predictor. In total the
extracted information was composed of 135 predictor variables (that is, features) for each patient.
For each patient, we compiled the features into a vector of length m = 135: the patient vectors
that are used to calculate the cosine similarity between two patients. The final data set consists
of n = 46,596 patients in total. Thus, we obtained 46,596 m-dimensional feature vectors where m
= 135.

3.1.2. Data Pre-processing and Cleaning

The complete MIMIC-III dataset containing 26 tables was installed and was queried by a
Structured Query Language (SQL) statement to extract predictor variables. MIMIC-III extends
MIMIC-II which was collected between 2001 and 2008 with newly collected data between 2008
and 2012. The result of this extension is that MIMIC-III database is extracted from two differ-
ent DBMSs: the MetaVision system and the CareVue system [12]. These systems use a different
ITEMID for each medical measurement which complicates the data extraction. Therefore, we con-
sider using multiple ITEMID values for each predictor variable to ensure complete data extraction.

After completely extracting the predictor variables for all of the patients, the data were pre-
processed and transformed. Missing data is a common problem in EMR due to different reasons
such as the nature of the medical information, the heterogeneity of the data and the systems, or
simply human error [25]. There were some missing data in the selected predictor variables from
MIMIC-III. There are various approaches for dealing with the problem of missing data. Han et al.
[29] describe several approaches; moreover a chapter is devoted to them in [25] by Salgado et al.
Some of these methods are (i) discarding the tuple, (ii) substituting the missing value by the mean
of that variable or (iii) estimating the missing value by a model.

We use the most simple and – from our point of view – most reliable method which is the
deletion method (i): The incomplete data records were excluded from the dataset. This method
was also used by Lee et al. [4]. This method avoids biased data that could be caused by incorrectly
filling in the missing values. Moreover, the final dataset after extracting the missing value records
is large enough to serve our goal for testing performance optimization.

In this study, we considered similarity between the adult patients; that is why only the patients
with age older than 15 years old are included. For extracting the predictor variable of appropriate
age, the difference between the patient’s date of birth and the patient’s date of first admission had
to be calculated. While extracting the age feature, we noticed some values with 300 – a figure that
looked like a data error. However, we found that the age of the patients that are older than 89
years are obscured to comply with the HIPAA (Health Insurance Portability and Accountability
Act) [12, 3]. That is why data shifting was applied to the MIMIC dataset. When the patient
age was determined to be older than 89, the date of birth was set to exactly 300 years before the
date of the first admission. Therefore, all patient ages that larger than 90 are replaced by 300 in
the dataset to mask the actual age. However, we need to maintain a reasonable age range for the
normalization purpose and for accurate analysis. Subsequently, when extracting the age of these
patients we had to replace their ages by the median value which is 91.4.

The final dataset contains some categorical variables such as the admission type and the ICU
service type. It was meaningless to turn them into a numerical representation (a process called
factorization) since there is no reasonable scale for their values. Thus, they were extracted as

8

strings. Then, equality checking was performed. Similarity on categorical values hence corresponds
to string equality: Identical categorical values lead to a similarity of 1; otherwise non-identical
strings lead to a similarity of −1. The calculation of the similarity of categorical variables is added
to the PSM as will be described in Section 5.

3.2. Dataset from The Health Facts database

The second dataset we use was originally extracted from the national Health Facts database
(Cerner Corporation, Kansas City, MO). The database contains 10 years (1999-2008) data from
EMRs of 130 hospitals throughout the United States. Different data are collected for emergency,
outpatient, and inpatient visits. For instance demographic data, ICD code for diagnoses and the
procedures, pharmacy data and in-hospital mortality. It consists of 74,036,643 unique visits that
correspond to 17,880,231 unique patients with 117 features. The data became available for the
researchers after complying with HIPAA by deidentifying all the data.

This dataset is provided by Center for Clinical and Translational Research, Virginia Common-
wealth University [13]. It is available online by the UCI Machine Learning Repository [14]. It
is called diabetes dataset since it was extracted to be used for studying the relationship between
the measurement of Hemoglobin A1c (HbA1c) and early hospital readmission. The dataset was
extracted from the original database for inpatients with any kind of diabetes as a diagnosis. Some
criteria were considered for the length of stay, laboratory tests and the medications. 101,766
patients fulfill these inclusion criteria.

3.2.1. Predictor Variables

The predictor variables selection by [13] was based only on the features that have associations
with the diabetic condition. Some demographic data were extracted for instance race, gender and
age. Furthermore, medical data such as diagnoses, A1c test result and existence of prescription to
diabetic medication. Moreover, they define a readmission attribute. Take into account that the
original database contains features with high percentage of missing values. The obtained dataset
consists of 50 features out of 117 features.

3.2.2. Data Pre-processing and Cleaning

The value of the age feature was in 10-years intervals. We assign the median value of the age
to the age value. There were some categorical variables in the dataset. In contrast to the MIMIC
dataset, there was a reasonable factorization scale for these variables. Thus, categorical variables
were transformed to numerical variables. Some variables were represented as binary value such as
change of medication feature; value of -1 represents No and value of 1 represents Yes. Scale of three
values was assigned to the dosage feature: -1 when there is no prescribed drug, 0 when the dosage
does not change (i.e. Steady), and 1 represents increased or decreased dosage. The calculation of
the similarity of these categorical variables follows the similarity calculation of numerical ones.

The patient vectors with null or unknown values are deleted. The patients with NULL as
their primary diagnosis ICD code are excluded. Moreover, the patients with unknown gender are
deleted. The final dataset consists of 100.097 patients out of 101.766.

Features with high percentage of missing values are excluded. We removed these features:
race, secondary and tertiary ICD codes, weight, payer code and medical specialty. Moreover, the
encounter ID and patient number are removed. Thus, out of 50 features the final dataset has 42
features.

