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Abstract. Outstanding performance has been observed in a number
of real-world applications such as speech processing and image classi-
fication using deep learning models. However, developing these kinds
of models in sensitive domains such as healthcare usually necessitates
dealing with a specific level of privacy challenges which provide unique
concerns. For managing such privacy concerns, a practical method might
involve generating feasible synthetic data that not only provides accept-
able data quality but also helps to improve the efficiency of the model.
Synthetic Data Generation (SDG) innately includes Generative Adver-
sarial Networks (GANs) that have drawn significant interest in this field
as a result of their achievement in various other research areas. In the
study, a framework safeguarding privacy, which employs Rényi Differ-
ential Privacy along with Generative Adversarial Networks and a Vari-
ational Autoencoder (RDP-VAEGAN), is introduced. This approach is
evaluated and contrasted with other top-tier models having identical pri-
vacy constraints, utilizing both unsupervised and supervised methods on
two medical datasets that are publicly accessible.
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1 Introduction

Deep learning (DL) has shown remarkable achievements in various domains, in-
cluding natural language processing, information retrieval, and computer vision,
thanks to its immense capabilities. However, the effectiveness of deep learning
heavily depends on having access to large volumes of training data. Consequently,
incorporating deep learning models into industries that prioritize data privacy,
such as healthcare, may face obstacles. In order to effectively utilize data-driven
approaches in medical fields, it is crucial to address privacy concerns. Typically,
personally identifiable information is anonymized to protect the sensitivity of
the data. However, these methods can be vulnerable to de-anonymization attacks
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[22], leading researchers to explore alternative approaches like privacy-preserving
machine learning (ML) [3] to further improve a system’s resilience against such
attacks. In addition to this primary privacy concern, handling noisy and intricate
data further adds complexity to the process, as the data may include different
types, such as categorical, discrete, and continuous variables.

Synthetic Data Generation (SDG) stands out as one of the most viable meth-
ods for maintaining privacy. By generating synthetic data, privacy concerns can
be alleviated, opening up numerous collaborative research opportunities. This
process is particularly advantageous in tasks such as pattern identification and
predictive model creation. Generative Adversarial Networks (GANs) have drawn
substantial interest in the realm of SDG due to their achievements in other areas
[10]. Since SDG relies on a generative process, GANs are well-suited for this pur-
pose. Utilizing GANs makes it challenging to differentiate between real samples
and those that are generated, due to the underlying distribution of the actual
data. Consequently, the results of GANs cannot be reversed using a deterministic
function.

On the other hand, the utilization of GANs for SDG solely does not actually
ensure the privacy of the system. Depending only on the irreversibility of GANs
is not sufficient, as GANs have already been proven to be vulnerable [13]. There-
fore, additional steps must be considered to assure the privacy of SDG systems.
The usage of private patient data in medical applications increases concerns
about the severe consequences of privacy breaches. Consequently, two funda-
mental questions must be considered: (1) What amount of information becomes
revealed during the training stage? and (2) How strong are the system’s security
measures? Hence, evaluating the system’s privacy level is crucial to ensure its
commitment to safeguarding privacy.

Differential Privacy (DP) [9] is a mathematical framework that provides a
means of ensuring and quantifying the privacy of a system. It has emerged as
the standard approach for exploring databases containing sensitive information.
DP’s strength lies in its ability to provide precise mathematical representation to
ensure privacy without limiting statistical reasoning. Additionally, DP allows for
the measurement of the privacy level of a system. In the domains of ML and DL,
where sensitive data is often employed to enhance predictive accuracy, the role
of DP is crucial. The privacy of an ML model can be compromised by various
attacks, therefore it’s wise to anticipate the existence of a potent adversary with
a thorough understanding of the system’s entire pipeline, including the model
and its training process [27]. In order to shield the privacy of the system, it’s
imperative to defend from this type of adversary, or at the minimum, quantify
the greatest possible extent of privacy intrusion in that context. A system that is
entirely differentially private guarantees that the training of the algorithm does
not depend on the sensitive information of any individual.

Differentially Private Stochastic Gradient Descent (DP-SGD), introduced in
[1], is a widely adopted technique that ensures differential privacy while main-
taining model accuracy within a given privacy budget. DP-SGD serves as the
foundation for numerous research studies [31, 2]. In essence, the DP-SGD ap-
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proach consists of three primary steps. Firstly, it limits the gradients to set the
algorithm’s sensitivity to individual data. Secondly, it introduces Gaussian noise
into the data. Finally, it performs gradient descent optimization. Currently, the
utilization of SGD within the DP-SGD framework is regarded as a very impor-
tant technique for preserving privacy without sacrificing accuracy in ML models.

Generating synthetic data in the medical domain is faced with a number of
challenges. The first challenge is ensuring privacy during the model training,
which is often not directly addressed in current works, and instead, statistical
or machine learning-based techniques are used. The second difficulty involves
handling discrete data, a task with which GAN-based techniques often grapple,
as these are designed for continuous data. The third challenge involves evaluat-
ing the quality of generated data within realistic, real-world contexts, which is
particularly important in the healthcare sector. Here, inferior synthetic data can
result in serious repercussions, potentially endangering human lives. The fourth
challenge is the integration of local and temporal correlations among features,
something that is frequently overlooked but is vital in the medical field. This
is because patient histories and disease occurrences frequently display coherent
patterns, and acknowledging these interdependencies can substantially enhance
the reliability of synthetic data.

