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Abstract. In this paper we address the problem of data confidentiality
when outsourcing data to cloud service providers. In our separation of du-
ties approach, the original data set is fragmented into insensitive subsets
such that each subset can be managed by an independent cloud provider.
Security policies are expressed as sets of confidentiality constraints that
induce the fragmentation process. We assume that the different cloud
providers do not communicate with each other so that only the actual
data owner is able to link the subsets and reconstruct the original data
set. While confidentiality is a hard constraint that has to be satisfied in
our approach, we consider two further optimization goals (the minimiza-
tion of the amount of cloud providers and the maximization of utility as
defined by visibility constraints) as well as data dependencies that might
lead to unwanted disclosure of data. We extend prior work by formally
defining the confidentiality and optimization requirements as an optimi-
zation problem. We provide an integer linear program (ILP) formulation
and analyze different settings of the problem. We present a prototype
that exploits a distributed installation of several PostgreSQL database
systems; we give an in-depth account of the sophisticated distributed
query management that is enforced by defining views for the outsourced
data sets and rewriting queries according to the fragments.

1 Introduction

Data outsourcing and data processing in cloud services now-a-days manifest
in different variants and for different use cases: numerous providers offer cloud
services where data is processed off-premise and is no longer under the control of
the actual data owner. Using such cloud services offers several advantages like:

– scalability: customers can book resources according to their demand leading
to a reduction of hardware and maintenance costs;

– flexibility: cloud servers can run with an optimal payload and hence the
overall consumption of energy can be reduced;

– availability: customers can access their data from anywhere – independent
of their physical location;
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– reliability: cloud providers offer service level agreements and invest in relia-
bility of their systems so that data loss is reduced.

In particular for large data sets or when data can be accessed by many
different parties, using cloud services for data outsourcing offers many benefits.
For the purposes of this article we categorize data outsourcing into three different
variants:

– Data storage (single-owner read and write access): a single data owner ma-
nages his or her data remotely at outsourcing providers; the data owner has
read and write access on the data. As one example for this setting, busines-
ses can profit by sparing the cost of maintaining an own computing center;
as another example, a patient can maintain his or her personal electronic
health record in the cloud.

– Data publishing (single-owner write, multiple-user read access): a single
data owner stores some data at outsourcing providers. Other users can then
query the data (that is, with read-only access). Access control may be en-
forced on the published data: certain data items may only be queried by
privileged users. A particular variant of data publishing is the statistical
evaluation of the outsourced data: in this case, the data can even be distor-
ted as long as the final evaluation on the distorted data does not diverge
much from the evaluation on the original data.

– Data sharing (multiple-owner read and write access): multiple data owners
manage their data collaboratively where each data owner may selectively be
entitled only to certain read and write accesses. In the business example, in
contrast to data storage, different business units may share data and have
the added value of executing fine-grained access control; in the electronic
health record example, patients can selectively allow read and write access
to some of their health data for medical personnel.

However, outsourcing data also means that the user loses control over the
data and the cloud providers have to be trusted in order to ensure confidentiality
of sensitive or business-critical data. The three outsourcing variants each have
different security requirements which we now briefly discuss.

When using the data storage variant, data should be inaccessible to other
users or the cloud service provider. One possibility to ensure confidentiality
would be to encrypt the data stored in the cloud database, however, this li-
mits the provider’s ability of processing the data to answer complex queries by
the user. To achieve query answering on ciphertexts, property-preserving en-
cryption schemes are available that allow to sort ciphertexts, or to search for
encrypted keywords on the ciphertexts. While these schemes enable certain ope-
rations on the encrypted data they come at the cost of an increased overhead;
prototype systems that apply such encryption schemes are [27, 31] for SQL da-
tabases (which also feature homomorphic encryption for aggregations) and [34]
for NoSQL databases.

When using the data publishing variant, only certain characteristics of the
data are confidential. These characteristics can be hidden by distorting the
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data with some noise. Examples for the publishing of distorted data include k-
anonymity [28] and differential privacy [20]. For the example use cases, business-
critical or medical data would only published in a curated version including
slightly modified or generalized values.

In case of the data sharing variant, data should selectively be accessible
to some users but should be hidden from other users or third parties. For the
purpose of encrypted data sharing with multiple owners, multi-user property-
preserving encryption schemes exist but the distribution of appropriate crypto-
graphic keys is a major complication.

As an alternative, this article proposes a separation of duties approach to
address the complexity of encryption – however, we want to reinforce that in a
real-world system a combination of separation of duties and encryption would be
of added practical value. Our proposed approach applies to the data outsourcing
variant of data storage, where data confidentiality is achieved by distributing
data fragments among different separate cloud service providers – with a spe-
cific focus on data storage in cloud databases (“database-as-a-service”). If in
addition selective access rights on the distributed fragments are given to several
users, the data outsourcing variant of data sharing can also profit from our se-
paration of duties approach. We refrain however from distorting data as would
be necessary for some data publishing scenarios mentioned above. A particu-
lar scenario that our approach is suited for is the outsourcing of medical data
into repositories. Here several data providers can submit their data into these
repositories. The important difference to encryption-based approaches is that
statistical evaluations are still possible on plaintext data; support for statistics
on certain attribute combinations can be enforced by visibility constraints.

Generally, the term separation of duties means that a specific task is hand-
led by multiple entities to prevent malicious behavior which could be carried
out by a single entity in control of the whole task. In the context of preserving
confidentiality in cloud databases, this is based on the observation that in many
scenarios data only becomes sensitive in association with other data. By distri-
buting the data among multiple database servers with a technique called vertical
fragmentation, these sensitive associations can be broken up such that each ser-
ver only maintains an insensitive portion of the data. The fragmentation process
is guided by a security policies that contains so-called confidentiality constraints.
As long as the servers are not collaborating to reestablish the association, this
separation of duties approach ensures the confidentiality of the underlying data.
The huge advantage of our approach is that the data can be outsourced in plain-
text because and the data do not have to be encrypted which would drastically
limit the servers’ ability to process client queries. Moreover, no noise is added
and the data outsourced plaintext data retain their original values.

It is a challenging task to decide how the data is distributed among the ser-
vers. On the one hand, the security requirements have to be met but on the
other hand the number of involved servers should be relatively small to limit
the costs for the user and ensure efficient querying. Therefore, the proposed
separation of duties approach can be viewed as a typical mathematical optimi-
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zation problem. In this article we consolidate and extend our prior work [6, 7] in
a multi-relational environment. Moreover, we extend the benchmarking of our
prototype implementation which is capable of distributing data (more precisely,
vertical fragments) among several database servers and which appropriately ana-
lyzes and rewrites arbitrary SQL queries. In detail, in this article we make the
following contributions:

– We investigate separation of duties in a realistic data model; in particu-
lar, we consider multiple database relations as well as dependencies between
data which are allowed to span multiple relations – both of these are impor-
tant in real-world database systems to achieve non-redundancy and to avoid
anomalies for example by database normalization.

