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ABSTRACT
In this article we present the implementation and benchmarking
of a medical information system on top of a distributed relational
database system. We enhanced a distributed database system with
the implementation of a clustering (based on similarity of disease
terms) that induces a primary horizontal fragmentation of a data
table and derived fragmentations of secondary tables. With our
clustering-based fragmentation, data locality for similarity-based
query answering is ensured so that data do not have to be sent
unnecessarily over the network. In our benchmark we show that
we achieve a significant efficiency gain when retrieving all relevant
related answers.
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1 INTRODUCTION
For the ever-growing amount of data in our world, distributed
databases (DDBs) gained significantly more importance over the
past years because they provide physically distributed storage
[13, 16]. Especially in fields where the amount of data to be hosted
in a database is challenging, a fragmentation of such big data as
well as allocation to multiple servers in a cloud storage infrastruc-
ture can pay off. The data fragmentation overcomes the limitation
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of storage capacity of a single database server because the total
amount of data can be split into smaller parts, so-called fragments.
Moreover, fragmentation can increase the performance of query
processing: queries of different users addressing different fragments
that are stored on different servers can be answered independently
and in parallel. Furthermore, the replication of the data fragments
inside the network yields a tolerance to failures by compensating
data loss with recovery, e.g. in case of a malfunction or total failure
of a single server, to guarantee the desired availability and relia-
bility of the data accessed by the users of the distributed database
system (DDBS).

As a use case, the trend towards personalized medicine or the
increased usage of novel biomedical technology – for example, next-
generation sequencing [17] – produce vast amounts of data. In this
article, our particular application scenario is a medical information
system that uses a distributed database system as a storage backend.
In our example system, patients’ personal information as well as the
diseases they suffer from are contained in a distributed database.
A possible usage scenario is that researchers make use of these
patient data, for example to identify a cohort of patients [1] that
are similar to a current “target patient” – hence instead of exact
query answering, a notion of similarity-based query answering is
needed.

Our proposed data management system is supposed to support
medical staff in identifying a relevant subset of patient data from
partitioned tables in an efficient way. We make use of a taxonomy-
induced data fragmentation and data distribution in a DDBS to
achieve this. In order to support the use case of similarity-based
query answering in an efficient way, we present here an implemen-
tation that enhances the basic distributed data management with
an automatic clustering-based fragmentation that does not require
any user interaction other than posing standard SQL queries.

A similarity measure defined between the disease terms from
the MeSH taxonomy [9] yields the similarity values needed for the
clustering. Our system ensures that data records holding informa-
tion about patients suffering from similar illnesses are stored on the
same site in a distributed database system; this enables the system
to preserve data locality with respect to the semantics of the data as
defined by the underlying taxonomy. In this way our system is able
to answer similarity-based queries efficiently (without the need to
access multiple servers).

Our specific contributions in this article are that we (1) obtain
similarity values of disease terms by applying a shortest path al-
gorithm in the Neo4J graph database; (2) implement a clustering
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procedure on top of a relational database system that uses these sim-
ilarity values; (3) compare the runtime behavior of similarity-based
query answering with a round-robin approach and a clustering-
based approach.

The remainder of this article is organized as follows. Section
2 surveys related work on flexible query answering and DDBs.
Section 3 provides the necessary background on the employed
database system. Section 4 introduces our notion of clustering-based
fragmentation. Section 5 describes the implementation details and
presents a comparative evaluation. Section 6 concludes the article.

2 RELATEDWORK
2.1 Flexible Query Answering
Conventional database systems merely support exact query answer-
ing and are not supportive to the user when some query conditions
cannot be satisfied. Upon query failure, that is, when the database
cannot give an exact answer to a query formulated by a user, an
empty result is returned. Assuming the query was formulated cor-
rectly, this empty result indicates to the user that the information
he or she was looking for is not present in the current database
instance. In this case of a lack of any exact answers, the empty
database result is non-informative for the user in the general case.
In contrast, real-life information systems should provide users with
supportive mechanisms when they want to retrieve a particular
information from the system. To wit, flexible query answering can
overcome this lack of information when the database system uses
techniques like query relaxation and query generalization to provide
the user with a non-empty result. While this result does not match
the query exactly, it nevertheless contains information instead that
may be relevant to the user. This relevance property must be sup-
ported by an appropriate notion of similarity. A real-world use case
is to find “patients like mine” in electronic health records [1].