In this paper, we present our model that produces higher-quality synthetic
data while working within similar privacy constraints. Additionally, our model
provides not just high-quality synthetic data but also superior privacy safe-
guards.

The layout of the paper is arranged in the following manner: In Section 2,
previous research on synthetic data generation, GAN, and their challenges are
discussed. Section 3 presents the proposed algorithmic framework for privacy-
preserving medical data generation. The experimental results are outlined in
Section 4. Section 5 offers a conclusion of the research.

2 Background

2.1 Related Works

Many studies utilize Differential Privacy to generate synthetic data, often follow-
ing a method described in [1]. This approach involves training a neural network
while maintaining differential privacy by adding noise and using gradient clipping
to restrict the norms of the gradients, in accordance with the standard procedure
introduced in [9]. One of the major contributions of [1] is the introduction of the
privacy accountant that monitors privacy loss. Inspired by the effectiveness of
this method, we expand our privacy-preserving framework by adopting Rényi
Differential Privacy (RDP) [20] as a novel notion of DP to estimate privacy loss.

Recent research has focused on tackling the challenges related to generating
synthetic healthcare data [5, 11]. MedGAN is an early system used to generate
synthetic medical data, which only relies on GAN models and does not imple-
ment any privacy-preserving mechanism [8]. While the method exhibits strong
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performance in data generation, it lacks privacy assurance, as GANs can be
susceptible to attacks. In contrast, MedGAN utilizes denoising autoencoders to
produce discrete data [8]. Tools like Synthea, synthetic patient generator, are
not widely utilized as they depend solely on conventional specifications and do
not account for factors vital to predictive analysis [30, 7]. Other research, such as
CorGAN [19] and TableGAN [23], employs convolutional GANs for generating
sequences of longitudinal events, while CTGAN [32] is specifically designed to
handle tabular data comprising both continuous and discrete features. However,
none of these approaches ensures any privacy during data generation. This lack
of privacy protection makes these models vulnerable in practice and could com-
promise the privacy of original medical data. This paper will delve into different
strategies for preserving privacy.

2.2 Differential Privacy

Differential Privacy ensures the safeguarding of individual privacy by quanti-
fying the privacy loss that takes place when information is disclosed from a
database, relying on a defined mathematical concept [9]. The most commonly
used definition of Differential Privacy is (ϵ, δ)-differential privacy.

Definition 1 ((ϵ, δ)-DP). If a randomized algorithm A that takes a dataset
X as input and returns a query outcome Q satisfies the definition of (ϵ, δ)-
differential privacy, then it ensures individuals’ privacy for all possible query
outcomes Q and all neighbouring datasets D and D′.

Pr[A(D) ∈ Q] ≤ eϵ Pr[A(D′) ∈ Q] + δ (1)

Datasets D and D′, which differ only by one record, are referred to as neigh-
bor datasets, highlighting the importance of maintaining individual privacy. The
parameters (ϵ, δ) are used to represent the privacy budget, meaning that differ-
entially private algorithms do not guarantee absolute privacy but only indicate
the level of confidence in privacy preservation for the given (ϵ, δ) values. The
smaller the values of (ϵ, δ), the more confident we are about the algorithm’s
privacy. The value of (ϵ, δ) with δ = 0 is known as ϵ-DP, which is the original
definition [9] and provides a stronger promise of privacy since even a small value
of δ can lead to privacy violations due to the shift in the distribution. The use
of (ϵ, δ)-DP is common because it allows for advanced composition theorem to
be applied.

Theorem 1 (Advanced Composition [9]). Suppose we apply an adaptive
composition of a (ϵ, δ)-DP mechanism k times. Then, the resulting composite
mechanism will be (ϵ′, kδ′ + δ) − DP with respect to δ′, where the parameter ϵ′

is defined as ϵ′ =
√

2k ln
( 1

δ′

)
ϵ + kϵ(eϵ − 1).
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2.3 Rényi Differential Privacy

Compared to the basic composition theorem, Theorem 1, known as strong or
advanced composition, establishes a more precise upper limit for the privacy
loss in (ϵ, δ) − DP compositions. However, the strong composition theorem has
the drawback of rapidly increasing privacy parameters as the theorem is used
repeatedly, leading to a selection of possible (ϵ(δ), δ) values. A novel approach
called Rényi Differential Privacy (RDP) was introduced in [20] to overcome some
of the constraints associated with (ϵ, δ) − DP. This approach is grounded in the
idea of Rényi divergence, as detailed in Equation 2.

Definition 2 (Rényi divergence of order α [25]). Rényi divergence of order
α, which quantifies the difference between two probability distributions P and P ′,
is specified as follows:

Dα(P ||P ′) = 1
α − 1 log

(∑
x∈X

(
P (x)αP ′(x)1−α

))
(2)

The Rényi divergence, which is a more general form of the Kullback-Leibler
divergence, is equivalent to the Kullback-Leibler divergence when α is equal to 1.
When α is equal to infinity, the special case is:

D∞(P ||P ′) = log
(

sup
x∈X

P (x)
P ′(x)

)
(3)

The value given by the logarithm of the highest ratio of probabilities for a
given x over P ′(x) is used to calculate the Rényi divergence. The relationship
between ϵ-DP and Rényi divergence is established when the value of α = ∞. In
case a randomized mechanism A demonstrates ϵ-differential privacy, then for a
pair of datasets D and D′, differing by a single record, the condition depicted in
Equation 4 has to be satisfied. Using the definitions discussed earlier, the work
[20] unveiled a novel concept in differential privacy known as RDP.

