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Abstract—Machine learning (ML) based decision making is
becoming commonplace. For persons affected by ML-based
decisions, a certain level of transparency regarding the properties
of the underlying ML model can be fundamental. In this vision
paper, we propose to issue consumer labels for pre-trained and
published ML models. These labels primarily target machine
learning lay persons, such as the operators of an ML system,
the executors of decisions, and the decision subjects themselves.
Provided that consumer labels comprehensively capture the
characteristics of the trained ML model, consumers are enabled
to recognize when human intelligence should supersede artificial
intelligence. In the long run, we envision a service that generates
these consumer labels (semi-)automatically. In this paper, we
survey the requirements that an ML system should meet, and
correspondingly, the properties that an ML consumer label could
capture. We further discuss the feasibility of operationalizing and
benchmarking these requirements in the automated generation
of ML consumer labels.

Index Terms—Artificial intelligence, machine learning, con-
sumer labels, transparency, x-AI

I. INTRODUCTION

In various domains, machine learning (ML) systems sup-
port day-to-day decision making. In creating, operating and
executing such systems, humans take on different roles, as
illustrated in Figure 2, where the authors of [1] distinguish
six different roles. As an illustrative example, let us consider
a system assisting the negotiation of property loans. There are
the creators of the ML system providing a trained ML model.
The creators, as well as the external examiners (e.g., auditors),
are highly skilled professionals. They have insight into the data
preparation process and know details about the data subjects
(e.g., past receivers of loans), who constitute the training data.

A bank teller meeting with a potential customer (the deci-
sion subject), does not have the same background and insight
as the creators and external examiners. As the mere operator of
the system, the bank teller feeds in descriptive attributes about
the decision subject (such as age, income, occupation, equity),
and receives a recommendation. It is now up to the teller in
the role of the executor to propose the conditions for a loan,
based on this recommendation. Yet being able to challenge a
recommendation requires a certain level of understanding of
the automated decision making process.

Previous work suggests ideas for documentary material.
Datasheets [2] describe the data subjects; Model Cards [3]
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Fig. 1: Sketch of an ML consumer label for a loan prediction
application. Left: general overview showing the degree to
which certain properties are satisfied (percentages and color-
coding), right: details on generalization ability and fairness.

describe the specific properties of a trained ML model. How-
ever, both are targeted at expert users, such as the creators of
an ML system.

In this vision paper, we build upon these ideas, envisioning
that ML systems come complete with ML consumer labels, an
example of which is sketched in Figure 1. We imagine con-
sumer labels to become as commonplace as nutrition labels.
Different from [3], where explainability is tailored towards
all roles in a machine learning ecosystem (cf. Figure 2), we
specifically focus on the consumers of ML-based recommen-
dations. This concerns the operators, executors, and decision
subjects. We further assess to which extent ML consumer
labels can be automatically generated.

In Figure 1 (right), we sketch parts of an ML consumer
label issued to our fictitious bank teller, conveying that

• the model does not generalize well to different data sets.
Thus, the teller should not apply it out of context (e.g.,
for consumer loans instead of property loans). Further,

• since the system is not always fair, the teller will consult
an expert for customers from disadvantaged groups.

The visualization in Figure 3 provides further detail. For
the total population, approximately ¼th of all predictions are
inaccurate (error cases); out of these, false positive and false
negative rates (areas with different shades of red) are equally
likely. For the specific group of freelancing journalists, the
overall error rate is the same, while the percentage of false
negatives is higher than that of false positives, indicating unfair
treatment of this subgroup. Thus, a freelancing journalist might
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Fig. 2: Machine learning ecosystem as proposed in [1]. Image
reproduced with permission by the authors.
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Fig. 3: Visualizing predictive performance for different groups.

see reason to challenge a denied loan. Regarding “single
mothers”, the algorithm has a lower error rate than for the
general population, and the same error distribution.

Contributions: In this vision paper, we propose to es-
tablish ML consumer labels and review the requirements on
ML models that these labels might capture. We even envision
that ML consumer labels might be generated by third-party
cloud services, and therefore discuss key properties of ML
systems w.r.t. their potential for automated assessment. We
compactly present our findings in a table, as a starting point
for discussions and new research.