Several approaches are based on different theoretical backgrounds
for intelligent flexible query answering. A recent comprehensive
survey of query relaxation in graph-structured data can be found
in [12]. Opposed to this, [7] give an in-depth analysis of includ-
ing taxonomic information on the relational algebra level. Several
approaches consider similarity on the syntactical query level [5]
or analyse combinations of so-called query generalization opera-
tors [3]. Furthermore, in contrast to the related work we explicitly
consider a specific similarity in a taxonomy and propose a prac-
tical approach that considers query answering based on a seman-
tic clustering. In addition, we devise a bridge between high-level
similarity-based query answering and low-level distributed data
management.

2.2 Distributed Databases
A distributed database management system (DDBMS) manages sev-
eral underlying database instances and provides the access to the
data spread across a computer network [11]. A partitioning of data
tables can be achieved by using a certain fragmentation strategy
and the resulting fragments, which contain parts of the whole data
set, can then be dispersed across the network by mapping the frag-
ments to database instances that possibly reside at different physical
locations. A relational DDBS has to be able to answer a query in the
same manner as a non-distributed relational database. The result of

a query is a set of tuples fulfilling the query. To obtain the result, the
database system uses relational algebra operations for its computa-
tion, e.g. a join of two tables or the selection on an attribute with
a certain condition. As the data is physically distributed, queries
have to be processed and rewritten according to the underlying
distribution to allow for an appropriate answer to the given query.
The performance of computing answers to the query can be a big
issue due to increased network communication inferred by data
transfer between the database sites. This can even occur for sim-
ple queries that only scan a certain relation and project to some
subset of the attributes. Fragmentation and replication influence
the query execution strategy as they require for a distribution of
the query itself to possibly multiple servers, too, in order to get the
complete and correct result set. In our system we apply appropri-
ate rewriting techniques to support the intended similarity-based
query answering.

2.3 Horizontal Fragmentation
One strategy to obtain a fragmentation of the data is horizontal
fragmentation that divides a relation in a row-wise manner into
smaller portions of tuples. More formally, a relation R is divided
into fragments F1, F2, ..., Fn by assigning each tuple µ of the re-
lation R to at least one fragment The result of this is that for all
i ∈ {1, . . . ,n}, Fi ⊆ R. Additionally, in order to avoid redundancy
of data, we can require that each tuple is only assigned to exactly
one fragment; more formally, the fragments are pairwise disjoint:
∀µ ∈ Fi it holds that µ < Fj , i , j for i, j ∈ {1, . . . ,n}. In relational
algebra such a primary horizontal fragmentation can be described by
a selection operation σ on the relation R, where the selection con-
dition defines the desired mapping of tuples to fragments. Based on
this primary horizontal fragmentation, a further fragmentation of
another relation S can be derived by computing the semi-join of the
relation S with fragments Fi , i ∈ {1, . . . ,n} of the primary relation
R, i.e. the derived fragments Gi of the relation S are computed as
Gi = S ⋉ Fi for i ∈ {1, . . . ,n}. The derived horizontal fragmentation
depends on the underlying primary horizontal fragmentation, and,
to prevent tuples in S from getting lost during the semi-join with
fragments of R, it is necessary to have for each tupley ∈ S matching
tuples in R in order to let the tuples from S “survive” the semi-join.
An integrity constraint in form of a foreign key reference of the
relation S to the relation R can be used to enforce this condition for
the sake of completeness of the derived fragmentation.