Definition 3 (RDP [20]). The (α, ϵ)−RDP is a randomized algorithm A : D →
U , and it is defined as satisfying the condition that for all neighbour datasets D
and D′, the following condition is satisfied:

Dα(A(D)||A (D′)) ≤ ϵ (4)

Two essential characteristics of the RDP definition (Definition 3) must be
taken into account.

Proposition 1 (Composition of RDP [20]) Assuming A is a randomized func-
tion that maps from a set X to a set U1 and conforms to (α, ϵ1) − RDP , and
B is a randomized function that maps from U1×X to a set U2 and conforms
to (α, ϵ2) − RDP . Then, by applying A to X , we obtain M1, and by applying
B to M2 and X , we obtain M2. The resulting mechanism (M1, M2) meets the
conditions of (α, ϵ1+ ϵ2)-RDP.
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Proposition 2 Assuming A is a randomized function that maps from a set
X to a set U and adheres to (α, ϵ) − RDP, then it must also comply with
(ϵ + log( 1

δ )
(α−1) , δ) − DP for any value of δ that falls between 0 and 1.

The two propositions mentioned above are fundamental to our privacy preser-
vation approach. Proposition 1 deals with computing the privacy cost by combin-
ing the autoencoder and GAN structures. Proposition 2 is useful for evaluating
the level of differential privacy in our system using the standard (ϵ, δ) definition
(as defined in Definition 1).

3 Algorithmic Framework

We have developed a GAN model that secures privacy through the implementa-
tion of Rényi differential privacy. GAN models have historically faced challenges
when generating non-continuous data [15], prompting us to integrate autoen-
coders [18] to establish a continuous feature space representative of the input.
This enables the GAN to produce high-quality synthetic data, simultaneously
protecting privacy. No matter the type of input data, whether continuous, dis-
crete, or a combination of both, the autoencoder can convert the input space
into a continuous one. The autoencoder functions as a conduit between the non-
continuous data and the GAN model which is often common in medical domains.

The framework we propose is depicted in Figure 1. In this configuration,
random noise z ∈ Rr, which follows a normal distribution N (0, 1), is taken by
the generator G and mapped to the generator’s domain Dd

g . The discriminator
D takes real data x ∈ Rn and maps it to the discriminator domain Dd, typically
a set of binary values or values within the range [−1, 1]. In our RDPVAEGAN
framework, the synthetic data undergoes decoding before being inputted into
the discriminator, which deviates from the standard training process used in
traditional GANs. This decoding step involves guiding the artificial data through
a pre-trained variational autoencoder.

3.1 GAN

Most of the studies in synthetic data generation [8] overlook the local or temporal
correlations of the features. Multilayer perceptrons are commonly used, though
they don’t correspond well with real-life situations such as the development of
diseases. To overcome this limitation, we deploy one-dimensional convolutional
neural networks (CNNs) in our variational autoencoder as well as in the gener-
ator and discriminator components of our GAN architecture. CNNs are capable
of recognizing patterns in correlated input features as well as capturing temporal
information [12].

The procedure for training the GAN is described in Algorithm 2, referred
to as the GAN Training Step. Remarkably, differential privacy is exclusively
applied to the discriminator, as it is the pivotal component with access to au-
thentic data. To effectively thwart mode collapse during training, we harness the
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Fig. 1. The overall block diagram of GAN framework.

remarkable capabilities of the Wasserstein GAN [4], which adeptly approximates
the Earth Mover’s (EM) distance. The Wasserstein GAN has garnered acclaim
for its unparalleled effectiveness in evading mode collapse. Distinguished as the
Wasserstein-1 distance, the EM distance signifies the minimal expenditure re-
quired to seamlessly convert a synthesized data distribution Pg into an authentic
data distribution Px.

W (Px, Pg) = inf
vϵ
∏

Px, Pg

E(x,y)∼ v [∥x − y∥] (5)

Here,
∏

Px, Pg represents the collection of all joint distributions ϑ(x, y) with
marginals given by Px and Pg, respectively. The function ϑ(x, y) measures the
amount of "mass" that needs to be shifted from x to y to effectively transform
Px into Pg.

To tackle the challenging infimum in equation 5, WGAN employs an opti-
mization strategy outlined in equation 6, inspired by the Kantorovich-Rubinstein
duality [29], reflecting the intrinsic difficulty of the issue.