– We formulate separation of duties as a mathematical optimization problem
according to several optimization goals – satisfying confidentiality constraints
under dependencies while minimizing the amount of database servers, max-
imizing the amount of satisfied visibility constraints.

– We provide article a benchmarking of the optimization procedure (using IBM
CPLEX) on the widely used TPC-E data schema.

– We give a detailed account of the query rewriting approach followed when
accessing data that are distributed among different fragments.

– We provide details of a benchmarking of distributed query execution on the
fragmented TPC-H dataset. In particular, our approach can execute all of
the TPC-H benchmark queries – while currently existing approaches using
property-preserving encryption are unable to execute the entire query set.

We start this article with a survey of related work in Section 2. Section 3 sets
the necessary terminology; Section 4 analyzes the theory of several Separation of
Duties problems; Section 5 provides a translation into an integer linear program;
Sections 6 and 7 describe the implementation and evaluation; Section 8 concludes
the article.

2 Related Work

Security and privacy have been challenging tasks ever since the introduction of
the principle of data outsourcing and a lot of research has been carried out to
address different aspects of this problem such as access control, data confidenti-
ality and data integrity. Security can be achieved by encryption – carried out by
the user before outsourcing the data to the database. Still, encryption operations
are generally very costly and moreover, existing cryptographic techniques can
still not be efficiently used to evaluate more complex queries like, for instance,
computations on the data. In this paper we focus on data confidentiality by
data fragmentation and distribution without encryption; however our proposed
approach can indeed be combined with conventional encryption (as in [1]) or
even novel encryption approaches (that we also applied in prior work as for ex-
ample order-preserving encryption [32], searchable encryption [33] or even fuzzy
searchable encryption [21, 23]).
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Vertical fragmentation approaches split a database into two or more frag-
ments consisting each of a subset of the attributes (that is, columns) of the
entire database. The theory of vertical fragmentation for relational database
systems is well-studied. As an early resource, [9] study vertical fragmentation
that also takes transaction processing costs into account. Fragmentation is also
extensively covered in the standard textbook [26]. A more recent comparative
evaluation of vertical fragmentation approaches is provided in [25]; however all
of these approaches do not consider fragmentation as a security mechanism.

Vertical fragmentation can be used to break sensitive associations between
attributes. Vertical fragmentation for data outsourcing was first analyzed from
a security point of view in [1] where a single relation is divided into two frag-
ments. They model sensitive associations between columns of the single relation
as subsets of its columns. In each fragment some values of a tuple are stored as
plaintext while each fragment always additionally contains each entire tuple in
encoded form (for example, encrypted); that is, they rely on encryption whenever
it is impossible to meet the confidentiality requirements with those two servers
only. The two fragments are outsourced to two distinct honest-but-curious, non-
communicating servers. A user runs a client software for database management,
query optimization and query postprocessing. Query execution performance is
good for queries covering plaintext values but worse for querying encoded data.
The authors provide strategies to optimize query execution plans and identify
an optimal vertical fragmentation according to some cost matrix. In contrast to
this work, our approach supports more than two external servers as well as a
trusted owner server, so that we can refrain from using any form of encryption
and we consider more optimization goals.

Several approaches extended and improved this first analysis. [12] and [14]
pioneer the idea of a single data owner safeguarding as few data as possible
of a single relation. To do so, a database table is split vertically into a server
fragment (to be stored at an untrusted cloud server) and an owner fragment
(to be stored at a trusted local database server). Again, only two fragments
are considered. The aim is to store a minimal subset of columns in the local
database such that the remaining set of columns which is stored at the untrusted
server is insensitive. This approach works totally without encryption because the
owner site is assumed to be trusted. The authors define fragmentation correctness
with respect to completeness, confidentiality and non-redundancy, and analyze
fragmentation metrics to assess quality of a fragmentation. A complexity analysis
is based on the weighted minimum target hitting set problem.

Other proposals such as [10, 15, 13, 11, 19, 17, 18] use vertical fragmentation
as a tool to split sensitive associations in a database table. It is required that
those fragments do not have an attribute in common such that the fragments are
unlinkable. Due to the unlinkability, the fragments can possibly be stored at a
single untrusted server which is then in possession of all the data but cannot es-
tablish sensitive associations. In particular, [19] introduces the concept of k-loose
associations: while associations between single tuples (or the confidential values
therein) in two fragments remain protected, more general associations between
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groups (of size k) of confidential values can be published and hence improve
data visibility. For a detailed security analysis, probabilities of one-to-one asso-
ciations between values given the published fragments and k-loose associations
are analyzed. The authors consider both confidentiality and visibility constraints
but assume that there is no conflict between these constraints.

In [18] the concept of data dependencies is introduced. The authors state
that certain combinations of attributes can be used by a sophisticated untrusted
server to draw conclusion about other attributes which could potentially lead to
the exposure of sensitive data. More specifically, [4, 2] consider certain classes of
data dependencies (in particular, subcases of equality generating dependencies
and tuple generating dependencies) and investigate their impact on information
disclosure.

[8] proposes vertical fragmentation into two fragments: one with confiden-
tial and one with non-confidential attributes; only confidential attributes are
encrypted with the Advanced Encryption Standard (AES). Associations bet-
ween attributes are not considered. An analysis reveals that joins between the
confidential and non-confidential attributes are costly.

We extend and consolidate these prior approaches by supporting multiple
relations while combining several optimization goals into one problem definition.

In addition, some approaches go beyond vertical fragmentation and consider
other kinds of fragmentations: Expressive constraints and dependencies in first-
order logic have previously been analyzed in [4] for vertical as well as in [35] for
horizontal confidentiality-preserving fragmentations.

Several approaches cover only data publishing – as opposed to data storage
or data sharing as we do. In particular, [37, 39] studies data publishing and
hierarchical data partitioning under the notion of differential privacy which is
a probabilistic measure of data confidentiality. Roughly, the probability distri-
bution of the published data should not diverge substantially from similar data
sets. To achieve this they partition the original datasets into subsets and in-
troduce noise to ensure confidentiality for certain statistical queries; these que-
ries are however not general enough (mostly count queries are considered). As
another approach for data publishing is [24] that enumerates all possible hybrid
fragmentations (what the authors call “hierarchical partitioning”) of a table. Af-
terwards, an optimal fragmentation is anonymized by generalizing data in each
fragment with a new value. More recently, [38] combine vertical fragmentation
with k-anonymity, l-diversity, and t-closeness to achieve more efficiency when
publishing multi-dimensional data. In contrast to these (as well as related) ap-
proaches, we focus on data storage and data sharing instead of data publishing
– hence in our approach data are not distorted.