Several horizontal partitioning approaches in distributed data-
base systems focus on numerical data. As an example for numerical
data partitioning, the AdaptDB system [6] builds up a binary search
tree where the median of a range of numerical values is chosen
as the pivot element in each level of the search tree. Their stor-
age model is based on low-level blocks of equal size in distributed
file systems. Another approach [18] is predicate-based referenced
partitioning (PREF) addressing relational DB systems. They start
with a partitioning of a seed table and then co-partition all tables
with incoming or outgoing foreign keys which could be potentially
joined. This way of co-partitioning can lead to redundancy in the
sense that tuples of the co-partioned tables can occur in more than
one fragment. The co-partitionings are then further cascaded by
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also co-partitioning tables that could be joined with the existing
fragments.

Our approach differs from these two by supporting similarity-
based query answering (which has a wide applicability in cohort
identification on medical data) as well as enabling partitioning on
categorical attributes (by clustering based on a similarity measure
between terms). We visualize these differences in Table 1.

3 BACKGROUND
3.1 System Design
We will make use of horizontal partitioning to support similarity-
based query answering. We postpone the formal definition until
Section 4.3. We assume that one table is chosen as the primary table
and one attribute of it is determined on which similarity-based
query answering should be performed. Other tables that join to
the primary table will be co-partitioned by derived fragmentation.
Inherently with the definition of the derived horizontal fragmen-
tation on a semi-join, redundancy of tuples of S in the derived
fragments may occur if tuples in S match multiple tuples that be-
long to different fragments of R. This causes the fragments Gi of S
to be non-disjoint in general – an approach also followed in [18].
We will make use of this property to ensure data locality of primary
and derived fragments: while we require the primary fragmentation
to be disjoint (and hence non-redundant) the derived fragmentation
might contain fragments that have some tuples in common. These
derived fragments are however stored on different sites together
with their matching primary fragment.

3.2 Default Hash Partitioning
Our specific implementation reported on in this paper is based
on in-memory storage inside a network of servers each running
an Apache Ignite instance. The Ignite server nodes store data de-
pending on the fragmentation (called partitioning with Ignite) and
replication. The fragmentation and replication is defined per rela-
tion. The default Ignite partitioning is a horizontal fragmentation
of the data defined with hash functions; thus, there are no explicit
selection conditions on a certain attribute of the relation that rep-
resent a horizontal fragment as we would need for our semantic
clustering-based fragmentation – and the assignment of tuples to
the partitions/fragments is done according to the hash function and
hence rather arbitrarily.

3.3 Ignite’s Affinity Collocation
One important concept of Ignite is the collocation of data – which
corresponds to the concept of a derived horizontal fragmentation:
data that are accessed together, e.g. because they are joined via
a common attribute or a foreign key reference, are also stored
together on the same server. This affinity collocation can be defined
in Ignite by so-called affinity keys: An affinity key can be identical to
the primary key of a relation or an attribute of a composite primary
key of a relation. Ignite ensures that all tuples where the affinity
keys match are stored on the same server. The usage is restricted
to a single affinity key definition per relation. With this restriction,
there cannot be a collocation of three or more relations that could
be joined via a chain of join conditions where the join attributes
would form possible affinity keys of the different relations. Note

that this notion of affinity for horizontal fragmentation is different
from the notion of attribute affinity which has long since been used
for vertical fragmentation [10].

If all the joined relations in the SQL query are collocated, the
query can be evaluated locally by each node, because all the data
they need to compute a correct result set regarding their portion of
the whole data in the cluster is available, i.e. stored by themselves.
Non-collocated joins must be enabled explicitly in Ignite to enforce
the distributed answering with data transfer across the network if
necessary. If not enabled explicitly, the query will be executed only
in a collocated (local) manner which, in general, leads to incomplete
result sets due to required data not being available locally.

4 CLUSTERING-BASED FRAGMENTATION
To improve data collocation from a semantic point of view, we
replace the hash-based horizontal partitioning by our proposed
clustering-based fragmentation.More precisely, the clustering-based
fragmentation is a horizontal fragmentation strategy that, on the
one hand, enables fragmentation regarding a similarity measure
which allows for a semantic partitioning of the data set, and, on
the other hand, supports similarity-based query answering.