W (Px, Pg) = sup
∥f∥L≤1

Ex∼Px
[f(x)] − Ex∼Pg

[f(x)] (6)

To offer a more simplified explanation, the terms “supremum” and “infi-
mum” correspond to the smallest upper bound and the largest lower bound,
respectively.
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Definition 4 (1-Lipschitz functions). If we have two metric spaces (X, dX)
and (Y, dY ) where 'd' is the distance metric, the function f : X → Y is known
as K − Lipschitz when:

∀(x, x′) ∈ X, ∃K∈ R : dY (f(x), f(x′)) ≤ KdX(x, x′) (7)

With K = 1 and using the distance metric, equation 7 can be expressed as:

∀(x, x′) ∈ X : |f(x) − f(x′)| ≤ |x − x′| (8)

In order to compute the Wasserstein distance, it becomes imperative to dis-
cover a function that adheres to the 1-Lipschitz constraint (as specified in Defi-
nition 4 and Equation 8). To accomplish this, a neural model is constructed to
acquire knowledge of the function. This entails the development of a discrimina-
tor D, which deviates from employing the Sigmoid function and instead produces
a scalar output, rather than a probability of confidence.

When it comes to privacy issues, it should be highlighted that the generator
is not granted direct access to the actual data, yet it is able to access the discrim-
inator’s gradients. Solely the discriminator is granted access to real data, and
we propose training it while maintaining differential privacy. Fundamentally, this
approach is rooted in the post-processing theorem of differential privacy, which
presents the following recommended methodology.

Theorem 2 (Post-processing [9]). Suppose we have an algorithm D : N|X | →
D that satisfies (ϵ, δ)−differential privacy, and we have an arbitrary function
G: D → O. If we compose G with D, i.e., G ◦ D : N|X |→ O, then the result-
ing algorithm also satisfies (ϵ, δ)-differential privacy, as per the post-processing
theorem [9].

Drawing from the aforementioned rationale, we consider the generator and
discriminator as G and D, respectively. By considering the generator as a random
mapping that’s layered over the discriminator, ensuring differential privacy solely
on the discriminator ensures the entire system maintains differential privacy.
This makes it unnecessary to train a generator that maintains privacy. During
the generator’s training process, as demonstrated in lines 17-20 of Algorithm
2, a private generator is unnecessary, and we can employ the conventional loss
function for the generator within the WGAN framework [4].

3.2 Variational Autoencoders

The autoencoder is architected to realize multiple goals at the same time, such
as detecting correlations among neighbouring features, creating a compressed
feature space, converting discrete records into a continuous domain, and handling
both discrete and continuous data. Autoencoders are a type of neural network
design composed of an encoder and a decoder. The encoding function Enc(·) :
Rn → Rd is crafted to map the input x ∈ Rn into the latent space L ∈ Rd,
equipped with weights and biases θ. Alternatively, the decoding function Dec(·) :
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Algorithm 1 Pre-Training of Variational Autoencoder
Require: Real dataset X = {xi}Ni=1, weights of the network θ, ϕ, learning rate η,

number of epochs nvae and standard deviation of the additive noise σvae.

2: for k = 1 . . . nvae do
Sample a mini− batch of n examples. X = {xi}ni=1

4: Split X into X1, . . . , Xr where r =
⌊
n
k

⌋
for l = 1 . . . r do

6: Calculate Loss(θ, ϕ,Xl) using Eq. 10.
gθ,ϕ,l ← ∇θ,ϕLoss(θ, ϕ Xl)

8: end for
ĝθ,ϕ ← 1

r

∑r

l=1 (gθ,ϕ,l+N (0, σ2
vae))

10: θ̂, ϕ = Update(θ, ϕ, η, ĝθ,ϕ)
end for

Algorithm 2 GAN Training
Require: Real dataset X = {xi}Ni=1, generator and discriminator weights ψ and

ω, respectively, learning rate η, random noise z where each zi follows a normal
distribution zi ∼ N (0, 1), number of epochs ngan, number of training steps for
discriminator per one step of generator training nd, norm bound C and standard
deviation of the additive noise σgan.

2: for j = 1 . . . ngan do
for k = 1 . . . nd do

4: Take a mini− batch from real data X = {xi}ni=1
Sample a mini− batch Z = {zi}ni=1

6: Partition real data mini− batches into X1, . . . ,Xr
Partition noise data mini− batches into Z1, . . . ,Zr

8: for l = 1 . . . r do
xi ∈ Xl and zi ∈ Zl

10: Loss = 1
k

∑k

i=1(D(xi)−D(Dec(G(zi))))
gω,l ← ∇ωLoss(ω, Xl)

12: ĝω,l ←
gω,l

max(1,
∥gω,l∥2

C
)

end for
14: ĝω ← 1

r

∑r

l=1 (ĝω,l+N (0, σ2
ganC

2I))
Update: ω̂ = ω − ηĝω

16: end for
Sample {zi}ni=1 from noise prior

18: Loss = − 1
n

∑n

i
(D(Dec(G(zi))))

gψ ← ∇ψLoss(ψ, Z)
20: Update : ψ̂ ← ψ − ηgψ

end for
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Rd → Rn seeks to reconstruct x̂ ∈ Rn from the latent space, also with its own
set of weights and biases ϕ. The end goal is to precisely recreate the initial input
data, which means that x = x̂. Autoencoders typically utilize Mean Square
Error (MSE) for handling continuous inputs and Binary Cross Entropy (BCE)
for managing binary inputs. However, in this research, we apply Variational
Autoencoders (VAEs) which serve as a generative model offering a method to
learn complex data distributions. Unlike conventional autoencoders which can
encode and then reconstruct input data, VAEs also learn a model of the data
distribution, enabling the generation of new instances. Training a VAE involves
managing two main tasks:

– The aim of the Encoder is to approximate the posterior P (L | x) in such a
manner that P (L) conforms to a unit Gaussian distribution.