3 Background

As the underlying data model, we focus on the formal definition of a relational
database. As usual, a relation schema R ({a1, . . . , an}), or simply R (a1, . . . , an),
consists of a relation name R and a finite set of attributes {a1, . . . , an} with
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n ≥ 1. Each attribute ai is associated with a specific domain which is denoted by
the expression dom(ai). Next, a relation r, also denoted by r(R), over the relation
schema R(a1, . . . , an) is defined as an ordered set of n-tuples r = (t1, . . . , tm) such
that each tuple rj is an ordered list tj = v1, . . . , vn of values vi ∈ dom(ai) or
vi = NULL. The degree of a relation is defined as the number of attributes in r.

A database schema D = {R1(A1), . . . , RN (AN )} is defined by a name D
and a set of relation schemes Ri(Ai) where Ai denotes the corresponding set of
attributes. Finally, a database state d = {r1, . . . , rN} over a database schema
D = {R1(A1), . . . , RN (AN )} is a set of relations such that each ri is a relation
over the respective relation schema Ri(Ai).

As a tuple identifier tids for relation schema Rs a subset of As is chosen
that is a candidate key: the tuple values are functionally dependent on the key;
that is, two tuples with the same identifier value would be identical on all other
values. Formally, if rs is a relation over the schema Rs(As) and tids ⊆ As, for
the two tuples t1, t2 ∈ rs the following holds

t1[tids] = t2[tids]⇒ t1 = t2

The set of all tuple identifiers is denoted by tid :=
⋃N
s=1 tids.

To illustrate the individual steps (namely, setup, select, insert, delete and
update), a small database D consisting of two tables D and P in a hospital
scenario serves as a running example. The first table stores information about
doctors and the second table stores information about patients:

D = { D(DocID,Name,DoB,ZIP,Specialty),

P(PatID,Name,DoB,ZIP,Diagnosis,Treatment,DocID) }

where DocID and PatID serve as tuple identifiers.

4 Separation of Duties Problems

Analogous to [1] and [12] we assume that Cloud service providers are “honest but
curious”. This means that servers handle requests and answer queries correctly;
but, while they do not manipulate the stored or returned data, still they analyze
data and user behavior and try to gain sensitive information from it.

A security policy consisting of confidentiality constraints (see Definition 1)
describes what information is confidential in terms of subsets of attributes (that
is, column names) of relations. The presented separation of duties approach aims
at protecting confidentiality of either all values in an individual column (the so-
called singleton constraints) or the combination of values for the same tuple in
different columns (the so-called association constraints). As an extension to prior
work, in a database containing multiple relations, sensitive associations can exist
among relations. This is expressed in the following definition of multi-relational
confidentiality constraints (Definition 1).
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Definition 1. (Multi-Relational Confidentiality Constraints) Let the sets
A1, . . . , AN denote sets of attributes that are pairwise disjoint; furthermore, let
D = {R1(A1), . . . , RN (AN )} be a database schema and d = {r1, . . . , rN} a data-
base state over D. A multi-relational confidentiality constraint on D is defined
by a subset of attributes c ⊆

⋃N
s=1As. A multi-relational confidentiality con-

straint c with |c| = 1 is called a singleton constraint. If |c| > 1 it is called an
association constraint.

The condition that the set of attributes are pairwise disjoint is introduced
to assure that attributes can uniquely be associated with the according relation
schema. This can easily be achieved by choosing a suitable naming convention
(like prependeding relation names to the attributes).
Vertical fragmentation is used to meet the security requirements expressed by
the confidentiality constraints. In Definition 2, correctness of vertical fragmen-
tation is defined based on the three properties of completeness, disjointness and
reconstruction.

Definition 2. (Multi-Relational Vertical Fragmentation, cardinality of
a fragmentation, physical fragments) Let A1, . . . , AN denote sets of at-
tributes that are pairwise disjoint; furthermore, let d = {r1, . . . , rN} be a da-
tabase state over the database schema D = {R1(A1), . . . , RN (AN )}. A set of

fragments f = (f0, . . . , fk) where fj ⊆
⋃N
s=1As for all fj is called a correct

(multi-relational) vertical fragmentation of d if the following conditions are met:

– Completeness:
⋃k
i=0 fj =

⋃N
s=1As

– Disjointness: fi ∩ fj ⊆ tid, ∀ fi 6= fj with fi, fj 6= ∅
– Reconstruction: tids ⊂ (fj ∩As), if fj ∩As 6= ∅

A fragmentation that satisfies all properties except the disjointness is called a
lossless (multi-relational) vertical fragmentation of r. The cardinality of a ver-
tical fragmentation Card(f) is defined as the number of nonempty fragments in

f : Card(f) =
∑k

j=0
fj 6=∅

1.

For fragment fj, its multirelational physical fragment is the set of projections

dj := {πfj∩A1
(r1), . . . , πfj∩AN

(rN )}

which is a database over the database schema Dj = {R1(fj ∩ A1), . . . , RN (fj ∩
AN )}. The individual relations πfj∩As

(rs) for s ∈ {1, . . . , N} are called relation
fragments.

Note that each fragment fj contains a subset of the attributes of each original
table; the physical fragment dj contains subtables of all the original tables. The
cardinality of the fragmentation f denotes the amount of non-empty fragments
fj . We will later on minimize the cardinality in order to minimize the amount
of occupied external cloud servers.

In this definition the completeness property ensures that every attribute is
contained in at least one fragment. The disjointness property prevents unne-
cessary copies of attributes that are not tuple identifiers; in other words, only
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tuple identifiers are allowed to be contained in more than one fragment. The
reconstruction property makes sure that a fragment contains all necessary tu-
ple identifiers to reconstruct the original relations by joining the corresponding
relation fragments. More precisely, the reconstruction property ensures that a
tuple identifier tids is contained in a fragment fj , if and only if fj also contains
a non-tuple identifier attribute from relation rs. On the one hand, this ensures
that the individual relations can be reconstructed using join operation on the
tuple identifiers and on the other hand prevents fragments that only contain the
tuple identifier but no non-tuple identifier attribute of a specific relation.

In the following subsections we discuss three variants of separation of duties
by vertical fragmentation.

4.1 Standard Separation of Duties

As a minimum, confidentiality-preserving fragmentations must obey security po-
licies by ensuring that not all attributes contained in a confidentiality constraint
are part of a fragment at the same time. The only exception is the owner frag-
ment f0 that is stored on the trusted client side and contains all singleton con-
straints as well as subsets of association constraints if they cannot be satisfied
by distributing their attributes among several server fragments.

Definition 3. (Confidentiality) Let A1, . . . , AN denote pairwise disjoint sets
of attributes. Given a database state d = {r1, . . . , rN} over the database schema
D = {R1(A1), . . . , RN (AN )} and a set of confidentiality constraints C. A vertical
fragmentation f = (f0, . . . , fk) is confidentiality-preserving with respect to a set
of confidentiality constraints C if the following condition is met:

c 6⊆ fj for all c ∈ C and j ∈ {1, . . . , k}

In this definition f0 is the owner fragment (to be stored at the trusted da-
tabase server) and f1, . . . , fk are the k server fragments (to be stored at the k
untrusted database servers). A confidentiality-preserving vertical fragmentation
therefore requires that the combination of attributes defined by a confidentiality
constraint is not jointly visible in a server fragment. For singleton constraints,
this implies that the corresponding attribute must be placed in the owner frag-
ment.