4.1 Similarity Computation
A specific measure of similarity has to be defined on terms con-
nected in a taxonomy (or more generally any ontology on which
we can define a notion of similarity). The pairwise similarity val-
ues between any two terms in the taxonomy form the basis for a
clustering on the terms contained in one of the attributes in the
provided database tables. More formally, we assume that in our
primary relation R there is a specific attribute A which will be used
for clustering and hence similarity-based query answering. In order
to capture semantic closeness, we need a similarity relationship
sim(a,b) for pairs of elements a,b from the active domain of the
chosen attribute A: the projection πA(R) of R to the values of A.
More formally, sim : πA(R)×πA(R) → R. It is customary to restrict
the range of the similarity to the interval [0, 1] such that a similar-
ity of 1 denotes that the elements a and b have highest similarity,
whereas the closer the similarity value gets to 0, the more dissimilar
the two elements are. In cases where the terms occurring in the
queries are not contained in the active domain, we have to obtain
the similarity for each such query term to the terms of the active
domain, too. Hence we assume that all terms in the active domain
of the selected attribute as well as in any value for the attribute
required in a query are contained in the taxonomy (or at least can
be mapped to a term in the taxonomy).

In our application of a medical information system, a similarity is
defined on the disease information of patients; we assume that the
disease terms conform to the vocabulary provided by the Medical
Subject Headings taxonomy (MeSH) of the U.S. National Library of
Medicine [9]. In MeSH the same disease term can be located under
different subtrees (corresponding to different disease classifications).
The levels in the classification tree are represented by numbers; so
each term can be uniquely identified by its “tree number”.

We imported the MeSH taxonomy into the graph database Neo4J.
We used Neo4J because it has a convenient query language called
Cypher as well as provides a graph algorithms library that can be
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primary partitioning method secondary partitioning method query method storage
AdaptDB [6] median of the attribute in root of

partitioning tree
medians of other attributes in the
partitioning tree

exact block level (HDFS)

PREF [18] hash-based co-partitioning on join attributes exact relational (XDB)
Our approach clustering on active domain of an

attribute
co-partitioning on join attributes similarity-based relational (Apache Ignite)

Table 1: Comparison of approaches

Figure 1: A snippet of the MeSH taxonomy in Neo4J

used to compute shortest paths. As shown in Table 2 we read in
the MeSH entries from a CSV file where the first entry in each line
is the tree number and second entry is the disease term. First of
all we create a node for every term in the file resulting in 11,649
nodes. Next we create edges between a term and its parent term
by identifying the parent term by its tree number (which is the
tree number of the term without the last 4-digit level) resulting in
11,648 edges. Figure 1 shows a snippet of the obtained tree where
the Diseases category is the root node.

Next, we obtain the minimal length shortest path between two
disease terms by a Cypher query that looks up any two disease
terms, using the Neo4J graph algorithms library to obtain the short-
est paths and returning the length of the shortest one (that is, the
amount of edges on the path). Lastly, we obtain a similarity value
by dividing 1 by the shortest path length plus 1 (that is, the amount
of nodes on the shortest path):

sim(a,b) =
1

minlenдth(shortestpath(a,b)) + 1
(1)

This approach of similarity defined by shortest path length can
generally be applied to any graph-shaped ontology.

We could of course compute any similarity value on demand by
issuing a query to Neo4J. However we need all pairwise similarities
for the clustering up front. Hence, for sake of performance we
precompute all similarity values and store them in a similarity table
in the Ignite system that and similarity values are read from this
table while performing the clustering.

4.2 Clustering
When loading the data into the distributed database, the underlying
clustering is computed with an approximation algorithm [2] on all
values that occur in the active domain of a chosen attribute. The
pseudocode of the clustering procedure is described in Listing 1.
The clustering starts with a single cluster (Line 1) containing the
whole active domain and an arbitrarily chosen representative “head”
element from the cluster and then identifies the minimal similarity
inside the cluster between all elements from the active domain and
the cluster head (Line 6). Subsequently, new clusters are created
with new head elements based on the minimal similarity of a term
to the head of a cluster as long as the similarity threshold is not
exceeded; all elements are reassigned if they are more similar to the
head of the newly created cluster (Lines 7 and 8). The procedure
iterates as long as there are still elements inside one of the clusters
that have a similarity to the corresponding head element that is
lower than a user-defined similarity threshold α (while-condition
in Line 5). Hence, the iteration proceeds until each element of
the active domain is clustered such that the minimal similarity
according to threshold α can be ensured.