II. RELATED WORK

In this section we review work on advanced ML proper-
ties and summarization reports for data and models. Some
related work addresses scenarios where traditional metrics
are insufficient for characterizing machine learning models.
For example, [4], [5] propose to also consider properties
like trust, transferability (robustness to adversarial examples),
causality (models should find causal relations), informative-
ness (access to necessary information), usability, and fair and
ethical decision making. Some of those subjective desiderata
– such as trust, ethics, fairness, and social acceptance – are
inherently not (objectively) quantifiable. Our proposed ML
consumer labels contribute towards model interpretability for
machine-learning lay persons and might act as enablers for
such desiderata.

Other related work addresses summarization reports for data
and models. The TRIPOD group presented a checklist for re-
porting multivariate prediction models in the medical domain,
covering all stages from study design to data acquisition, to
model development, and model update [6].

The work most similar to ours proposes Model Cards, a
summarizing characterization of a machine learning model,
covering aspects such as model details (e.g., neural network ar-
chitecture type), intended use, evaluation metrics, ethical con-
siderations and potential caveats [3]. While TRIPOD-conform
reporting is targeted towards the scientific community, Model
Cards address ML knowledgeable users and should accompany
published, trained models. Complementary to TRIPOD and
Model Cards, our consumer labels target machine learning
lay persons, who are directly or indirectly affected by model
decisions. This requires consumer labels to be comprehensive,
truthful and understandable by our target audience.

Gebru et al. proposed Datasheets for Datasets [2], a stan-
dardized reporting schema for data sets in machine learning,
including criteria such as the original motivation for data col-
lection, as well as collection procedure, summary of content,
and privacy considerations. Similarly, Bender and Friedman
proposed Data Statements [7] specifically tailored toward
data sets for natural language processing, adding for instance
speaker characteristics. Both Datasheets and Data Statements
are manually constructed (whereas we envision generating ML
consumer labels semi-automatically).

Extending on Datasheets and Data Statements, the vision
of Data Set Nutrition Labels [8] draws on the widely adapted
nutrition labels. Data Set Nutrition Labels are automatically
constructed from a data set. While our basic intention of com-
municating internals is the same, we focus on trained machine
learning models (rather than data sets), We consider data set
descriptions necessary and complementary information.

III. DEMANDS ON ML ALGORITHMS

We next survey classical requirements for ML models, as
well as requirements that evolved more recently and that are
also debated outside the ML research community. In Table I,
we list selected requirements. We discuss these requirements
in terms of capturing them in an ML consumer label.

Regarding the source of a requirement, we assess whether
the requirement is functional (i.e., required for basic usage), is
required by legislation, is a societal requirement, or depends
on personal judgment. When operationalizing a requirement,
we define a measurement of a phenomenon that may not be
directly measurable. In the table, we track whether a require-
ment can be operationalized, and how it can be measured
(quantitatively or qualitatively).

To give a example, the requirement that an ML model
must have good predictive performance can be mapped to
the property of having high accuracy. As accuracy can be
measured quantitatively, this property can then be visualized,
e.g., as shown in Figure 3.
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Source Functional 3 3 3 3 (3) (3)
Societal 3 3 3 3 3 3 3
Legal 3 3 3 3 3 3
Personal 3 3 3 3 3 3 3 3

Definition Operational 3 3 3 3 ◦ ◦ × ◦ × ◦ × ×
Measure qn qn ql qn qn qn ql qn ql ql qn ql

TABLE I: Characterizing machine learning models along different requirements. In an operational definition, a mathematical
formulation can be directly incorporated in model training (e.g. by adapting the loss function). ◦ indicates near-operational
definitions (e.g. multiple existing definitions). A cross indicates that we believe that operationalization is not possible, e.g.
because of the subjective nature of the requirement. We categorize a measure as quantitative (qn) or qualitative (ql).