To avoid redundancy and unwanted interactions with the tuple identifiers, we
impose some restrictions on the set of confidentiality constraints. In particular,
tuple identifiers are assumed to be unsensitive information – because they are
needed to reconstruct the original relations – and hence should not be contained
in confidentiality constraints.

Definition 4. (Well-defined Confidentiality Constraints) Let A1, . . . , AN
denote pairwise disjoint sets of attributes and let tids ⊂ As denote the designa-
ted tuple identifier for A1, . . . , AN respectively. Moreover, let d = {r1, . . . , rN}
denote a database state over the database schema D = {R1(A1), . . . , RN (AN )}.
A set of confidentiality constraints C is well-defined if it satisfies the following
conditions:
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– c 6⊆ c′ for all c, c′ ∈ C with c 6= c′

– c ∩ tids = ∅ for all c ∈ C and s ∈ {1, . . . , N} with c ⊆ As

The first condition requires that no confidentiality constraint c is a subset of anot-
her c′ – due to the requirements for a confidentiality-preserving multi-relational
vertical fragmentation, the restriction that c is not jointly visible in any server
fragment already implies that c′ is not jointly visible in any server fragment.

The second condition of the previous definition further implies that confiden-
tiality constraints c that contain only attributes from a single relation are not
allowed to contain tuple identifier attributes if they contain at least one non-tuple
identifier attribute. Such constraints can simply be replaced by the semantically
equivalent constraints c \ tids. This will avoid unnecessary case differentiations
in the remainder of this work.

Continuing our example, confidentiality constraints can express that pa-
tients’ and doctors’ names are highly confidential and that (as a kind of quasi-
identifiers) the combinations of a patient’s DoB, ZIP code and diagnosis as well
as a doctor’s DoB and ZIP code must not be revealed together.

C = {{P.Name}, {D.Name}, {P.DoB, P.ZIP, P.Diagnosis}, {D.DoB, D.ZIP}}

A confidentiality-preserving fragmentation consists of one owner fragment

f0 = {P0(PatID,Name),D0(DocID,Name)}

and two server fragments

f1 = {P1(PatID,DoB,DocID),D1(DocID,ZIP)}

and

f2 = {P2(PatID,ZIP,Diagnosis,Treatment),D2(DocID,DoB, Specialty)}.

It can be seen that no server fragment contains the entire set of attributes
specified in one confidentiality constraint. Moreover, the tuple identifiers are the
necessary information that enables the owner to reconstruct the two original
tables. Again note that each fragment contains a subset of the attributes of each
of the two original relations P and D; the cardinality of our fragmentation is 3
because we obtained one owner fragment and two server fragments.

As a last component, we consider storage space capacities for the servers.
We specify a weight function that assigns a weight to each set of attributes
that denotes the capacity consumption of the set: wd : P(A) −→ R+. A simple
weight function could for example count the number of attributes in the set. We
then consider a maximum capacity Wj for each server Sj and require that the
summed weights of the fragment do not exceed the capacity of the server that
hosts this fragment.

With these preliminaries the definition of the Standard Multi-relational Se-
paration of Duties Problem considering the cardinality of the fragmentation (as
in Definition 2) as well as the confidentiality (as in Definition 3) is as follows:
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Definition 5. (Multi-relational Separation of Duties) Given a database
schema D = {R1(A1), . . . , RN (AN )}, a database state d = {r1, . . . , rN}, a
well-defined set of multi-relational confidentiality constraints C, tuple identifiers
tids ⊂ As for all s ∈ {1, . . . , N}, a weight function wd, servers S0, . . . , Sk and
corresponding maximum capacities W0, . . . ,Wk ∈ R+

0 , the Multi-relational Sepa-
ration of Duties Problem consists of finding a correct confidentiality-preserving
fragmentation f = (f0, . . . , fk) of minimal cardinality Card(f) such that the ca-
pacities of the storage are not exceeded, i.e. wd(fj) ≤Wj for all 0 ≤ j ≤ k.

The maximum capacity W0 of the owner fragment can be set such that the
owner fragment only stores the attributes in the singleton constraints – which
cannot be outsourced due to their sensitivity. This can be achieved by choosing
a suitable capacity of the owner fragment. Yet, it must be considered that the
correct tuple-identifier attributes must also be part of the owner fragment to
satisfy the reconstruction property.

Lemma 1. If the set of singleton constraints A∗ := {c ∈ C | |c| = 1} denotes
the set of all sensitive attributes, when setting W0 to

W0 =
∑

s:As∩A∗ 6=∅

wd(tids) +
∑

c∈C:|c|=1

wd(c).

the owner fragment only stores the attributes contained in singleton constraints
and the necessary tuple identifiers.

The Standard Separation of Duties Problem can be viewed as a combination
of two famous NP-hard problems, the bin packing problem due to the capacity
constraints of the storage locations and the vertex coloring problem due to the
confidentiality constraints.

4.2 Visibility Constraints

In the multi-relational scenario it is very important to control the resulting frag-
mentation in order to increase the utility of the fragmented database and avoid
unnecessary joins when executing queries on the distributed fragments. Incre-
ased usability means that certain combinations of attributes are stored on a
single server because they are often queried together. The notion of visibility
constraints will be adapted to this scenario: visibility constraints are defined as
subsets of attributes that should be placed in a single fragment – in this case,
we say that the visibility constraint is satisfied. Satisfaction of visibility should
only be enforced if the resulting fragmentation is not in conflict with the confi-
dentiality requirements. That is, confidentiality requirements are ranked higher
than visibility requirements. Formally, the definition of visibility constraints and
the amount of satisfied visibility constraints is as follows:

Definition 6. (Visibility constraint, satisfaction) Let d = {r1, . . . , rN}
be a database state over the database schema D = {R1(A1), . . . , RN (AN )}.
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A (multi-relational) visibility constraint over D is a subset of attributes v ⊆⋃N
s=1As. A multi-relational fragmentation f = (f0, . . . , fk) satisfies v if there is

a 0 ≤ j ≤ k such that v ⊆ fj. If such an fj exists, define Satv(f) := 1. Other-
wise, define Satv(f) := 0. For any set V of visibility constraints, the number of
satisfied visibility constraints is

SatV (f) :=
∑
v∈V

Satv(f)

Note that as opposed to other approaches we treat visibility constraints as
soft constraints; that is, conflicts in the specification are allowed and visibility
constraints will be satisfied only if the confidentiality can still be ensured. Hence,
it may happen that not all visibility constraints can be satisfied.