– The goal of the Decoder is to estimate P (x | L) in such a manner that it
permits a highly probable reconstruction of the original input x.

P (x) =
∫

P (x | L)P (L)dL (9)

The loss function for the VAE is the negative log-likelihood with a regularizer.
Since there are no shared global representations for all data points, we can
decompose the loss function into only terms that depend on a single datapoint
li. The total loss is then given by

∑N
i=1 li for N total data points. The loss

function li for each datapoint xi is given by:

li(θ, ϕ) = −EL∼Enc(L|xi,θ)[log Dec(xi | L, ϕ)]
+KL(Enc(L | xi, θ) || Dec(L))

(10)

The initial part refers to the reconstruction loss, which is essentially the expected
negative log-likelihood of the i-th data point. The subsequent component is a
regularization term often referred to as the Kullback-Leibler divergence. This
divergence measures the difference between the distribution produced by the
encoder Enc(L | xi) and the distribution generated by the decoder Dec(L).

Algorithm 1 presents the step-by-step guide to the pre-training process of
the autoencoder, encapsulating the following:

We pre-train the VAE for nvae steps, where the number of steps is deter-
mined based on the desired level of privacy budget ϵ. To process a mini-batch,
we split it into several micro-batches. We compute the loss (line 6) and deter-
mine the gradients (line 7) for each individual micro-batch with a size of 1. We
then introduce Gaussian noise N (0, σ2

vae) independently to the gradients which
are calculated from micro-batch (line 9). Finally, the optimizer updates the pa-
rameters (line 10). Encoder mainly approximates mean µ and variance σ2 from
the input. Afterwards, latent space is sampled using µ and σ2.

3.3 Model Architecture

To maximize effectiveness, we strategically employed four 1 dimensional (D) con-
volutional layers in both the GAN discriminator and generator, as well as in the
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encoder of the autoencoder. Notably, the final dense layer, pivotal for decision-
making, possesses an output size of 1. Throughout the network, each layer em-
ployed the PReLU activation function [14], with the exception of the concluding
layer, which operated without any activation. We employed 1-D fractionally-
strided convolutions, usually referred to as transposed convolutions in the gen-
erator, following the approach described in [24]. Notably, the generator was fed
with a noise of size 128 in the input, ultimately yielding an output size of 128
for optimal outcomes.

The encoder’s architecture closely resembled that of the GAN discriminator,
except for the omission of the last layer. In the decoder, we made use of 1-D
transposed convolutional layers, arranging them in the reverse sequence of those
utilized in the encoder, similar to the approach used in the generator. The en-
coder efficiently utilized PReLU activation functions, with the exception of the
final layer, which employed Tanh activation to align with the generator’s output.
The decoder also adopted PReLU activation for all of its layers, with the excep-
tion of the final layer. The concluding layer used a Sigmoid activation function
to restrict the output data range to be between [0, 1]. This strategic choice fa-
cilitated the reconstruction of discrete data that accurately corresponded to the
input data. Importantly, the input size of the decoder was meticulously matched
with the output dimension of the GAN generator.

To ensure versatility across diverse datasets, we adeptly tailored the input
pipeline of both the GAN discriminator and autoencoder to seamlessly accom-
modate varying input sizes. Notably, these adjustments enabled smooth adapt-
ability and compatibility. However, it is worth highlighting that no modifications
were required for the GAN generator, as we consistently employed a fixed noise
dimension throughout all experiments. This approach demonstrated the genera-
tor’s robustness and autonomy, eliminating the need for additional adaptations.

3.4 Privacy Loss

For precise and efficient privacy loss calculations, we leveraged the advanced
RDP privacy accountant [1], surpassing the computational accuracy of conven-
tional DP methods. Proposition 2 proved instrumental in seamlessly converting
RDP computations to DP, expanding the applicability of our approach. The
technique of adding Gaussian noise, commonly known as the Sampled Gaussian
Mechanism (SGM) [21], served as a reliable tool for introducing noise. To effec-
tively monitor and track privacy loss, we relied upon the guidance of the following
theorem, ensuring a comprehensive understanding of the privacy landscape.

Theorem 3 (Privacy loss of SGM [21]). Assume that D and D′ are two
datasets that differ by only one entry, and let G be a Sampled Gaussian Mecha-
nism applied to a function f with an l2 sensitivity of one, then if we define the
following:

G(D) ∼ φ1 ≜ N (0, σ2) (11)

G(D′) ∼ φ2 ≜ (1 − q)N (0, σ2 ) + qN (1, σ2) (12)
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Assuming φ1 and φ2 represent probability density functions, the (α, ϵ)−RDP
privacy requirement is met by G, if the following condition holds:

ϵ ≤ 1
α − 1 log(max {Aα, Bα}) (13)

Where, Aα ≜ Ex∼φ1 [( φ2
φ1

)α] and Bα ≜ Ex∼φ2 [( φ1
φ2

)α].