9

4. Data Normalization and Formatting

4.1. Data Normalization

An attribute with a small unit has a larger range of values and hence produces a greater effect
on the result. In effect, “[t]he measurement unit used can affect the data analysis” [29]. To ignore
the choice of the attribute measurement unit and to give all the attributes equal weight, we applied
a normalization step on the data. Normalization transforms the data into a scale of smaller range.
The continuous numerical predictors such as the vital signs and lab test results were normalized
into the range [−1, 1] because the result value of our used PSM is also in the range -1 (denoting the
minimum similarity) and 1 (denoting the maximum similarity). Normalization is also commonly
applied in other approaches [4] to ensure equal contribution of all predictor variables to the PSM
calculation. We use the min-max normalization method [29] as shown in Equation (1).

v′′i =
vi −minx

maxx−minx
· (maxnew −minnew) + minnew (1)

In this equation, x is a numeric predictor variable with m observed feature values v1, v2,, vm.
maxx and minx are the minimum and maximum values of the predictor variable x. Hence, the
normalization method in Equation (1) maps a value vi of x to v′′i within the new range; we want to
scale to the new range maxnew and minnew, which are 1 and −1 respectively. However, the relation
among the original data values of x are preserved. Replacing, maxnew and minnew with their values
1 and -1 gives the following Equation (2).

v′′i = 2
vi −minx

maxx−minx
− 1 . (2)

Note that this kind of normalization only applies to numerical values.

4.2. Data Formatting

Prediction models that are based on patient similarity require many variables (in other words,
features or dimensions) for more accurate prediction. We have a high-dimensional prediction
model which consists of 135 features for MIMIC dataset and 42 features for diabetes dataset. More
precisely, for each patient, the sequence of the patient’s predictor variables constitutes a patient
vector which is used to calculate the cosine similarity. There are basically two different ways to
represent the patient vectors: formatting the data in either a row -oriented or a column-oriented
way is a major decision for the implementation of the PSM inside the database system. Ordonez
[23] called these two ways horizontal and vertical layouts of a dataset.

The data extracted from MIMIC is considered as column layout: All the patients predictor
variables (features) are stored in one column called FeatureValue; the features are differentiated
by assigning a FeatureID to each of them. This has the effect that now there are multiple rows for
each patient vector identified by the patient VectorID. Consequently, the data of n patients each
with m features are stored as the column-oriented schema shown in Table 2.

Still, to have a fair comparison and to find the optimal data format for our patient similarity
calculation, we compared the column data layout to a row data layouts. Thus, the data was
reprocessed into row layout (see Table 3). This will lead to a multicolumnar table format with
m columns where m is the amount of features: that is, one row per patient and one column per
feature.

10

V ectorID FeatureID FeatureV alue

1 ID1 value1
...

...
...

1 IDm valuem
...

...
...

n ID1 vaule1
...

...
...

n IDm valuem

Table 2: Column Data Layout

V ectorID Feature1 Feature2 · · · Featurem
1 value1 value2 · · · valuem
...

...
...

...
...

n vaule1 vaule2 · · · valuem

Table 3: Row Data Layout

Ordonez [7] claims that creating such a row data layout with many columns makes data analysis
harder and query processing slower. We will find out if that is the case for our calculation.

5. Method

There are different algorithms for patient similarity analysis as described in [2] like, for instance,
Mahalanobis distance [22] and Euclidean distance [30]. We use the cosine similarity metric for our
PSM [4, 10, 11] as shown in the following Equation 3.

cos(x, y) =
x · y

‖ x ‖2 · ‖ y ‖2
. (3)

x and y are the vectors of two different patients x 6= y, · is the dot product and ‖ ‖ is the
Euclidean vector magnitude. Translating the dot product and the magnitude into calculations on
the vector elements xi and yi results in the following Equation 4.

cos(x, y) =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

. (4)

Figure 1 shows the concept behind cosine similarity for patient similarity analysis. The patient
data of n patients with m features are represented in an m-dimensional vector space: The patient
vectors N = P1, P2,, Pn each consist of features x1, x2,, xm. Thus, m is the size of the feature
set, while n is the size of the patient set. Cosine similarity between two patient vectors in the
vector space is the cosine of the angle between them. It gives a result value between −1 and 1.

In a productive medical decision support system, the index patient is the patient for which
a treatment decision or a prediction is seeked. Hence, patient similarity analysis can be applied

11

SELECT v1.vector_id, v2.vector_id,

--The dot product of two vectors

SUM(v1.value*v2.value)

/* Divided by the product of

* the respective norms*/

/(SQRT(SUM(v1.value*v1.value))

*SQRT(SUM(v2.value*v2.value)))

AS CosineSim

FROM vectors v1 JOIN vectors v2

ON v1.feature_id = v2.feature_id AND v1.vector_id < v2.vector_id

GROUP BY v1.vector_id,v2.vector_id;

Figure 2: SQL cosine similarity for numerical variables in column data layout

to the index patient’s vector to identify similar vectors of other patients. To find all the patients
similar to a specific index patient Px all pairwise cosine similarities between this index patient Px

and every patient in the patient set N − {Px} are calculated. Two patients are very similar if the
result is 1 and are very different if the result yields −1 [4].

As a basis of such a medical decision support system, a training set can be obtained where
all pairwise patient similarities between patients Pi and Pj (where i, j ∈ {1, . . . , n}) have to be
calculated. In effect, the cosine similarity is symmetric leading to the same value for the pair
(Pi, Pj) and the pair (Pj , Pi). Hence, in the following we enforce the additional restriction that
i < j to avoid superfluous calculations. This is the use case we will focus on in our subsequent
analysis.

As mentioned previously, our used predictor variables contain mostly numerical but also some
categorical variables. Therefore, they are treated differently during cosine similarity calculation.
Moreover, we consider row and column data layouts, the SQL code for our PSM based on such
layouts. The following subsections will describe the methods. Additionally, the SQL code will be
also provided.