For example, focusing on our patient example table, in order to preserve the
privacy of the patients, the confidentiality constraint c = {DoB,ZIP} is enforced;
in addition, a visibility constraint v = {ZIP,Diagnosis} is introduced that enables
the statistical evaluation of the frequency of illnesses per ZIP code. Hence, one
possible privacy-preserving fragmentation is given by

f = {f0, f1, f2, f3}

with:

f0 = ∅, f1 = {PatID,DoB},
f2 = {PatID,ZIP,Treatment}, f3 = {PatID,Diagnosis}.

Another privacy-preserving fragmentation is given by

f ′ = {f ′0, f ′1, f ′2, f ′3}

with:

f ′0 = ∅, f ′1 = {PatID,DoB},
f ′2 = {PatID,ZIP,Diagnosis}, f ′3 = {PatID,Treatment}.

The important thing to notice here is that both fragmentations satisfy the
confidentiality constraint but in f the attributes in v are spread among two
servers while in f ′ they are on the same server; more formally, Satv(f) = 0 while
Satv(f

′) = 1. As a result, the second fragmentation f ′ is better because a query
for the two attributes ZIP and Diagnosis can be answered by a single server (the
one hosting f ′2) without the need to join on patient ID.

Minimizing the number of servers versus maximizing the number of fulfil-
led visibility constraints are two contrary goals. That is why in the following
definition of the Extended Multi-relational Separation of Duties problem we in-
troduce a weighted sum of these two goals using two weights α1 and α2. Note
that satisfying the confidentiality constraints is still a hard constraint and will be
mandatory. Moreover, omitting the disjointness property of fragmentation helps
increase the number of fulfilled visibility constraints. Therefore, in the following
problem statement, only a lossless fragmentation is required.
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Definition 7. (Extended Multi-relational Separation of Duties) Given
database schema D = {R1(A1), . . . , RN (AN )}, a database state d = {r1, . . . , rN},
a set of well-defined multi-relational confidentiality constraints C, visibility con-
straints V , tuple identifiers tids ⊆ As for all s ∈ {1, . . . , N}, a weight function
wd, servers S0, . . . , Sk with maximum capacities W0, . . . ,Wk ∈ R+

0 and posi-
tive weights α1, α2 ∈ R+

0 , find a lossless confidentiality-preserving fragmenta-
tion f = (f0, . . . , fk) of minimal cardinality which satisfies wd(fj) ≤ Wj for all
0 ≤ j ≤ k such that the weighted sum α1 Card(f)− α2 SatV (f) is minimal.

Using the weighted sum serves the following two purposes:

1. α1 Card(f) is responsible for minimizing the cardinality (amount of frag-
ments) of the fragmentation. Hence we aim to use as few external servers as
possible to store the server fragments.

2. By subtracting α2 SatV (f) each satisfied visibility constraint will lower the
overall objective. Hence we aim to maximize the amount of satisfied visibility
constraints.

The obvious question arises of how to appropriately choose the weights α1 and
α2. In the following lemma we show that choosing the weights such that α2|V | <
α1 results in assigning highest priority to the minimization of the cardinality
of the fragmentation. Among those cardinality-minimizing fragmentations the
number of satisfied visibility constraints should be maximal.

Lemma 2. Consider weights α1 > 0 and α2 > 0 satisfying α2|V | < α1. If
f is a solution to the Extended Multi-Relational Single-Relational Separation of
Duties Problem and f ′ is a lossless confidentiality-preserving fragmentation that
does not violate the capacity constraints wd(fj) ≤ Wj for all 0 ≤ j ≤ k, the
following statements hold:

1. Card(f ′) ≥ Card(f)
2. If Card(f ′) = Card(f), then SatV (f) ≥ SatV (f ′)

Proof. Let f , f ′ and α1 and α2 be as stated in the lemma. First, Statement 1 is
proven by contradiction: suppose Card(f ′) < Card(f) which is equivalent to

Card(f)− Card(f ′) ≥ 1 (1)

because both Card(f) and Card(f ′) are positive integer values. Furthermore,
because f is a solution to the Extended Multi-Relational Separation of Duties
Problem, the following inequality holds:

α1 Card(f)− α2 SatV (f) ≤ α1 Card(f ′)− α2 SatV (f ′) (2)

At most |V | visibility constraints can be satisfied, such that 0 ≤ α2 SatV (f) ≤
α2|V |. Thus, because α2 SatV (f ′) ≥ 0 the following inequality can be derived:

α1 Card(f)− α1 Card(f ′) ≤ α2 SatV (f)− α2 SatV (f ′) ≤ α2 SatV (f) ≤ α2|V |
(3)
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Together, Inequality 3 and the assumption that α2|V | < α1 in the lemma lead
to the following inequality:

α1 Card(f)− α1 Card(f ′) < α1 (4)

As α1 is assumed to be greater than zero, the inequality

Card(f)− Card(f ′) < 1 (5)

must be satisfied which contradicts Inequality 1.
Up next, Statement 2 is proven by contradiction. Hence, it is assumed that

Card(f ′) = Card(f) and SatV (f) < SatV (f ′).
The inequality

α1 Card(f)− α2 SatV (f) ≤ α1 Card(f ′)− α2 SatV (f ′) (6)

as above can now be simplified to

α2 SatV (f ′) ≤ α2 SatV (f) (7)

due to the assumption that the cardinalities of f and f ′ are equal. This gives us
SatV (f) ≥ SatV (f ′) – a contradiction to the assumption that SatV (f) < SatV (f ′).

Finally, it should be noted that as for the standard problem, it is often
desirable that the owner fragment only consists of the attributes contained in
singleton constraints and the respective tuple identifiers. To achieve this, one
can again choose the weight of the owner fragment as explained in Lemma 1.

4.3 Dependencies

To model correlations between data, database dependencies can be specified. For
example, in a medical setting a specific treatment might disclose the diagnosed
disease. In a data publishing and also a data sharing application, such dependen-
cies on the one hand enable users to infer more information from retrieved data;
on the other hand, in a separation of duties setting, dependencies can enable a
server to deduce much more information even though it only stores fragments
of a confidentiality-preserving fragmentation: in the example, the specific di-
sease can be inferred which however might be highly confidential information.
Such inferences disclosing confidential information must be avoided and hence
dependencies have to be considered when applying separation of duties.

De Capitani di Vimercati et al. [18] have explored the technique of fragmenta-
tion to ensure data confidentiality in presence of dependencies among columns.
We will adopt their notion of dependencies that are specified as rules with a
left-hand side (the premise) and a right-hand side (the consequence); both the
premise and the consequence are sets of on column names. The intended seman-
tics is that of a functional dependency: any combination of values for the premise
uniquely discloses a combination of values for the consequence. Dependencies on
the patient table could for example be DoB,ZIP  Name (that discloses the
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name of a patient from the date of birth and zip code) or Treatment Diagnosis
(that discloses a diagnosis from the treatment). De Capitani di Vimercati et al.
explore this problem only in a single-relational environment. For our application,
the definitions and theories will be translated into a multi-relational context.