Through careful analysis, it has been firmly established that Aα is consis-
tently less than or equal to Bα, effectively simplifying the privacy computations
utilizing the RDP framework. This simplified approach strategically focuses on
upper bounding Aα, streamlining the privacy calculations. By employing a com-
bination of closed-form bounds and numerical computations, we are able to
accurately determine the value of Aα [21]. It should be noted, this method sets
a limit on ϵ for each individual step. Nonetheless, to ascertain the cumulative
bound of ϵ for the full training procedure, we need to multiply the number of
steps by ϵ, in line with what Proposition 1 delineates. For a tighter upper bound
assurance, we execute experiments across a range of α values and use the RDP
privacy accountant to pinpoint the smallest (ϵ) and its associated α. Finally,
Proposition 2 is employed to precisely compute the (ϵ, δ) − DP , providing a
comprehensive measure of privacy.

When combining autoencoder and GAN training, it is important to deter-
mine how to calculate the (α, ϵ) − RDP . Proposition 1 examines the specific
input and output domains, denoted by X , U1, and U2, corresponding to the
autoencoder and the discriminator in the given context. Here, the autoencoder
is represented by the mechanism A, and the discriminator is represented by
the mechanism B. U1 becomes the output space after the decoder processes the
fake samples. Subsequently, the discriminator observes U1, while the real in-
put space is represented by X . With α held constant, Proposition 1 suggests
that the entire system maintains (α, ϵvae + ϵgan) − RDP . Nevertheless, it’s
not assured that there can be a constant value for α, since the RDP contains a
budget constraint that is specified by this variable. To determine a fixed α, we
use the following procedure: Consider two systems, S1 one for the autoencoder
with (α1, ϵ1) − RDP and S2 for the GAN with (α2, ϵ2) − RDP . Assuming
ϵ1 ≤ ϵ2 without any loss of generality, we can choose αtotal = α2. This results
in S2 having (αtotal, ϵ2) − RDP . For the system S1, we choose αtotal = α1 and
compute ϵ′ in a way that ensures ϵ ≤ ϵ′. The entire system, comprised of S1 and
S2, subsequently meets the (αtotal, ϵ2 + ϵ′) − RDP condition.

4 Experimental Evaluation

In this section, we outline the specifics of the experimental design, convey the
results procured from multiple experiments, and perform a comparative analysis
with multiple approaches documented in the existing research literature.

The dataset is partitioned into two segments.: Dtr for training and Dte for
testing. We employ Dtr for model training, subsequently using these trained
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models to generate synthesized samples, denoted as Dsyn. As elaborated in Sec-
tion 3, although the structures may change depending on the size of the dataset,
the dimensions of the latent space (also serving as the input space for the de-
coder) sampled from encoder’s output (mean µ and variance σ2) and the output
space of the generator remain unchanged. Likewise, the dimensions of the input
space for the encoder, the output space for the decoder, and the input space for
the discriminator also remain the same. It’s essential to highlight that all stated
ϵ values correspond to the definition of (ϵ, δ)−DP where δ = 10−5, except when
explicitly stated otherwise.

We trained both the Convolutional GAN and the Convolutional Variational
Autoencoder with a mini-batch size of 64, using the Adam optimizer [17], and
applying a learning rate of 0.005. To enhance the training process, we employed
Batch Normalization (BN) [16] for both the discriminator and the generator. A
single GeForce RTX 3080 NVIDIA GPU was utilized for our experimental work.

4.1 Datasets

In our research, we utilized two datasets to assess the effectiveness of our model.

– Early Prediction of Sepsis from Clinical Data (Sepsis) [26]: The first
dataset used in this study was obtained from the publicly available 2019 Phy-
sioNet Challenge. In accordance with the Sepsis III guidelines, the diagnosis
of sepsis relies on the identification of a two-point increase in the patient’s
Sequential Organ Failure Assessment (SOFA) score, along with the presence
of clinical signs and symptoms indicating a potential infection. The dataset
consists of approximately 40,000 electronic health records of patients admit-
ted to the ICU with suspected or confirmed sepsis. The data was collected
from Beth Israel Deaconess Medical Center and Emory University Hospital.
Each patient record comprises a time series of clinical measurements taken
at 1-hour intervals with a binary label indicating the presence or absence of
sepsis at each time point, thereby represented by a single row. The clinical
measurements are a set of 40 numerical and categorical attributes that en-
compass patient demographics, vital signs and laboratory values. Notably,
the dataset contains a total of 2,932 septic and 37,404 non-septic patients.

– Cardiovascular Diseases Dataset [28]: The second dataset utilized in
this study was retrieved from Kaggle. The dataset includes approximately
70,000 records of patients’ data with 12 attributes encompassing both nu-
merical and categorical types. The dataset is primarily composed of three
types of input features, namely objective features representing patient de-
mographics, results of medical examination conducted at that time and sub-
jective information provided by the patients themselves. The target feature
is denoted by a binary value that signifies the presence or absence of car-
diovascular disease. Additionally, the dataset demonstrates a well-balanced
distribution of male and female records. Similarly, the target feature exhibits
a balanced spread of binary values, enhancing the dataset’s reliability.
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4.2 Comparison

Our model is juxtaposed with two benchmark methods for comparison. The
choice of benchmark models hinges on the specific characteristics inherent to
the experiments being performed.

DPGAN [31]: This model is capable of generating superior quality data points
while maintaining adequate differential privacy safeguards. This is accomplished
by injecting carefully engineered noise into the gradients during the learning
phase. For this research, we employed an open-source edition of DPGAN.