5.1. SQL Cosine Similarity for Column Data Layout

After normalizing the numerical variables into the range [−1, 1], the calculation of the cosine
similarity metric as in Equation 4 was processed. For direct execution within the selected database
system a SQL statement was used as shown in Figure 2.

Euclidean vector magnitude calculation is done through grouping by VectorID then calculating∑m
i=1 value

2
i . Calculating the dot product between two patient vectors is by joining the vector

table with itself on the FeatureID. This way we have both values side by side and can then again
group by V ectorID of vector table 1 and a second sub-grouping by V ectorID of table 2. Since
cosine similarity is a symmetric function, the second part of the join-condition makes sure that the
calculation is only performed once: the similarity calculation is performed only with all the higher
vector IDs. However, these two joins on V ectorID and on FeatureID for each row of the patient
vector cause significant overhead.

Since our patient data in MIMIC contain four categorical variables, we have to devise a method
to calculate cosine similarity for this kind of variables. Naturally, the operation of squaring and
multiplication cannot be applied here. Therefore, we replace them with an equality check, i.e.

12

(SELECT c1.vector_id, c2.vector_id, (2*(count(*)-2)) As DotProd

FROM categorical_vectors c1

JOIN categorical_vectors c2

ON c1.feature_id = c2.feature_id

AND c1.vector_id < c2.vector_id

WHERE c1.value = c2.value

GROUP BY c1.vector_id,c2.vector_id

UNION ALL

(SELECT c1.vector_id, c2.vector_id, -4 As DotProd

FROM categorical_vectors c1

JOIN categorical_vectors c2

ON c1.feature_id = c2.feature_id

AND c1.vector_id < c2.vector_id

WHERE c1.value <> c2.value

GROUP BY c1.vector_id,c2.vector_id HAVING count(*) = 4)

Figure 3: SQL cosine similarity for categorical variables in column data layout

if two variables are of the same category, the result will be 1 and −1 if not. For the Euclidean
vector magnitude this means that the result of the categorical part will always amount to the total
number of values (e.g. +4, if there are 4 categorical variables in a vector). As a result, we can just
add this value to all norms. Figure 3 shows that (in-)equality checking is being achieved in the
where clause of the SQL statement that follows the same pattern as its numerical counterpart.

5.2. SQL Cosine Similarity for Row Data Layout

The previous approach of SQL PSM for column data layout shows that the SQL statement
of cosine similarity PSM can be easily implemented by utilizing the SUM() aggregation function.
SUM() function is used for the dot product and the norms along all the features of the compared
patients. However, the SUM() function of SQL is valid only for column-wise calculation. Hence,
it was applicable in the column data layout where all the patients predictor variables are stored
in one column. However, in the row data layout each patient vector is represented by a row of m
columns where m is the amount of features. Thus, this approach can not take advantage of the
SUM() aggregate function. For calculating the dot product each feature of the patient vector is
specified. Yet, the row-based approach reduces the join overhead of the column-based approach
since it requires only one join on V ectorID for each patient vector. The SQL code for cosine
similarity for the row data layout of numerical and categorical variables is shown in Figure 4.

6. Calculation

Most of the current implemented patient similarity analytics are applied on tools such as R
[4], Python [15] and MATLAB [5]. In this study we chose the approach of doing all calculations
within the database system in which the datasets already reside. MonetDB utilized multi-threading.
Hence, to make a fair comparison we simulate multi-threading for PostgreSQL. Connection pooling
is used to enhance the multi-threading performance.

13

SELECT v1.vector_id, v2.vector_id

(v1.feature_1 * v2.feature_1 +

...

v1.feature_m * v2.feature_m) +

(CASE WHEN v1.categorical_feature_1 = v2.categorical_feature_1

THEN 1 ELSE -1 END) +

...

(CASE WHEN v1.categorical_feature_m = v2.categorical_feature_m

THEN 1 ELSE -1 END)

/ (v1.norm * v2.norm)

FROM vectors v1 JOIN vectors v2

ON v1.vector_id < v2.vector_id;

Figure 4: SQL cosine similarity for row data layout

6.1. Column-oriented vs. Row-oriented databases

We will compare the performance of two DBMSs from two categories (row stores and column
stores). In a column store DBMS all the predictor variables (i.e. all features of the patient) are
stored underneath each other in one column – similar to the column-oriented layout in Table 2.
This is exactly the way how a column store saves data sequentially into the disk blocks column
by column. Hence, the values of the FeatureValue column are stored sequentially on disk. Thus,
when a set of patient feature values (i.e. a patient vector) is required for PSM, it will be easily
retrieved by the query. Moreover, extracting a specific attribute or a feature value for calculating
the dot product is easier since not the whole record needs to be retrieved. This approach reduces
the disk I/O because the amount of the loaded data from the disk is reduced [17]. Performance
of column-oriented DBMSs on analytical workloads have previously been analyzed in non-medical
settings (see [17] and [31]).

In contrast, the alternative would be a row-oriented database where the data of a patient vector
(i.e. a record) are stored in a row-oriented layout as shown in Table 3. This is the way how data
are stored into disk blocks row by row. The values of all the feature columns are stored sequentially
on disk. Thus, when a dot product is to be calculated for two patients on a specific feature value
(i.e. attribute) the whole row has to be retrieved and then searched for this specific feature. This
slows down the retrieval time of the query.

In general, it has been observed that for columnar storage “reading the same number of column
field values for the same number of records requires a third of the I/O operations compared to row-
wise storage” [31]. That results in a fairly short query time. Therefore, a database from column-
oriented DBMS world was selected for our tests. The relational column store DBMS MonetDB [32]
is used for computing the PSM. The SQL statements listed previously are used for implementing
the similarity calculation. PL/SQL (Procedural Language/Structured Query Language) is not
provided by MonetDB, so Java Database Connectivity (JDBC) is used to conduct the step by step
calculation.