Listing 1 Clustering procedure

Input: Set πA(F ) of values for attribute A, similarity threshold α
Output: A set of clusters c1, . . . , cf
1: Let c1 = πA(F )
2: Choose arbitrary head1 ∈ c1
3: simmin = min{sim(a,head1) | a ∈ c1;a , head1}
4: i = 1
5: while simmin < α do
6: Choose headi+1 ∈ {b | b ∈ c j ;b , head j ; sim(b,headj ) =

simmin; 1 ≤ j ≤ i}
7: ci+1={headi+1} ∪ {c | c ∈ c j ; c , head j ; sim(c,headj ) ≤

sim(c,headi+1); 1 ≤ j ≤ i}
8: ci=ci \ {c | c ∈ c j ; c , head j ; sim(c,headj ) ≤

sim(c,headi+1); 1 ≤ j ≤ i}
9: i = i + 1
10: simmin = min{sim(d,headj ) | d ∈ c j ;d , head j ; 1 ≤ j ≤ i}
11: end while

As an example, consider the sample disease terms Hemoptysis,
Acute-On-Chronic Liver Failure, Massive Hepatic Necrosis, Hepatic
Encephalopathy, and Ulna Fracture from Figure 1 as the active do-
main of the diagnosis attribute. We see that all liver diseases are
similar to one another (either 1

3 or 1
4 ) – but are less similar to lung

diseases (either 1
9 or 1

10 ), and vice versa. By, for example, setting α
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Create nodes
USING PERIODIC COMMIT LOAD CSV FROM "file:///ctree2019MeSH.csv" AS line
CREATE (d:Disease {TREE_NUMBER:toString(line[0]),DESCRIPTOR:toString(line[1])});

Create edges
USING PERIODIC COMMIT LOAD CSV FROM "file:///ctree2019MeSH.csv" AS line
MATCH (d:Disease {TREE_NUMBER: toString(line[0])}) WHERE size(d.TREE_NUMBER)>4
MATCH (d2:Disease {TREE_NUMBER: substring(d.TREE_NUMBER,0,(size(d.TREE_NUMBER)-4))})
MERGE (d)-[:PARENT]->(d2)

Return shortest path
length MATCH (n:Disease {DESCRIPTOR: "Massive Hepatic Necrosis"})

WITH n MATCH (n2:Disease {DESCRIPTOR: "Hemoptysis"})
WITH n,n2 MATCH p = shortestPath((n)-[*]-(n2)) RETURN min(length(p))

Table 2: Loading MeSH into Neo4J and finding shortest paths

between 1
5 and 1

8 we can separate liver diseases and lung diseases
into two separate clusters.

The different clusters contained in the clustering are then used to
obtain a horizontal fragmentation of the entire relation instance R
by partitioning the relation along the disjunctive subsets of elements
from the active domain with respect to the chosen attributeA. Each
cluster induces one horizontal fragment: any two tuples are mapped
to the same fragment if their values for clustering attributeA belong
to the same cluster.

Completeness of the clustering provides coverage for all elements
of the active domain πA(R) regarding the attribute A. Furthermore,
the mapping of any element of the active domain to one of the
clusters is functional. This makes the clusters pairwise disjoint, and
hence, all fragments induced by the clustering are non-redundant;
each tuple is assigned to only fragment according to the maximum
similarity to one of the cluster heads. Thus, the relation instance R
can be reconstructed from the horizontal fragments.