Definition 8. (Data Dependency) A dependency δ over a database schema
D = {R1(A1), . . . , RN (AN )} is an expression of the form X  Y , with X,Y ⊂⋃N
s=1As and X ∩ Y = ∅. The left hand side of a dependency δ is called the

premise while the right hand side is called the consequence of δ. For simplicity,
the notations δ.premise and δ.consequence (or δ.p and δ.c, for short) are used
to denote the respective part of the dependency.

A simple approach to make the information disclosed by dependencies visible
in a fragment is adding the implied attributes to the fragment (this approach is
called fragment and dependency composition in [18]):

Definition 9. (Dependency Composition) For a given database schema D =
{R1(A1), . . . , RN (AN )}, a subset fj ⊆

⋃n
s=1As of attributes and a set ∆ of de-

pendencies, the composition of fj with dependency δ ∈ ∆ is the set of attributes:

fj ⊗ δ =

{
fj ∪ δ.consequence, if δ.premise ⊆ fj
fj , else

Next, we adopt the notion of closure of a set of attributes as in [18]; the closure
is a superset that is immune to dependency composition:

Definition 10. (Closure) Let A1, . . . , AN denote pairwise disjoint sets of at-
tributes and let d = {r1, . . . rN} be a database state over the schema D =
{R1(A1), . . . , RN (AN )}. Moreover, let ∆ denote a set of dependencies. For any
subset f ⊆

⋃n
s=1As of attributes the closure with respect to δ is defined as the

minimal set f which satisfies f ⊆ f ⊆
⋃N
s=1As and for all δ ∈ ∆ it holds that

f ⊗ δ = f . If the subset f satisfies f = f it is called closed.
If f = (f0, . . . , fk) denotes a lossless/correct fragmentation of d, the closure of
that fragmentation with respect to ∆ is defined as f :=

(
f0, . . . , fk

)
. A fragmen-

tation for which every server fragment fj ∈ {f1, . . . , fk} is closed is called a
closed fragmentation.

It is generally not possible to find a closed correct fragmentation satifying the
disjointness property. Hence, the following problem statement focuses on finding
a closed lossless multi-relational fragmentation.

Definition 11. (Multi-relational Separation of Duties in Presence of
Data Dependencies) Given a database state d = {r1, . . . , rN} over the gi-
ven database schema D = {R1(A1), . . . , RN (AN )}, tuple identifiers tids ⊂ As
for all s ∈ {1, . . . , N}, a well-defined set of multi-relational confidentiality con-
straints C, visibility constraints V , a set of dependencies ∆, a weight function
wd, servers S0, . . . , Sk with maximum capacities W0, . . . ,Wk ∈ R+

0 and positive
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weights α1, α2 ∈ R+
0 , find a closed lossless confidentiality-preserving fragmen-

tation f = (f0, . . . , fk) of d which satisfies wd(fj) ≤ Wj for all 0 ≤ j ≤ k such
that the weighted sum α1 Card(f)− α2 SatV (f) is minimized.

We now discuss the influence of dependencies on solvability of the Multi-
relational Separation of Duties problem. One might wonder, whether the con-
dition that the fragmentation is closed will prevent finding a solution when a
non-closed confidentiality-preserving fragmentation exists that would solve the
problem. As opposed to [18], in our problem statement this could be the case due
to the capacity constraints. As every fragment fj is a subset of its closure f j it

also holds that wd(fj) ≤ wd(f j). For the Extended Multi-relational Separation
of Duties Problem it was recommended to choose the capacity of the owner frag-
ment such that it can only hold the attributes contained in singleton constraints
and the respective tuple-identifier attributes (see Lemma 1). When dependen-
cies are taken into account however, using this capacity could make the problem
unsolvable because additional attributes should be stored in the owner fragment
because they are sensitive on their own due to dependency. To illustrate this,
a dependency δ ∈ ∆ with |δ.premise| = 1 and δ.premise 6= c for all c ∈ C is
supposed. The premise contains a single attribute which is not contained in a
singleton constraint. At first glance, it seems that this attribute is not sensitive
on its own and therefore, the attribute in δ.premise will not be placed in the
owner fragment when choosing the owner capacity W0 as described in Lemma 1.
Because the problem statement requires a closed fragmentation, the server frag-
ment that contains the attribute in δ.premise needs to hold δ.consequence, too.
Obviously, a problem arises if there exists a confidentiality constraint c ∈ C with
c ⊆ δ.premise∪δ.consequence because the fragmentation obeying W0 cannot be
confidentiality-preserving and therefore, no solution exists. Such situations occur
if the closure of an attribute is sensitive – in other words the attributes revealed
by a single attribute due to dependencies violate a confidentiality constraint.
Therefore, the actual set of sensitive attributes is given by the union of the two
sets

A∗ := {c ∈ C | |c| = 1}

and

A∗∗ :=

N⋃
s=1

{
asi ∈ As | ∃c ∈ C with c ⊆ {asi}

}
.

There are two possible solutions for this. The first one is to introduce new
confidentiality constraints c = {asi} for all asi ∈ A∗∗ which is justified because
those attributes can be regarded as sensitive attributes. The other solution is
to increase the capacity of the owner fragment such that it holds all the attri-
butes in A∗ and A∗∗ and the necessary tuple-identifier attributes to ensure the
reconstruction property of the fragmentation. We chose the second solution and
accomplished it by defining the capacity of the owner fragment as:

W0 =
∑

s:As∩(A∗∪A∗∗)6=∅

wd(tids) +
∑

a∈(A∗∪A∗∗)

wr(a),
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With this setting, the owner fragment only stores the minimum amount of
attributes necessary to ensure confidentiality.

5 ILP Formulation

In the following subsections, we discuss in detail how we translate the Multi-
relational Separation of Duties Problem in Presence of Data Dependencies into
an integer linear program (ILP) representation. All indicator variables zv, uvj
(both for the visibility constraints), pδj (for the dependencies), yj (for the frag-
ments) and xsij (for the attributes) are binary. Moreover, we establish the con-
vention that s ∈ {1, . . . , N}, asi ∈ As (the attributes), asi′ ∈ tids (the tuple
identifiers), j ∈ {0, . . . , k}, c ∈ C (the confidentiality constraints), v ∈ V (the
visibility constraints), δ ∈ ∆ (the dependencies).