Our hypothesis is that column-oriented DBMSs will outperform the row-oriented ones for the
patient similarity use case. Our assumption is that MonetDB will perform faster than traditional

14

row-oriented DBMSs. We test this assumption by comparing MonetDB to the row-oriented Post-
greSQL. If MonetDB is capable to outperform the row-oriented DBMS, then that would indicate
that column-oriented DBMSs are beneficial for our application.

6.2. Batching for Optimizing Patient Similarity Analysis

The final patient table for MIMIC consisted of a total of 46596 patient vectors composed of
135 features. Keeping this in mind we can estimate how big the intermediate join table generated
by the cosine similarity SQL statement for a our data set will turn out. We get the result by
multiplying the number of patient combinations with the number of features (= number of rows
or columns based on the used data layout) and multiply this number by 4, treating every cell of
our table as 4 bytes. To make it human-readable we can divide by 230 to get the measure in GiB.
The estimated size of the join table for a our data set is:(

46596
2

)
∗ 135 ∗ 4

230
≈ 545, 95 GiB

The estimated size of the second dataset is 783,82 GiB. This shows the unfeasibility of calcu-
lating PSM in one big query. It would cause the cache and also hard drive of the computer to
overflow. Therefore, the calculation has to be split up into multiple steps. This is the reason of
batching approach.

Sequential calculation of the cosine similarity for each single patient vector with all other
patient vectors having a higher id (to avoid duplicates) causes major overhead. This requires a
temporary join table on which the cosine calculation is performed and which is afterwards cleared.
Furthermore, joining took up over 90% of the time while the actual cosine calculation was almost
done instantaneously. The whole process can be seen as splitting the pairwise similarity calculations
into 46596 summands:

46596∑
i=1

46596− i =

(
46596

2

)
While the first patient is compared to 46595 other patients, the next to last patient is compared
to just one other patient and the last patient to no other patient.

The long run time of the previous method leaves a desire for acceleration. The overall execution
time per patients by can be reduced by improving the join. Instead of only joining for one patient
with all other patients at a time, we applied a batching and processed 50 patients simultaneously
(batch size of 50 proved to be the most efficient). The improvement is as follows: joining only for
one patient amounts to 135 · 46595 = 6, 290, 325 rows in the join table compared to 314, 344, 125
for 50 patients.

50∑
i=1

135 · (46595− i) = 314344125

This batch size of 50 patients per join step marks the sweet spot for the batching approach.
Further performance improvement can be achieved by eliminating the intermediate steps. Pre-

viously, the temporary join table was written before executing the PSM on it. These intermediate
steps have the biggest impact on the performance. Therefore, we combine joining and calculation
into one query whose result is then directly written into the result table. This approach results in

15

0.06073482No BatchingPostgreSQL

0.04150

0.0178985No BatchingMonetDB

0.014765250

0 0.065
s/p

Figure 5: Runtime without batching and with batch size 50 on MIMIC dataset with row data layout

the best analysis execution time. Therefore, this final setting is used for implementing our opti-
mization method batching. The final implementation of cosine similarity metric for numerical and
categorical variables with this method of batching was performed by SQL and JDBC.

7. Results and Discussion

With the previously presented approaches we reached our goal of a direct implementation of
patient similarity analysis in a medical DBMS. Proceeding through the procedures described in
Section 6.2, performance optimization for patient similarity analysis of big data was accomplished.
The result will be discussed in the following Section 7.1. Batching provided a decisive runtime
benefit: simultaneous calculation of patient similarities gives an optimal performance for analyzing
the data.

Accomplishing a fairly good improvement from the initial batching method brings the interest
for further testing our assumption. We hypothesized that column-oriented DBMSs will outperform
the row-oriented ones on analyzing big medical data. To test this assumption, we conducted the
same analysis of those approaches on MonetDB and on one of the most widely used row-oriented
DBMSs PostgreSQL. The result will be presented in the following Section 7.2.

Latency elimination from accessing and analyzing the data directly on DBMS, the power of
MonetDB columnar storage with added functionality support of JDBC, and the performance opti-
mization from our developed methods led to our efficient implementation. The final result pays off
the efforts. Hence, we come closer to a patient similarity application that can be used as a basis
for decision support in a real-world medical DBMS containing EMRs.

All of our computations were conducted on a PC running Ubuntu 16.04 LTS on an Intel i7-
7700k with 64 GBs of RAM. PostgreSQL version 10.1 and MonetDB version 11.27.11 were used.
We obtained the runtime by computing all pairwise similarities for the entire data set and then
averaging over the amount of patients per data set. This runtime is hence measured in seconds per
patient denoted s/p.

7.1. Result of Batching for Optimizing Analysis Performance

We ran the analysis with our batching approach from Section 6.2 and without batching on
MonetDB (as a column store) and PostgreSQL (as a row store). The results are shown in Figure 5;
the number in the bar is the batch size. Our dataset extracted from MIMIC-III is used for this
test with row layout.

16

3.8250PostgreSQL

0.4750MonetDB

0 0.5 1 1.5 2 2.5 3 3.5 4
s/p

Figure 6: Runtime for executing the PSM per patient with batching for column data layout

0.06550PostgreSQL

0.01450MonetDB

0 0.07
s/p

Figure 7: Runtime for executing the PSM per patient with batching for row data layout

“No batching” means the sequential similarity calculation of each patient with all other pa-
tients with higher id. Batch size 50 proved to give better performance. In both the row-oriented
and column-oriented DBMSs batching lowers the required time for analysis. With batching the
similarity calculation was faster by 32.49% in PostgreSQL and by 17.51% MonetDB. The batching
approach hence shows decisive improvements when optimizing the performance of patient sim-
ilarity analysis for big EMR. Moreover we observed the significantly better performance of the
column-oriented database MonetDB over the row-oriented PostgreSQL.