4.3 Query Answering
As the data is distributed according to the clustering into horizon-
tal fragments, similarity-based queries can now be executed in a
distributed manner according to the clustering. Finding the rele-
vant data fragment is done based on the selection condition on the
attribute A chosen for the clustering: for each term in the selection
condition the term’s similarity to the head elements of the different
clusters is obtained. The maximal similarity of the comparison ele-
ment and all cluster heads determines the matching cluster as well
as the induced horizontal fragment. More formally, we can define a
similarity-based answer for each selection (sub-)query on attribute
A as follows. Given a clustering-based fragmentation of relation
R, for a selection query σA=“s”R on the clustering attribute A the
similarity-based answer is

{Fi | headi = arдmax j=1, ...,nsim(s,headj )}

If there is more than one cluster head withmaximal similarity, we
choose one of them at random. In this case it is sufficient to execute
the query only locally at a single server which hosts the single
relevant data fragment. An alternative to this approach would be to
return the union of all fragments with most similar head elements.

5 IMPLEMENTATION AND EVALUATION
To evaluate the proposed clustering-based fragmentation, we com-
pare its implementation to the default hash-based partitioning. The
source code is available in a Github repository1.

5.1 Data Set
We generated a synthetic data set to comparatively investigate the
behavior of the implementation variants. We analyzed scalability
of our approach by varying both the data set size and the size of the
term set (that is, active domain of the clustering attribute) on which
similarities are calculated. Our test data set is modelled according
to three tables: A table “Ill” (containing attributes for the patient
ID and the diagnosis), a table “Treat” (containing attributes for
the patient ID and the medication) and a table “Info” (containing
attributes for the patient ID and additional administrative data like
address and age). In this way we simulate a simplified database
schema found in medical datasets like MIMIC [4] or platforms like
i2b2 [8].

The Ill table is our primary table; the patient IDs are generated
in decreasing order; the diagnosis attribute contains disease terms
extracted randomly from the MeSH data set. The Treat table con-
tains the patient IDs and randomly generated string data as the
prescription. The Info table contains one random address string for
each patient as well as a randomly generated age.

Scaling of the data set was obtained by a default number of tuples
for each of the tables multiplied by a scaling factor. The default size
of the Ill table is 100 tuples and the default size of both Treat and
Info table is 50 tuples – that is, an average of two disease entries per
person plus one sample prescription. For a given scaling factor s the
dataset is expanded to a total of s · (100+50+50) = 200 ·s tuples. The
MeSH term set was divided into smaller, randomly chosen subsets
ranging from a minimum of 100 terms up to all 4798 terms from
which the Diagnosis column of the Ill table is filled.

1https://github.com/l-wiese/SiFAMIS
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Q1 SELECT p.name, p.age, p.address FROM ILL i,
INFO p WHERE i.id = p.id AND i.disease=’Hepatic
Encephalopathy’

Q2 SELECT p.name, p.age, p.address FROM ILL i1,
ILL i2, INFO p WHERE i1.id = p.id AND i2.id =
p.id AND i1.disease=’Hepatic Encephalopathy’ AND
i2.disease=’Hemoptysis’

Q3 SELECT t.prescription FROM ILL i,TREAT t
WHERE t.id = i.id AND i.disease = ’Hepatic
Encephalopathy’

Q4 SELECT p.name, p.age, t.prescription FROM ILL
i,TREAT t, INFO p WHERE t.id = i.id AND i.id
= p.id AND i.disease = ’Hepatic Encephalopathy’

Q5 SELECT t.prescription FROM ILL i, ILL i2, TREAT t
WHERE i.id = i2.id AND i.id = t.id AND i.disease
= ’Massive Hepatic Necrosis’ AND i2.disease =
’Hepatic Encephalopathy’

Table 3: Benchmark queries (disease terms are chosen ran-
domly)

5.2 Clustering-Based Implementation
Before inserting data, we have a certain one-time overhead in terms
of initialising the similarity table inside Ignite and clustering the
active domain of the selected attribute:

• For clustering the disease attribute (implemented as an exter-
nal Java program) we measured runtimes of 0.96 seconds for
500 MeSH terms, 2.05 seconds for 1000 MeSH terms, 13.60
seconds for 2500 MeSH terms, 75.61 seconds for all 4798
MeSH terms.

• For the initialisation of the similarity table we measured
runtimes of 8.21 seconds for 500 MeSH terms, 28.82 seconds
for 1000 MeSH terms, 109.00 seconds for 2500 MeSH terms,
228.03 seconds for all 4798 MeSH terms.