The overall ILP that results in a confidentiality-preserving closed fragmen-
tation (according to confidentiality constraints c ∈ C and dependencies δ ∈ ∆)
that at the same time occupies a minimum amount of servers and maximizes
the amount of satisfied visibility constraints v ∈ V is shown in Figure 1.

min α1

k∑
j=0

yj − α2

∑
v∈V

zv (8)

s.t.

k∑
j=0

xsij ≥ 1, (9)

∑
asi∈A

∗
s

xsij ≤ xsi′j |A∗s |, (10)

∑
asi∈A

∗
s

xsij ≥ xsi′j , (11)

N∑
s=1

∑
asi∈As

wd(a
s
i )x

s
ij ≤Wjyj , (12)

∑
asi∈c

xsij ≤ |c| − 1, (13)

∑
asi∈v

xsij ≥ uvj |v|, (14)

k∑
j=0

uvj ≥ zv, (15)

∑
asi∈δ.p

xsij ≤ |δ.p| − 1 + pδj , (16)

∑
asi∈δ.p

xsij ≥ pδj |δ.p|, (17)

∑
asi∈δ.c

xsij ≥ pδj |δ.c|, (18)

Fig. 1. Integer Linear Program

A solution to the Separation of Duties Problem in Presence of Data Depen-
dencies can be derived from a solution to the ILP by constructing the fragments
according to the following rule. Attributes asi for which the corresponding vari-
able xsij is equal to 1 in the ILP solution are contained in fragment j provided
that the fragment j shall be non-empty (which is denoted by yj = 1 in the ILP
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solution).

fj :=


N⋃
s=1

{asi ∈ As | xsij = 1}, if yj = 1

∅, else

5.1 Translating confidentiality

Indicator variables xsij ∈ {0, 1} are used to express that attribute asi ∈ As from
relation rs is placed on server j. For every s ∈ {1, . . . , k} let A∗s := As \ tid
denote the set of non-tuple identifiers of As. Binary variables y1, . . . , yk ∈ {0, 1}
are introduced which take a value of one if fragment fj should be non-empty and

a value of zero otherwise. In the objective function (8) the expression α1

∑k
j=0 yj

minimizes the cardinality of the fragmentation. Condition (9) ensures that every
attribute is placed in at least one fragment satisfying the completeness property.
Constraint (10) conditions that if there is a non-tuple identifier attribute contai-
ned in fragment fj , i.e. the left hand side of the inequality is greater than one,
then the right hand side must equal |A∗s| which is fulfilled if the variable xsi′j for
the tuple identifier attribute asi′ ∈ tids also equals one and is hence also part of
the fragment. The definition of the reconstruction property of multi-relational
fragmentation requires that the tuple identifiers tids are proper subsets of the
fragments; Constraint (11) takes care of this by allowing the variables xsi′j for
attribute asi′ ∈ tids to equal one if at least one variable xsij belonging to a non-
tuple identifier attribute asi ∈ A∗s equals one. Constraint (12) makes sure that
the storage capacities are not exceeded and that yj must take a value of one,
whenever any attribute asi is included in fragment fj . Lastly Condition (13) is
used to guarantee a confidentiality-preserving fragmentation, because at most
c− 1 variables xsij for asi ∈ c can be equal to one.

5.2 Translating visibility

Additional binary variables uvj are introduced for every visibility constraint
v ∈ V and fragment j ∈ {1, . . . , k}. These variables should only take a value of
one if all attributes contained in v are placed in fragment fj . Moreover, indicator
variables zv for all visibility constraints v ∈ V are used to indicate whether there
is at least one fragment that contains all attributes of visibility constraint v ∈ V .
In the objective function (8) the summand −α2

∑
v∈V zv maximizes the number

of satisfied visibility constraints.
The constraints that ensure the proper treatment of the visibility constraints

are given by Conditions (14) and (15). The former ensures that for every frag-
ment fj and every visibility constraint v ∈ V variable uvj can only be equal to
one if the visibility constraint is satisfied in fragment fj . The latter then makes
sure that zv, the indicator variable for visibility constraint v ∈ V , can only be
equal to one if there is at least one uvj for j ∈ {1, . . . , k} that equals one, i.e.
visibility constraint v is satisfied one at least on server.
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5.3 Translating dependencies

It can easily be seen that a server fragment fj equals its closure f j if and only if
for every data dependency δ ∈ ∆ one of the conditions δ.p 6⊆ fj or δ.p∪ δ.c ⊆ fj
is true [18]. Hence, to check whether a server fragment fj is closed, one first has
to check for every data dependency δ ∈ ∆ if δ.p ∈ fi. In the ILP formulation we
introduce indicator variables pδj ∈ {0, 1} for each data dependency δ ∈ ∆ and
server j ∈ {1, . . . , k} that should take a value of one if and only if all attributes
in δ.p are stored in server fragment fj . After that, we have to make sure that
if a dependency premise is contained in a fragment the consequence must also
be contained. Together, Constraints (16) and (17) ensure that pδj equals one if
and only if all attributes in δ.p should be placed into the same server fragment
fj . The sum on the left hand side of Condition (16) is at most |δ.p|. If this is
the case, then pδj must equal one because otherwise the expression on the right
hand side would be smaller. Hence, if all attributes in the premise of δ are part
of fragment fj variable pδj must take a value of one. Furthermore, Condition
(17) achieves that variable pδj will be zero otherwise. If the left hand side of
the equality is smaller than |δ.p|, i.e. not all attributes in the premise of δ are
contained in fragment fj , then constraint can only be fulfilled if the right hand
side equals zero or in other words pδj equals zero.

Finally, Constraint (18) requires that all attributes in δ.c are part of server
fragment fj if all attributes in δ.p are part of fj : if pδj is equal to one the right
hand side of the inequality takes the value |δ.c|. In this case the constraint can
only be fulfilled if the sum on the right side is also |δ.c| which means that xsij
equals one for all asi ∈ δ. On the other hand if pδj equals zero the condition is
always fulfilled.

6 Implementation

There are the following entities involved in the system:

– Untrusted Database Servers: These servers store the server fragments
and can process queries involving their respective fragment only. The indi-
vidual physical fragments are organized in database tables.

– Trusted Database Server: This server stores the owner fragment and ma-
nages connections to the untrusted servers. Most common DBMSs provide
means to include database tables stored at remote servers. In PostgreSQL
for example, this can be realized with so-called Foreign Data Wrappers and
MySQL provides the FEDERATED Storage Engine. This enables the later
presented distributed database client to issue adequate high-level (possi-
bly SQL) queries directly to the trusted database server instead of issuing
subqueries to each individual database server and then calculating the de-
sired result. Instead, the built-in query processor of the trusted database
server will decide how the query is actually optimized and executed.

– Distributed Database Client: The client acts as an additional layer bet-
ween the database users and the database servers. It computes the fragmen-
tation using an ILP solver, stores the metadata of the fragmentation (i.e. at
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which server the columns are stored) and processes and rewrites user queries
such that they are based on fragments instead of relations of the original da-
tabase. The distributed database client can either access the database servers
directly if a query exclusively involves columns of a single fragment or it can
issue queries to the trusted database server which makes all other fragments
stored at the untrusted databases servers visible. Those queries are then
analyzed by the database system’s query processor which decides how the
query is internally executed by applying adequate optimization techniques.
Finally, the results of the queries are transferred to the user.