MedGAN [8]: Structured to generate discrete entries, such as those required
for unsupervised synthetic data creation, MedGAN’s architecture incorporates
an autoencoder and a traditional GAN. However, it does not ensure data privacy.
For our experimentation, we used an open-source version of MedGAN.

4.3 Synthetic Data Generation

We opted for electronic health records, which were transformed into a high-
dimensional dataset, to illustrate the privacy-protection abilities of our suggested
model. In this situation, the data features are comprised of two types: numerical
and multi-label. Multi-label features (such as gender categories) are encoded
using one-hot encoding. Our aim is to harness the insight relating to a private
dataset and utilize it to generate a synthetic dataset that have a comparable
distribution while maintaining a commitment to privacy. At first, we aligned our
method with various models that neither require labeled data nor rely on it,
and are tailored for creating synthetic data in an unsupervised manner, all while
continuing to adhere to the principles of privacy preservation. We employed Eq.
10 as the loss function for pretraining the variational autoencoder.

In order to gauge the quality of the artificially generated data in an unsu-
pervised setting, we employed two evaluative metrics:

– Maximum Mean Discrepancy (MMD): This metric shows the magnitude to
which the model replicates the statistical distribution acquired from the
actual data. Recently, a work [33] underscored that MMD encapsulates
many desirable characteristics of an evaluative metric, especially pertinent to
GANs. MMD is typically employed in an unsupervised environment due to
the absence of labelled data for statistical quantifications. To record MMD,
we drew comparisons between two sample sets of real and synthetic data,
each comprising 800 entries. Figure 2 shows the comparison of MMD scores
obtain from generated and real data distributions from different datasets.
A lower MMD score suggests a greater similarity between the synthetic and
real data distributions, suggesting a more effective model.

– Dimension-wise Prediction: This evaluation method elucidates the interde-
pendencies among features, in other words, it assesses the model’s capabil-
ity to predict absent features by using the features already present in the
dataset. Let’s suppose that from Dtr, we derive Dsyn. We then randomly
pick one specific dimension (denoted as k) from both Dsyn and Dtr, label-
ing them as Dsyn,k and Dtr,k respectively. This chosen dimension is what
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we refer to as the testing dimension. All the remaining dimensions, namely
Dsyn,\k and Dtr,\k, serve to train a classifier. The classifier’s objective is to
anticipate the test set’s testing dimension value, represented by Dte,k. For
prediction tasks, the Random Forests algorithm [6] was used. The efficiency
of the holistic predictive models (those trained on synthetic data) and across
all attributes are presented in terms of the F1-score in Table 1.

From Table 1, it’s evident that our proposed model (RDPVAEGAN) has
a superior performance in capturing correlated features compared to DPGAN
and MedGAN across both datasets. The nearer the outcomes align with real
data experiments, the superior the quality of the synthetic data, indicating a
more effective model. However, it’s worth noting that only RDPVAEGAN and
DPGAN provide privacy guarantees as previously mentioned.

Fig. 2. The analysis of the differences and similarities between the real and the gen-
erated distributions. A lower MMD score means a greater similarity between the data
distributions. (a) for the Sepsis dataset and (b) for the Cardiovascular Diseases dataset.

Table 1. The table illustrates a comparison of different techniques utilizing the F-
1 score within the dimension-wise prediction setting. Except for the column labelled
“Real Data”, classifiers are trained using synthetic data.

Dataset Real Data DPGAN MedGAN RDPVAEGAN

Sepsis 0.53 0.39 0.43 0.45
Cardiovascular Disease 0.49 0.27 0.31 0.38

We’ve extended our approach to accommodate a supervised environment
and create labelled synthetic data as well. All the experiments were carried
out, with each one repeated ten times. To assess the models, we provide the
average AUROC (Area Under the Receiver Operating Characteristic Curve)
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and AUPRC (Area Under the Precision-Recall Curve) scores. Table 2 provides
the AUROC results, while Table 3 details the AUPRC outcomes. When ϵ = ∞,
privacy constraints are not applied. Based on the information in these tables,
our model surpasses DPGAN in a supervised setting. Even though MedGAN
displays superior results compared to both DPGAN and RDPVAEGAN in terms
of AUROC and AUPRC, it does not ensure the privacy of the generated data.

Table 2. This table compares various models in terms of AUROC within the context
of the (1, 10−5) −DP setting. For ϵ = ∞, we implemented our RDPVAEGAN model
without the privacy enforcement component. MedGAN does not have any privacy
enforcement as well. All models were trained utilizing synthetic data.

Dataset ϵ =∞ DPGAN MedGAN RDPVAEGAN

Sepsis 0.86 0.69 0.81 0.75
Cardiovascular Disease 0.77 0.62 0.73 0.70

Table 3. This table compares various models in terms of AUPRC within the context
of the (1, 10−5) −DP setting. For ϵ = ∞, we implemented our RDPVAEGAN model
without the privacy enforcement component. MedGAN does not have any privacy
enforcement as well. All models were trained utilizing synthetic data.