A. Classical Demands

a) Predictive Performance: Various metrics quantify the
ability of an ML algorithm to learn or re-identify learned
patterns. The metrics differ within communities and depend on
both the task and the domain. For instance, for a classification
problem, accuracy is a prominent metric. It conveys the
percentage of correctly classified examples in a hold-out set,
but it does not specify the types of errors made. For instance,
in the medical domain, some errors can be more severe than
others. Accordingly, metrics such as sensitivity and specificity
are commonly used. For classification problems with multiple
classes and class-imbalance, we may use different averaging
strategies – either averaging over classes (macro-averaging)
or instance-based (micro-averaging). Also commonly used
are precision, recall, and F1 in information retrieval; area
under curve (AOC) for medical classification problems; R2

for regression problems; and error at top 5 in recent computer
vision challenges [9]. All of them are in the range [0, 1], and
can therefore be represented as percentage values.

b) Computational Efficiency: With massive amounts of
training data, computational efficiency in training ML models
becomes relevant: Main memory resources must be managed
carefully, the overall energy consumption has to be reduced.
There is also research on designing special-purpose hardware
(e.g. [10], [11]). In terms of capturing computational efficiency
on a consumer label, we may turn to complexity theory
(the big-O notation), or benchmark runtimes (for example, in
milliseconds), main memory usage, and storage requirements
(for example, in gigabytes).

c) Generalization: Being able to generalize across dif-
ferent inputs and application scenarios is a basic requirement
for trained models [12]. This goal can be addressed during
training, preventing overfitting via model selection, regulari-
sation, or data augmentation. Trained models can be tested on
various out-of-training data, as well as on cross-domain tasks.
This indicates whether the model overfits (e.g., using learning
curves), and to which types of input it generalizes to which
extent. Such generalization results can be combined with

knowledge about the data set (e.g. based on Data Sheets [2])
and integrated in a consumer label.

d) Online Learning Capabilities: In batch learning, mod-
els are trained once, remain static, and only adapt after re-
training on the complete training data. In contrast, online
learning refers to models that adapt instantly to new training
samples [12]. Models learned in batch mode can simulate
online capabilities, for instance if their training time is short,
or if training is done in the background and new models are
only deployed after training is complete. Thus, the property
of practical interest from a user point of view is the de facto
online capability of a model.

B. Recent Properties of Interest

a) Privacy-Sensitivity: Protecting sensitive personal data
is a major requirement in operating ML systems. In terms of
active attacks, the privacy of data subjects can be at risk in
multi-party environments [13], [14]. For example, a publicly
available trained model can actually leak sensitive information
about the training data set to an attacker who is able to run
several model executions on appropriately prepared adversarial
data. In a different scenario, the trained machine learning
model is considered an intellectual property. It should not
be accessible to operators and executors who might identify
hyperparameters in a model extraction attack. Various notions
of privacy-preserving machine learning have been established,
but they are usually limited to a specific machine learning task.
In general, there is a trade-off between privacy demands and
several other requirements (like transparency, fairness or even
predictive performance when trained on distorted data). For
example, a model may be trained on data containing sensitive
attributes and then published to be used on other data sets –
releasing the training data set for the sake of transparency is
not possible in this case. Yet in certain cases (like k-anonymity
or differential privacy), the privacy level can be quantified.

b) Robustness: While generalization is the ability of
models to predict out-of training samples taken from the same
underlying (unknown) population, robustness refers to model
stability during adversarial attacks [14]. Attacks attempt to



misguide the model, for instance by adding noise to the input.
In image classification, perturbed noisy images may not be
humanly discernible, but nevertheless cause the ML model
to misclassify. Examples are automatically generated graffiti-
style changes to road signs [15] that lead to misclassification
in a self-driving car setting. Especially, in scenarios where fail-
ure results in severe consequences, information about model
robustness should be conveyed to end-users.

c) Transparency/Interpretability/Explainability: A more
recent demand, also recognized by the EU General Data Pro-
tection Regulation (GDPR) [16], [17], is model interpretability.
Miller defines interpretability as “the degree to which a human
can understand the cause of a decision” [18]. Some ML model
classes are inherently transparent and thus interpretable [4],
such as decision rules [19]. For more complex models, post-
hoc explanation strategies have been developed [20]. Inter-
pretability is inherently subjective, as it depends on individual
background knowledge. It is thus best evaluated in real-world
settings [5]. Since these evaluations are costly, proxies have
been proposed, e.g., the fidelity and accuracy of substitute
models (how well they approximate the original model); or the
model/explanation size, following the assumption that smaller
models/explanations are easier to understand. A general advice
is that an interpretable model should be used if possible [21].
For more complex models, decisions or general properties can
be communicated to end-users by drawing on recent x-AI
research results (see e.g., [20]).