• For the batch loading of our data set for 200000 tuples (that
is, scale factor 100) which includes a lookup on the similarity
table we measured runtimes of 88.57 seconds for 500 MeSH
terms, 115.45 seconds for 1000 MeSH terms, 162.48 seconds
for 2500 MeSH terms, 258.66 seconds for all 4798 MeSH
terms.

Yet we assume that this kind of batch loading of a large data set
only occurs once before actually using the system. Hence the perfor-
mance gains during querying (as shown later in Section 5.5) pay off
when querying the system. As discussed in Section 6 modifications
of the data set are up to future work.

In order to deploy the clustering-based approach with Ignite,
we assign different partition numbers (each corresponding to one
cluster) to the different semantic fragments of the relations via
Ignite’s affinity function API. The fragments are then distributed
and mapped to the servers. Collocation of derived partitions is also
achieved with the help of the affinity function and the identification
of the correct partition number that is inferred from the clustering.

In our data set we can join both the Treat as well as the Info
table with the Ill table based on the patient ID. For any fragment of
Ill, we obtain one derived fragment of each of Treat and Info: we

fragment the Treat as well as the Info table according the patient IDs
contained in the fragments of the primary table Ill. For example, if
a patient has disease x that belongs to cluster c j , then partition j of
the Ill relation stores the tuple stating that this patient has disease
x and additionally partition j of the Info relation is responsible for
the tuple with the patient’s personal information.

In order to implement similarity-based query answering, the
selection condition on the clustering attribute is omitted and the
query is adapted by restricting it to the fragment that belongs to
the cluster with the relevant diseases, such that then all answers
only need to be obtained from this fragment; the partition number
has to be identified and set via the appropriate class method of the
SqlQuery or SqlFieldsQuery of Ignite’s SQL API.

5.3 Default Implementation
On the other hand, the default hash-based partitioning is imple-
mented by creating partitioned tables by the standard Ignite par-
titioning methodology. The primary table (in our example, Ill) is
partitioned horizontally based on a hash function applied to its
affinity key (that is, attribute patient ID); The other tables are collo-
cated via their shared attribute, the patient ID, such that personal
information and the diseases and treatments of a patient are stored
together to ensure the collocation of the data. That is, only collo-
cation via the attribute patient ID is guaranteed – but no similar
disease terms are collocated. In order to implement similarity-based
query answering, the selection condition on the clustering attribute
is replaced by a more general expression: the original SQL query
is translated into one with a SQL IN-clause containing the similar
disease terms from the appropriate cluster.

5.4 Queries
Our benchmark queries Q1 to Q5 (see Table 3) consist of executing
joins (between primary and secondary fragments) with a selection
condition on the diagnosis attribute. Similarity-based query exe-
cution includes finding the fragment that is closest to the query
condition (in terms of similarity to the cluster head that is con-
tained in the diagnosis attribute of the fragment). In other words,
query execution extracts the selection condition, applies the query
rewriting and returns the obtained fragment (or joins of fragments,
respectively) as the set of related answers. Note that queries Q2
and Q5 both have two selection conditions on which similarity-
based query-answering is applied. The difference between the two
queries is that in Q5 both selection conditions come from the same
fragment (and the tuples are hence collocated); whereas in Q2 the
selection conditions are not in the same cluster and data have to be
retrieved from different fragments before joining them.

5.5 Results
Our distributed system is evaluated in a network of three Apache
Ignite nodes where each of the nodes runs in a JVM and is hosted
by one of three servers. A total of 24 GB memory for the cloud is
split equally among all machines and each server has 4 processors.