7.2. Column-oriented vs. Row-oriented databases with SQL over Row and Column Data Layout

We tested our hypothesis regarding the advantages of the column store database. We ran the
patient similarity analysis with batching on MonetDB (as a column store) and PostgreSQL (as a
row store). Moreover, we compared similarity analysis over the two data layouts (the column-wise
and the row-wise). Our dataset extracted from MIMIC-III is used for this test with both layouts.
We compared the required time for calculating patient similarity analysis per patient (that is, all
pairwise similarity computations for a single patient). The result will be discussed in the following.

Figure 6 shows the result of applying SQL cosine similarity over column data layout in both
DBMSs. Again, MonetDB performed better than PostgreSQL – probably due to the optimized
internal storage format of MonetDB.

Figure 7 presents the result of testing the two DBMSs on SQL cosine similarity over the row
data layout. We proposed using the row data layout in order to empower the row store DBMS
PostgreSQL. That was approved. Time required by PostgreSQL for executing the analysis on the
row layout is less than the one for the column layout by 98.3%. Yet, MonetDB is still more efficient
than PostgreSQL. Moreover, also MonetDB was faster in the row layout than the column layout by
97%. This test shows that the SQL execution over row layout of data gives a better performance
optimization than over the column layout. Hence, based on our SQL code for the column layout we
can conclude that the more dimensions (that is, features) are used, the more joining and aggregation

17

0.0637823150PostgreSQL

0.056100

0.04150

0.01628150MonetDB

0.015215100

0.014765250

0 0.065
s/p

Figure 8: Different batch sizes on MIMIC dataset

0.1741958150PostgreSQL

0.16997100

0.180769250

0.01455150MonetDB

0.01417100

0.0131950

0 0.2
s/p

Figure 9: Different batch sizes on diabetes dataset

are required; this overhead was the main cause of the performance reduction. This test proves that
the row data layout is the best candidate for SQL patient similarity on both DBMSs. Therefore,
the next test will be applied only on the row data layout.

7.3. Column-oriented vs. Row-oriented Databases with Different Batch Sizes and Datasets

In the following we test the two DBMSs with different batch sizes using the two datasets from
Section 3. However, we only test the row layout because it was much better than the column
layout as already shown in Section 7.2. The second dataset was already in a row layout and no
transformation was needed. Moreover, we used connection pooling to allow for multi-threading in
Postgres; in contrast, multi-threading is automatically utilized in MonetDB without any manual
configuration. The results are shown in Figure 8 and Figure 9. First of all, we noticed the
improvement of PostgreSQL after the utilization of multi-threading. Comparing PostgreSQL’s
performance from Figure 7 (without utilization of multi-threading) and Figure 8 on batch size 50,
it improves by 36.92%.

Different batch sizes (from 10 to 150) were evaluated. In general, batch size 50 was our sweet
spot. For instance, looking at Figure 8 for MonetDB from batch 50 to 100 and to 150 the per-

18

formance decreased by 3.046% to 10.259% and it is decreased further in PostgreSQL by 36.585%
to 55.567%. Even though the batch size of 50 patients gives the highest performance for the
dataset extracted from MIMIC-III, the results from this study should be considered preliminary.
For example, the second dataset performed better for batch size 100 in PostgreSQL as shown in
Figure 9. Therefore, it is premature to make a definitive conclusion about the general performance
of batching for PSM. However, the results of this study revealed that partitioning of the data is
crucial for PSM performance when analyzing big medical data. Probably, applying our approach
with adjusted batch sizes on bigger datasets will show its effectiveness.

Moreover, Figure 9 shows that the row-oriented PostgreSQL performance is affected by the
dataset size. It takes considerably longer for the larger diabetes dataset. However, MonetDB
performance is still ahead of PostgreSQL and steady in spite of the larger dataset size. Joining
overhead is more remarkable in PostgreSQL than in MonetDB. The reason might be linked to that
multi-threading works automatically in MonetDB. Hence, compared to MonetDB performance, the
multi-threading simulation in Postgres does not pay off.

In contrast to PostgreSQL, executing the similarity calculation for an index patient by MonetDB
is even more efficient on the larger diabetes dataset as also shown in Figure 9. We noticed that for
MonetDB the runtime per patient on the diabetes dataset is less than the one required in MIMIC
dataset by 10.64%. Even though the diabetes dataset is larger than the MIMIC dataset, the MIMIC
dataset has more dimensions (that is, number of features). This might cause a longer time required
for processing the calculation per patient because each patient needs to be compared to the other
patients on each feature. Thus, not only the size of dataset affects the performance but also the
dimensional size. Moreover, the MIMIC dataset contains some categorical variables whereas the
diabetes dataset contains none. Thus, some overhead is caused by the similarity checking between
these categorical variables.

To sum up, the column-oriented DBMS MonetDB outperforms the row-oriented DBMS Post-
greSQL (in all of the previous test cases over both the column and row data layouts, with dif-
ferent batch sizes and with different dataset sizes). The different factors (the size of the dataset
and the number of dimensions, overhead of joining, aggregation and similarity checks of cate-
gorical variables) only have a slight effect on MonetDB in comparison to PostgreSQL. This su-
perior performance of the column-oriented DBMS over the row-oriented one was not surprising.
The column-oriented DBMSs are already proven to perform significantly better than row-oriented
DBMSs specifically on analytical processing such as on decision support applications [17]. The
column store I/O efficiency for read-only queries was good enough for our EMR analysis – in par-
ticular for reading the predictor variables – since it reads from the disk only the attributes accessed
by a query.