Dataset ϵ =∞ DPGAN MedGAN RDPVAEGAN

Sepsis 0.83 0.67 0.80 0.76
Cardiovascular Disease 0.76 0.60 0.72 0.68

This discussion outlines the performance of different methods within the
framework of DP. The base model is anticipated to yield the highest accuracy.
Thus, the primary investigation is: To what extent does the accuracy decrease
across different models when keeping the privacy budget (ϵ, δ) at the same level?
Tables 2 and 3 illustrate the results for this specific condition. In most experi-
ments, the artificial data generated by our system demonstrates superior quality
in classification tasks when contrasted with other models, all while operating
under the equal privacy budget.

5 Conclusion

In this research, we formulated and implemented a method for generating syn-
thetic data that maintains differential privacy, making use of Rényi Differential
Privacy. The objective of our model was to extract temporal data and feature
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correlations through the use of convolutional neural networks. The empirical
evidence showed that utilizing variational autoencoders allows for effective man-
agement of variables, whether they are discrete, continuous, or a blend of the
two. We found that our model surpasses other models in performance while op-
erating within the same privacy constraints. This superior performance can be
partially attributed to the reporting of a tighter bound, the use of convolutional
networks, and the variational autoencoder. We demonstrated the performance of
several models in both supervised and unsupervised approaches, utilizing various
metrics across two distinct datasets.

Acknowledgements

This project has been partially funded by the BMBF and the European Union
(NextGenerationEU) under project number 16KISA001K (PrivacyUmbrella).

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. pp. 308–318
(2016)

2. Acs, G., Melis, L., Castelluccia, C., De Cristofaro, E.: Differentially private mix-
ture of generative neural networks. IEEE Transactions on Knowledge and Data
Engineering 31(6), 1109–1121 (2018)

3. Al-Rubaie, M., Chang, J.M.: Privacy-preserving machine learning: Threats and
solutions. IEEE Security & Privacy 17(2), 49–58 (2019)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International conference on machine learning. pp. 214–223. PMLR (2017)

5. Baowaly, M.K., Lin, C.C., Liu, C.L., Chen, K.T.: Synthesizing electronic health
records using improved generative adversarial networks. Journal of the American
Medical Informatics Association 26(3), 228–241 (2019)

6. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001)
7. Chen, J., Chun, D., Patel, M., Chiang, E., James, J.: The validity of synthetic

clinical data: a validation study of a leading synthetic data generator (synthea)
using clinical quality measures. BMC medical informatics and decision making
19(1), 1–9 (2019)

8. Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-
label discrete patient records using generative adversarial networks. In: Machine
learning for healthcare conference. pp. 286–305. PMLR (2017)

9. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science 9(3–4), 211–407 (2014)

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the
ACM 63(11), 139–144 (2020)

11. Guan, J., Li, R., Yu, S., Zhang, X.: Generation of synthetic electronic medi-
cal record text. In: 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). pp. 374–380. IEEE (2018)



18 Pronaya Prosun Das et al.

12. Han, H., Li, Y., Zhu, X.: Convolutional neural network learning for generic data
classification. Information Sciences 477, 448–465 (2019)

13. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: Logan: Membership inference
attacks against generative models. arXiv preprint arXiv:1705.07663 (2017)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

15. Hjelm, R.D., Jacob, A.P., Che, T., Trischler, A., Cho, K., Bengio, Y.: Boundary-
seeking generative adversarial networks. arXiv preprint arXiv:1702.08431 (2017)

16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. pmlr (2015)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

19. Kroes, S., Leeuwen, M.: an, groenwold, rhh, & anssen, mp (2022). Generating
s nthetic mixed discrete-continuous health records with mixed sum-product net-
works.(1) pp. 16–25

20. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th computer security foun-
dations symposium (CSF). pp. 263–275. IEEE (2017)

21. Mironov, I., Talwar, K., Zhang, L.: R\’enyi differential privacy of the sampled
gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019)

22. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: 2008 IEEE Symposium on Security and Privacy (sp 2008). pp. 111–125. IEEE
(2008)

23. Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data syn-
thesis based on generative adversarial networks. arXiv preprint arXiv:1806.03384
(2018)

24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

25. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Con-
tributions to the Theory of Statistics. vol. 4, pp. 547–562. University of California
Press (1961)

26. Reyna, M.A., Josef, C., Seyedi, S., Jeter, R., Shashikumar, S.P., Westover, M.B.,
Sharma, A., Nemati, S., Clifford, G.D.: Early prediction of sepsis from clinical
data: the physionet/computing in cardiology challenge 2019. In: 2019 Computing
in Cardiology (CinC). pp. Page–1. IEEE (2019)

27. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of
the 22nd ACM SIGSAC conference on computer and communications security. pp.
1310–1321 (2015)

28. Ulianova, S.: Cardiovascular disease dataset (Jan 2019),
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

29. Villani, C.: Grundlehren der mathematischen wissenschaften (2008)
30. Walonoski, J., Kramer, M., Nichols, J., Quina, A., Moesel, C., Hall, D., Duffett,

C., Dube, K., Gallagher, T., McLachlan, S.: Synthea: An approach, method, and
software mechanism for generating synthetic patients and the synthetic electronic
health care record. Journal of the American Medical Informatics Association 25(3),
230–238 (2018)



Privacy-preserving Medical Data Generation using Adversarial Learning 19

31. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739 (2018)

32. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems
32 (2019)

33. Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.: An
empirical study on evaluation metrics of generative adversarial networks. arXiv
preprint arXiv:1806.07755 (2018)