Table 4 shows the results of executing our five benchmark queries
(Table 3) when scaling the amount of tuples in the database from
20000 over 200000 to 2000000. For the clustering-based approach
we tested in addition different amounts of underlying disease terms
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Query # Tuples Default Partitions Speed Partitions Speed Partitions Speed Partitions Speed Partitions Speed
100 terms up 500 terms up 1000 terms up 2500 terms up all terms up

1 20000 171.57 80.56 2.13 59.15 2.90 71.09 2.41 59.11 2.90 61.70 2.78
2 20000 269.27 112.30 2.40 58.30 4.62 170.10 1.58 121.51 2.22 102.83 2.62
3 20000 180.99 91.21 1.98 55.20 3.28 108.45 1.67 82.77 2.19 86.56 2.09
4 20000 108.41 113.47 0.96 56.56 1.92 89.41 1.21 76.68 1.41 64.20 1.69
5 20000 188.60 92.11 2.05 55.80 3.38 136.02 1.39 87.87 2.15 89.94 2.10
1 200000 424.51 148.24 2.86 196.29 2.16 135.11 3.14 107.74 3.94 125.16 3.39
2 200000 4000.00 199.12 20.09 157.96 25.32 146.65 27.28 382.47 10.46 327.74 12.20
3 200000 357.09 138.97 2.57 147.80 2.42 260.87 1.37 534.77 0.67 385.51 0.93
4 200000 1362.86 146.70 9.29 132.54 10.28 262.20 5.20 250.47 5.44 309.57 4.40
5 200000 4000.00 181.84 22.00 181.10 22.09 275.14 14.54 256.14 15.62 289.77 13.80
1 2000000 4000.00 1168.24 3.42 1314.28 3.04 1150.21 3.48 1257.63 3.18 1160.64 3.45
2 2000000 4000.00 2410.04 1.66 2009.41 1.99 2301.47 1.74 2391.26 1.67 2271.32 1.76
3 2000000 4000.00 1120.11 3.57 1350.73 2.96 1540.83 2.60 1747.32 2.29 1670.13 2.40
4 2000000 4000.00 1296.70 3.08 1396.45 2.86 1320.13 3.03 1520.87 2.63 1309.04 3.06
5 2000000 4000.00 2411.80 1.66 2566.07 1.56 2700.19 1.48 2619.55 1.53 2729.25 1.47

Table 4: Runtime measurements for queries 1 to 5 in milliseconds for varying amount of tuples in the database instance
and varying amount of MeSH terms in the active domain of the clustering attribute; the default approach is stopped when
exceeding 4 seconds; speedup is relative to the default approach; overall average speedup of our approach is 4.79

from MeSH that are used in the Diagnosis column: we tested 100,
500, 1000, and 2500 randomly chosen as well as all (4798) MeSH
terms. We ran the five queries three times and averaged the run-
times. Whenever the default Ignite approach runtime significantly
exceeded the runtime of the other approaches, we cut off its mea-
surements after 4000 milliseconds. Our measurements show that
the clustering-based approach scales better for the similarity-based
query answering use case. For the largest scaling factor (2000000
tuples) the default approach always faced a timeout whereas the
average query execution time of our similarity-based approaches
was 1530 milliseconds. For most of the cases the similarity-based
approach also performs better for smaller data sets (smaller scal-
ing factors); only for some term set sizes in Queries 3 and 4, the
similarity-based query answering introduces a slight overhead –
evidenced by a speed up < 1 compared to the default Ignite ap-
proach. Averaged over all measurements we achieve a speedup of
4.79

6 CONCLUSION
The presented distributed database design demonstrates the capa-
bilities of our novel similarity-based query answering where data
fragmentation is based on a clustering with respect to a given simi-
larity. The query execution runtimes show that the clustering-based
fragmentation improves the execution time of queries against the
DDB significantly when comparing to the basic implementation
that provides only an arbitrary, hash-based horizontal fragmenta-
tion of the data.

In future work, other taxonomies and other disease similarities
could be used – depending on the analyzed medical use case. In ad-
dition, several notions of similarity (semantic as well as numeric as
in [14, 15]) can be combined in order to identify not only patients
that suffer from similar diseases but also whole patient profiles
based on the similarity of their personal characteristics (e.g. their
age or weight) and some other recorded measurements (e.g. body

temperature or blood parameters). Modifications in the data set are
crucial for a real-world applications. In future work we plan to sup-
port adaptivity to changing attributes values (by either insertions,
deletions or updates) and hence changing clusters. Further prac-
tical advancements include analysis of other clustering methods
and their influence on the resulting distributed data management
behavior.
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