7.4. Discussion

EMR data are usually extracted from different systems, then integrated and pre-processed
in a dedicated tool and afterwards analysis is executed [33]. Since the EMR data come from
different sources with different formats, the extracted data could be structured, semi-structured
or unstructured [34]. Different analytic tools can be used. Wang et al. [35] state that depending
on the data type and the analysis purpose the big data analysis in health care can be divided
into three components: Hadoop Map/Reduce, stream computing, and in-database analytics. We
categorized them into:

• Data Analysis tools: Data analytic platforms and tools such as Hadoop, Mahout or R are

19

one approach to implement patient similarity analysis. In order to assess their performance,
as an alternative to our in-database approach, we used Apache Mahout to implement patient
similarity analysis (that is, cosine similarity). First we had to pre-process the data to the
data model of Mahout. The data model looks like the column format in Table 3. Thus, the
column layout of our dataset extracted from MIMIC-III was used for this test. However,
the strings of the featureID have to be replaced by numbers to follow the data model. The
experiment was conducted on a PC running Windows 10 Pro on an Intel i5-6300U with 8
GBs of RAM. Mahout version 0.9 was used. The output was stored in a file on disk. The
complete analysis process took less than one hour around 25 minutes. However, here we
did not consider the time we lose for exporting and transforming the data out the DBMS
and accessing the output in different tools. In our best contribution in MonetDB (with our
batching approach) the complete analysis of the same dataset took around 11.46 minutes.
Moreover, the bottleneck of exporting and pre-processing the dataset outside the DBMS was
eliminated. All the workload was in-database.
The open source big data analytic tools provide advances in analysis and scalability (when run
in distributed systems) however pose challenges for healthcare. They require high program-
ming skills and technical support which is uncommon to obtain in the healthcare end-users
[33].

• Database Management Systems: Another approach for implementing patient similarity
analysis is to use a DBMS. Either relational DBMSs or NoSQL databases are a valid choice.
However, the type of the extracted data decides the choice of the database system. The SQL
database is well-suited for structured and relational data whereas the NoSQL database is
perfect for non-relational and unstructured data:

– NoSQL Databases: NoSQL databases (see [36] for a comprehensive survey) are used
for analyzing unstructured data. For instance, Abdelrahman et al. [16] use the NoSQL
database Neo4j for analyzing health care data. There are some current works applying
patient similarity analysis on the unstructured health record data such as medical notes.
Unstructured medical data usually have poor quality: “unstructured data is highly vari-
able and all too often incorrect” [33]. Moreover, pre-processing the unstructured data
for analyzing the similarity requires much effort. Extracting medical terms from un-
structured data requires much effort and medical knowledge. Identifying and extracting
the medical notes from examination reports is done manually by Chan et al. [37]. Wells
et al. [38] mention different problems of analyzing unstructured medical data. Difficul-
ties include grammatical errors, various interpretations of a specific phrase dependent
on content, and the acronyms and abbreviations usage.

– Relational Databases: In our case the data of the EMRs are structured (e.g. diag-
noses, laboratory values, and medications). Hence, we find the SQL database is the best
fit. We test the two categories of RDBMSs (column stores and row stores) on row and
column data layouts. The column store DBMS was the fastest for both layouts which
confirms other authors’ opinion: “Data mining researchers have also shown that SQL on
parallel, columnar database could be a candidate for Big Data analytics” [8]. In-database
approaches have many advantages. They eliminate the cost of pre-processing the data
and analysis in different tools and avoid data management problems. In our use case,
data pre-processing, analysis and storing the output result are all possible in-database.

20

Ordonez [9] discusses many benefits of performing data analysis inside a DBMS but the
main one is avoiding the data export bottleneck from the data warehouse. RDBMS has
well-defined standards that assure full integrity and availability of data. On the other
hand, for other use cases some weaknesses of an in-database approach might be that the
data format and query language are limited to a specific range.

Developing a solution for analyzing structured data might not be valid to be applied to unstruc-
tured ones and vice versa. Nevertheless, Johnson et al. [39] state that it is nontrivial integrating
data from different medical devices into a single data management system. The reason lies in the
lack of standardization among the medical devices and the various data formats. Furthermore, as
already mentioned the selection of different data analytics depends on the data type and the analy-
sis purpose [35]. With all of these complexities, we believe that a generic solution for analyzing big
medical data requires much effort to be achieved. Thus, our implemented method (in-RDBMS by
SQL) cannot be applied to all of these heterogeneous databases and various data types. Nonethe-
less, the columnar DBMSs can process different data types. For instance, MonetDB can process
RDF data by SPARQL, and SAP HANA database can perform text (i.e. unstructured data) an-
alytic. However, Wells et al. [38] state that usage of structured medical data is an approach to
reduce missing values in EMRs and it maximizes the impact of EMRs in research and in patient
care. Furthermore, we argue that analyzing structured data is more accurate and does not require
as much effort for pre-processing as the unstructured one. Our implemented method can empower
the still dominant RDBMS to handle the data explosion that is produced from the

(
n
2

)
pairwise

patient similarity calculations.

8. Conclusion

Analyzing patient similarity is complex especially when handling big data. In this paper, we
discussed and applied in-database patient similarity analysis. We implemented the commonly used
cosine similarity PSM on a column-oriented and a row-oriented DBMS. For testing the perfor-
mance of our optimization approach and of the DBMSs we used two real, relatively big and high-
dimensional datasets. A comparison for all pairs of patient vectors is required to obtain a training
set for further predictive models. This amounts in a total number of

(
n
2

)
= 1

2n(n− 1) calculations
which is ∈ O(n2) in terms of complexity. Our study needs over five billion (5.009.654.656) and over
one billion (1.085.523.715) comparisons for the two datasets. Data explosion and computational
burden lower the analysis performance.

Performance optimization for patient similarity analysis of big data was accomplished. In
particular, batching (simultaneous calculation of several patient similarities) gives an optimal ex-
ecution time for analyzing the data. Executing SQL code for data extraction, pre-processing and
for patient similarity analysis was fast thanks to the columnar storage of MonetDB. Even though
MonetDB (a column-oriented DBMS) has clear speed advantage over PostgreSQL (a row-oriented
DBMS), the column store DBMS is still not the silver bullet. There are various factors that
influence database performance.