d) Fairness: The discussion on algorithmic fairness has
reached the public debate at the very latest in 2016 with two
popular science books [22], [23]. Fairness in decision making
states that decisions should not negatively impact subgroups
of people. However, how to establish fairness in decision
making is ongoing research. For instance, [24] state that if
fairness is ensured for a subgroup defined by a single attribute
(e.g. ethnicity=“Hispanic”), it is not necessarily ensured for
attribute combinations (e.g. elderly Hispanic women). Liu et
al. [25] report 21 fairness criteria and show for two criteria that
constraining on these fairness criteria may cause harm in the
long(er) run. Unwanted algorithmic bias can be quantitatively
measured – e.g. by the percentage the true positive/false
negative rates deviate for the subgroup – and evaluation
software is available [26]. However, fairness depends on the
selected fairness criteria and to-be-protected subgroups, and
might display a delayed impact that is not immediately quan-
tifiable [25]. Conveying model fairness to end-users requires
to select fairness criteria and define potentially discriminated
subgroups, for which the fairness criteria are then evaluated.

e) Trustworthiness: The trustworthiness of a system
influences user acceptance and behavior. For instance, the
“willingness to accept a computer-generated recommendation”
has been reported as an observable sign for trust [27]. Various
studies suggest a diverse pattern of influence: there is evidence
that system transparency might increase trust [28], or on
the contrary, might be hindering [29]. Overall, the factors
influencing trust are not yet fully explored. Since trust is
conveyed to an agent (either automatic or human) by another

agent, it is a subjective experience of an individual [30] and
can only be measured on a per individual basis. Körber [31]
developed a trust metric for automated systems based on a
model of human-human trust. It consists of 19 self-report items
measuring the trust factors reliability, predictability, the user’s
propensity to trust, as well as the attitude towards the system’s
engineers and the user’s familiarity with automated systems.
We argue that consumer labels are a means to increase trust
in applications where automated decision making is applied.

f) Accountability: For automated decision making, there
is a legal demand that decision making agents can be held
accountable for their actions, similar to humans. Doshi-Velez
et al. identified three tools to achieve algorithm accountabil-
ity [32]: First, theoretical guarantees can be used in situations
in which both, problem and outcome, can be fully formalized
(e.g., as it is the case for encryption). Second, statistical
evidence is suitable for situations where outcomes can be
formalized and measured, but sufficient prior knowledge of
the full problem is not available (e.g. some potential biases
might only emerge through statistical aggregation). Third, for
incompletely specified problems, explanations can be used as
tools for accountability, a view that is also taken by the Euro-
pean Parliament Research Service [33]. However, as of today,
there is no universal solution for governance of automated
decision systems (for existing proposals see [33]). Conveying
the accountability of ML models to end-users would require
legislation and its operationalization. If both were available,
ML models could be certified so that a consumer label can be
equipped with with a certificate.

g) Social Acceptability: Social factors play an important
role for technology adoption; the social acceptability of a
technology might impact its uptake in the general population.
The APA dictionary of psychology defines social acceptability
as the “absence of social disapproval” [34] and it has been
recognized as part of general system acceptability in usability
research [35]. The lack of a clear definition [36] and the (yet)
vague notions of influencing factors [37] makes social accept-
ability hard to quantify. While it has been measured using
average scores derived from user questionnaires, the scales are
specific to certain applications (e.g., wearable devices [38]).
Future research is required to identify factors for socially-
acceptable ML-models. We hypothesize that interpretability,
trust and accountability play a role. Consumer labels could be
a driving factor for socially-acceptable ML models.

h) Morality: Ubiquitous automated decision making
faces decisions that are inherently value-laden. For instance,
Freeman et al. incorporated moral concepts in their AI for
deciding matches for a kidney donor exchange program [39].
Judgment of morality and matching behaviour varies across
and within cultures and societies [40], an observation that has
also been made based on 40 million decisions in the “moral
machine experiment”, where users where faced with moral
dilemmas in the context of a hypothetical self-driving car [41].
Similarly as with social acceptability and trust, consumer
labels could be a means for end-users to judge the morality
of ML-based applications.



Fig. 4: Generating ML consumer labels as a service.