The use of DBMS for data medical analysis brings many advantages. Our most significant result
is that we showed the capability of implementating patient similarity analysis inside a relational
database system. Our introduced batching approach for speeding up PSM calculation (for big
medical data analysis) and the implemented SQL code of cosine similarity PSM can be used for
different predictive models where patient similarity is the basis. For instance, they can be used

21

for predicting the length of hospital stay or for predicting disease diagnoses by selecting different
predictor variables from the MIMIC dataset or from a different dataset. Furthermore, a standalone
patient similarity analysis can be used to gain valuable information for medical staff or researchers.
Finding similar patients on certain medical measurements or diseases for producing statistical
results or for finding groups of patients with rare disease are absolutely valuable benefits.

9. Future Work

The calculation methods of PSM that were employed in MonetDB showed that partitioning
of the data is crucial for the performance. Therefore, future research on optimizing efficiency of
patient similarity analysis of big data will cover the following methods:

• Different batch-size: Since the amount of similarity comparisons decreases with an in-
creasing patient ID, a fixed batch size will not perform as good as a dynamically adjusted
batch-size on the basis of the current position within the data set.

• Chunking the size of comparisons: The amount of comparisons is fixed. This means
that each patient is not compared to all the patients with a higher ID than himself but rather
with a fixed size chunk of other patients, e.g. n−1

2 . This approach could have advantage from
multi-threaded or parallelized environments.

• The best of both worlds: Although the elimination of different tools for data pre-
processing and analysis reduce the data management effort and improves efficiency, it might
still be advantageous to exploit the power of advanced data analysis tools. The best of both
worlds can be achieved by using an integrated implementation. For instance, integrated
R-support is offered by MonetDB [40, 41]. This allows patient similarity analysis methods
implemented in R to be executed over the database. Therefore, it reduces the start-up time
of analysis and potentially eliminates intermediate steps that complicate the calculation.

• Parallelize the patient similarity computing: Since “pairwise PSM computation is
very much parallelizable” [4], big data analysis tools that support parallel computing such as
Apache Hadoop can be considered. However, minimizing latency of accessing EMR data and
applicability of implementation should be considered. Another approach of parallelization
can be achieved by GPU database systems [42]. For instance, such a GPU database candidate
is MapD which besides the parallelization inside the GPU also provides the efficient columnar
storage.

Apart from optimization, the use of other PSMs that are mentioned by [2] and a comparison
to ours is worthwhile. Finally, to achieve an efficient prediction and computation combination, an
evaluation of the different implementations of patient similarity algorithms along with the selected
technologies will be beneficial.

References

[1] S.-A. Brown, Patient similarity: Emerging concepts in systems and precision medicine, Frontiers in physiology
7 (2016) 561.

[2] A. Sharafoddini, J. A. Dubin, J. Lee, Patient similarity in prediction models based on health data: a scoping
review, JMIR medical informatics 5 (1) (2017) e7.

22

[3] J. Lee, J. A. Dubin, D. M. Maslove, Mortality prediction in the ICU, in: Secondary Analysis of Electronic
Health Records, Springer, 2016, pp. 315–324.

[4] J. Lee, D. M. Maslove, J. A. Dubin, Personalized mortality prediction driven by electronic medical data and a
patient similarity metric, PloS one 10 (5) (2015) e0127428.

[5] A. Gottlieb, G. Y. Stein, E. Ruppin, R. B. Altman, R. Sharan, A method for inferring medical diagnoses from
patient similarities, BMC medicine 11 (1) (2013) 194.

[6] M. Barkhordari, M. Niamanesh, ScaDiPaSi: an effective scalable and distributable MapReduce-based method
to find patient similarity on huge healthcare networks, Big Data Research 2 (1) (2015) 19–27.

[7] C. Ordonez, Data set preprocessing and transformation in a database system, Intelligent Data Analysis 15 (4)
(2011) 613–631.

[8] K. Sridhar, Modern column stores for big data processing, in: International Conference on Big Data Analytics,
Springer, 2017, pp. 113–125.

[9] C. Ordonez, Can we analyze big data inside a DBMS?, in: Proceedings of the sixteenth international workshop
on Data warehousing and OLAP, ACM, 2013, pp. 85–92.

[10] N. Garcelon, A. Neuraz, V. Benoit, R. Salomon, S. Kracker, F. Suarez, N. Bahi-Buisson, S. Hadj-Rabia, A. Fis-
cher, A. Munnich, et al., Finding patients using similarity measures in a rare diseases-oriented clinical data
warehouse: Dr. warehouse and the needle in the needle stack, Journal of biomedical informatics 73 (2017)
51–61.

[11] L. Li, W.-Y. Cheng, B. S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E. P. Bottinger, J. T. Dudley,
Identification of type 2 diabetes subgroups through topological analysis of patient similarity, Science translational
medicine 7 (311) (2015) 311ra174.

[12] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A.
Celi, R. G. Mark, MIMIC-III, a freely accessible critical care database, Scientific data 3 (2016) 160035.

[13] B. Strack, J. P. DeShazo, C. Gennings, J. L. Olmo, S. Ventura, K. J. Cios, J. N. Clore, Impact of hba1c
measurement on hospital readmission rates: analysis of 70,000 clinical database patient records, BioMed research
international 2014.

[14] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[15] M. Hoogendoorn, A. el Hassouni, K. Mok, M. Ghassemi, P. Szolovits, Prediction using patient comparison vs.
modeling: A case study for mortality prediction, in: Engineering in Medicine and Biology Society (EMBC),
2016 IEEE 38th Annual International Conference of the, IEEE, 2016, pp. 2464–2467.

[16] S. E. Abdelrahman, B. E. Bray, Frequency tree clustering for icu mortality analytics using graph databases, in:
Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on, IEEE, 2016, pp. 813–817.

[17] D. J. Abadi, S. R. Madden, N. Hachem, Column-stores vs. row-stores: How different are they really?, in:
Proceedings of the 2008 ACM SIGMOD international conference on Management of data, ACM, 2008, pp.
967–980.

[18] S. Wang, X. Li, L. Yao, Q. Z. Sheng, G. Long, et al., Learning multiple diagnosis codes for ICU patients with
local disease correlation mining, ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (3) (2017)
31:1–31:21.