IV. VISION: GENERATING CONSUMER LABELS

We propose to generate ML consumer labels automatically.
This requires us to discuss the introduced requirements regard-
ing their potential for automation.

a) Consumer labels as-a-service: Ideally, an ML con-
sumer label is issued by a trusted third party, such as an
independent examiner (cf. Figure 2). However, we may not be
able to rely on humans alone to generate the consumer labels,
there are simply too many algorithms, hyperparameters, and
other factors influencing a model. Rather, we envision that
consumer labels are generated (semi-)automatically. Figure 4
sketches our vision of such a service. The creators of the
ML system provide (1) a data sheet that describes the data
subjects in a summarized fashion; (2) the trained ML model;
(3) a specification which requirements (and specific properties)
should be captured by the consumer label.

The service then generates the consumer labels, customized
for operators, executors, and decision subjects. While some of
the requirements discussed lend themselves nicely to automa-
tion, others will require human examiners to intervene (cf. the
examiners in Figure 4), as we will elaborate on shortly.

Today, cloud-hosted platforms for machine learning are
quite popular, such as Cloud AutoML1: Many creators of ML
systems are therefore accustomed to storing their data, as well
as training their models, in the cloud. Offering cloud services
that generate ML consumer labels is a potential next step.
However, a major challenge in operating such a service is
that when the model and the data sheet become public, we
risk adversarial attacks, e.g. [15]. Thus, the owners of an ML
system may prefer to download a certified labeling kit that
they can run on premise; the challenge is then to design these
kits such that they cannot be manipulated.

b) Potential for automation: From our point of view, four
properties are straightforward to automate (cf. Table I);
Predictive Performance: Performance metrics can be com-

puted when benchmark data is provided. Advanced set-
tings like k-fold cross-validation can also be tested.

Generalization: How well a model performs on more general
datasets can be tested by checking its predictive perfor-
mance on similar benchmark data, or by automatically

1https://cloud.google.com/automl/, accessed Oct. 2019

pre-processing the input data into a more general repre-
sentation (for example, oversampling the minority class).

Computational Efficiency: Computational performance can
be assessed by monitoring the system resources that
the execution of the given model requires on average.
This reveals whether the ML system can be run on a
commodity PC, or requires dedicated hardware.

Online Learning Capacity: This property is a static property
of the training algorithm (or the implementing library)
and can therefore be directly assessed.

The evaluation of the following properties could be semi-
automated but still requires human involvement – in terms
of research, standardization, clarity in legislation, manual
input, adaptation or assessment by an independent examiner
– in order to enable the formalization of specific notions or
definitions on which the ML consumer label should be based.
Privacy Sensitivity: Mechanisms for privacy-preservation in

machine learning still require more in-depth analyses;
there is no general solution that can be uniformly applied
to all machine learning algorithms. However, in a semi-
automated setting, we may select a particular privacy
definition (such as differential privacy). Then, our cloud
service can check whether the ML model complies.

Robustness: While benchmarks and defenses against adver-
sarial attacks have been proposed (e.g., surveyed in [14]),
it is difficult to assess for a model whether it is robust
against all currently known adversarial attacks – a prob-
lem that is similar to attacks in the cyber-security field.
However, given a list of attacks, our cloud service could
generate appropriate adversarial data sets and automati-
cally compute a robustness score.

Fairness: Fairness requires a precise specification of the un-
derlying subgroups for which a bias-free decision is to
be ensured. Moreover, as can be seen from our example
in Figure 3, accuracy is not fine-grained enough to assess
fairness and a more detailed analysis – e.g. of the false
negatives – is necessary.

Accountability: In cases where it is possible to translate
legal knowledge into a machine-understandable format,
compliance with formally specified regulations can be
checked for, in limited cases. However, this will not be
possible for all applicable legal requirements.

The other four properties in Table I (transparency, trust-
worthiness, social acceptability and morality) are inherently
subjective. To our best knowledge, we believe they should not
be included in a certified consumer label at this point.

V. CONCLUSION

We call for a united effort on behalf of society, as well
as representatives from politics and the judiciary system, to
engage in the discussion on how to design and generate con-
sumer labels for ML systems: Evidently, seemingly intuitive
notions such as “fairness” and “interpretability” are difficult
to capture formally. Yet these fuzzy concepts are the actual
enablers for consumers to trust ML systems.



We hope that sketching our vision inspires academic peers to
direct their research towards consumer labels for ML systems.
These labels should be comprehensive, intuitive to understand,
and – ideally – could even be generated in an automated
fashion. Moreover, they will have to be adapted continuously
towards changing requirements, e.g., in legislation.
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