[19] J. Sun, D. Sow, J. Hu, S. Ebadollahi, A system for mining temporal physiological data streams for advanced
prognostic decision support, in: 10th International Conference on Data Mining (ICDM), IEEE, 2010, pp. 1061–
1066.

[20] M. A. Morid, O. R. L. Sheng, S. Abdelrahman, PPMF: A patient-based predictive modeling framework for early
ICU mortality prediction, arXiv preprint arXiv:1704.07499 (2017) 1–10.

[21] F. Wang, J. Hu, J. Sun, Medical prognosis based on patient similarity and expert feedback, in: 21st International
Conference on Pattern Recognition (ICPR), IEEE, 2012, pp. 1799–1802.

[22] M. Panahiazar, V. Taslimitehrani, N. L. Pereira, J. Pathak, Using EHRs for heart failure therapy recommen-
dation using multidimensional patient similarity analytics, Studies in health technology and informatics 210
(2015) 369.

[23] C. Ordonez, Statistical model computation with udfs, IEEE Transactions on Knowledge and Data Engineering
22 (12) (2010) 1752–1765.

[24] L. Anthony Celi, R. G. Mark, D. J. Stone, R. A. Montgomery, “Big data” in the intensive care unit: Closing
the data loop (2013).

[25] M. C. Data, Secondary Analysis of Electronic Health Records, Springer, 2016.
[26] MIMIC-III critical care database: Documentation and website, accessed on: October 2017.

URL http://mimic.physionet.org

23

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://mimic.physionet.org
http://mimic.physionet.org

[27] M. Saeed, R. Mark, A novel method for the efficient retrieval of similar multiparameter physiologic time series
using wavelet-based symbolic representations, in: AMIA Annual Symposium Proceedings, Vol. 2006, American
Medical Informatics Association, 2006, p. 679.

[28] J. Sun, D. Sow, J. Hu, S. Ebadollahi, Localized supervised metric learning on temporal physiological data, in:
20th International Conference on Pattern Recognition (ICPR), IEEE, 2010, pp. 4149–4152.

[29] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.
[30] Y.-J. Park, B.-C. Kim, S.-H. Chun, New knowledge extraction technique using probability for case-based rea-

soning: application to medical diagnosis, Expert Systems 23 (1) (2006) 2–20.
[31] Columnar storage, accessed on: October 2017 (2012).

URL http://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html

[32] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, M. L. Kersten, Monetdb: Two decades of research
in column-oriented database architectures, IEEE Data Eng. Bull. 35 (1) (2012) 40–45.

[33] W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise and potential, Health information
science and systems 2 (1) (2014) 3.

[34] P. B. Jensen, L. J. Jensen, S. Brunak, Mining electronic health records: towards better research applications
and clinical care, Nature Reviews Genetics 13 (6) (2012) 395.

[35] Y. Wang, L. Kung, T. A. Byrd, Big data analytics: Understanding its capabilities and potential benefits for
healthcare organizations, Technological Forecasting and Social Change 126 (2018) 3–13.

[36] L. Wiese, Advanced Data Management for SQL, NoSQL, Cloud and Distributed Databases, DeGruyter, 2015.
[37] L. W. Chan, Y. Liu, T. Chan, H. K. Law, S. C. Wong, A. P. Yeung, K. Lo, S. Yeung, K. Kwok, W. Y. Chan,

et al., Pubmed-supported clinical term weighting approach for improving inter-patient similarity measure in
diagnosis prediction, BMC medical informatics and decision making 15 (1) (2015) 43.

[38] B. J. Wells, K. M. Chagin, A. S. Nowacki, M. W. Kattan, Strategies for handling missing data in electronic
health record derived data, eGEMs 1 (3) (2013) 1035.

[39] A. E. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A. Clifton, G. D. Clifford, Machine learning and
decision support in critical care, Proceedings of the IEEE 104 (2) (2016) 444–466.

[40] H. Muehleisen, A. Damico, M. Raasveldt, T. Lumley, M. D. Team, Package MonetDBLite, accessed on: October
2017 (Aug 2017).
URL https://cran.r-project.org/web/packages/MonetDBLite/MonetDBLite.pdf

[41] H. Mühleisen, MonetDBLite for R, accessed on: October 2017 (Nov 2015).
URL https://www.monetdb.org/blog/monetdblite-r

[42] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, G. Saake, Gpu-accelerated database systems: Survey and
open challenges, in: Transactions on Large-Scale Data-and Knowledge-Centered Systems XV, Springer, 2014,
pp. 1–35.

24

http://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html
http://docs.aws.amazon.com/redshift/latest/dg/c_columnar_storage_disk_mem_mgmnt.html
https://cran.r-project.org/web/packages/MonetDBLite/MonetDBLite.pdf
https://cran.r-project.org/web/packages/MonetDBLite/MonetDBLite.pdf
https://www.monetdb.org/blog/monetdblite-r
https://www.monetdb.org/blog/monetdblite-r

	Introduction
	Current State and Contribution
	Paper Organization

	Related Work
	Data Sets
	MIMIC Dataset
	Predictor Variables
	Data Pre-processing and Cleaning

	Dataset from The Health Facts database
	Predictor Variables
	Data Pre-processing and Cleaning

	Data Normalization and Formatting
	Data Normalization
	Data Formatting

	Method
	SQL Cosine Similarity for Column Data Layout
	SQL Cosine Similarity for Row Data Layout

	Calculation
	Column-oriented vs. Row-oriented databases
	Batching for Optimizing Patient Similarity Analysis

	Results and Discussion
	Result of Batching for Optimizing Analysis Performance
	Column-oriented vs. Row-oriented databases with SQL over Row and Column Data Layout
	Column-oriented vs. Row-oriented Databases with Different Batch Sizes and Datasets
	Discussion

	Conclusion
	Future Work