The major advantage of the presented framework is that the only compo-
nent that we had to implement is the distributed database client (available at
[5]) that relies on the advanced query optimization techniques already provided
by today’s DBMS. The chosen programming language is JAVA and the imple-
mentation relies on the popular open source DBMS PostgreSQL. Therefore, the
trusted database server and the untrusted database servers need to run a stan-
dard installation of PostgreSQL. To solve the ILPs the IBM ILOG CPLEX solver
is used due to its comprehensive range of available solving strategies and several
off-the-shelf optimizations. Lastly, to analyze and rewrite the users’ queries, the
distributed database client uses the open source project JSQLParser which is
a SQL parser for JAVA. After solving the ILP using the CPLEX solver, the
distributed database client continues with creating databases on the necessary
database servers to store the respective physical fragments. In particular, a new
database is set up at the trusted database server to store the owner fragment.
Subsequently, the table fragments are set up and populated with the data from
the original database. Using the foreign data-wrapper module postgres fdw, the
tables stored at the untrusted servers are made visible in the newly created da-
tabase at the trusted server. Therefore, the database at the trusted database
server contains each of the table fragments either as a local table if the fragment
is part of the owner’s physical fragment or as foreign table, otherwise. As a final
step, the distributed database client sets up views in the database of the trusted
database server using the local and foreign tables which correspond to the tables
of the original database.

We now describe in detail the functionality that is offered by our system.
To illustrate the individual steps, a small database consisting of two tables in a
hospital scenario serves as a running example. The first table stores information
about patients and the second table stores information about doctors working
in the hospital:

Setup. For the setup, the owner has to set up the database to be fragmented
at the trusted database server and specify the designated tuple identifier columns
of the table as primary key columns. Furthermore, the owner has to provide a
configuration file to tell the distributed database client where the database ser-
vers are located and how much space is available on each server; see Figure 2
for an example with one owner server and three remote servers. Additional files
can be created to specify the confidentiality constraints, visibility constraints
and data dependencies (see Figures 3, 4 and 5). In contrast to the configuration
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Name, Address, Port, Username, Password, Capacity, IsOwner

S0, 192.168.178.92, 5432, postgres, postgres, 2.0, owner;

S1, 192.168.178.82, 5432, postgres, postgres, INF;

S2, 192.168.178.87, 5432, postgres, postgres, INF;

S3, 192.168.178.88, 5432, postgres, postgres, INF;

Fig. 2. Example configuration file

patient.P_Name;

doctor.D_Name;

patient.P_DoB, patient.P_ZIP, patient.P_Diagnosis;

doctor.D_DoB, doctor.D_ZIP;

Fig. 3. Example confidentiality constraints

patient.P_Diagnosis, patient.P_ZIP;

patient.P_Treatment, doctor.D_Specialty;

Fig. 4. Example visibility constraints

patient.P_DoB, patient.P_ZIP > patient.P_Name;

patient.P_Treatment > patient.P_Diagnosis;

patient.P_Diagnosis > patient.P_Treatment;

doctor.D_DoB, doctor.D_ZIP > doctor.D_Name;

Fig. 5. Example dependencies
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P PatientID P Name P DoB P ZIP P Diagnosis P Treatment P DoctorID

1 J. Doe 07.01.1986 12345 Flu Nose spray 1
2 W. Lee 12.08.1974 23456 Broken Leg Gypsum 2
3 F. Jones 05.09.1963 23456 Asthma Asthma inhaler 1
4 G. Miller 10.02.1982 12345 Cough Cough syrup 1

Table 1. Table patient with primary key column P PatientID

D DoctorID D Name D DoB D ZIP D Specialty

1 H. Bloggs 04.02.1971 34567 Respiratory
2 G.Douglas 27.07.1965 23456 Fraction

Table 2. Table doctor with primary key column D DoctorID

file, those files are optional. Subsequently, the owner instructs the distributed
database client to set up the vertically fragmented database by solving an op-
timization problem with the CPLEX solver based on the provided input data.
The weights of the specific columns are computed automatically and do not have
to be provided by the owner. After solving the ILP using the CPLEX solver, the
distributed database client continues with creating databases on the necessary
database servers to store the respective fragments. In particular, a new database
is set up at the trusted database server to store the owner fragment. Subse-
quently, the tables are populated with the data from the original database. In
the example, the table fragments shown in Table 3 are stored in the owner frag-
ment at server S0. Server S1 stores the table fragments shown in Table 4. Lastly,
Server S2 stores the table fragments shown in Table 5. We implemented this
functionality using the foreign data-wrapper module postgres fdw which makes
the server fragments available via the trusted database server as foreign tables.
As a final step, the distributed database client sets up views in the database of
the trusted database server using the local and foreign tables which correspond
to the tables of the original database as shown in Figure 6.

SELECT. The distributed database client provides two possible ways of
querying the vertically fragmented database. The first possibility involves expli-
citly rewriting the users’ queries using the JSQLParser such that they act on
table fragments instead of the original tables. The second possibility is based on
the created views.
The advantage of explicitly rewriting the users’ queries is that the distributed
database client can analyze the queries to make educated decisions which co-
lumns and table fragments are actually involved in the query and omit those
that are not. In the provided implementation, for each table involved in the
query, the distributed database client assesses which columns are needed and
greedily chooses table fragments to obtain all necessary columns. As an exam-
ple of a rewritten query, the SQL statement in Figure 7 is rewritten inside the
distributed database client into the SQL query shown in Figure 8.

There are two major points to notice in this query. First, only servers S0

and S1 take part in the query, i.e. the fragments stored on S3 are not affected.
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P PatientID P Name

1 J. Doe
2 W. Lee
3 F. Jones
4 G. Miller

D DoctorID D Name

1 H. Bloggs
2 G. Douglas

Table 3. Owner Fragment

P PatientID P DoB P DoctorID

1 07.01.1986 1
2 12.08.1974 2
3 05.09.1963 1
4 10.02.1982 1

D DoctorID D ZIP

1 34567
2 23456

Table 4. Server fragment 1

Furthermore, the WHERE condition is pushed down in to the SELECT queries
affecting the table fragments as far as it can be processed by the respective server.
This could potentially lead to less data being transferred during the execution
process when tuples that do not satisfy the condition are excluded. This example
also shows the major drawback of explicitly rewriting the queries which lies in
the complexity of SQL that makes query rewriting a very challenging task.
In contrast, using views over the table fragments to recreate the original tables
is a simple strategy to avoid query rewriting. The queries remain unchanged but
logically they involve the views instead of real physical tables. Therefore, it is up
to PostgreSQL’s query processor to decide how these queries are executed. While
this method is easy to implement, its major drawback lies in the fact that each
query involves all the columns of each table and unnecessary table fragments are
not omitted from the query. For example, a query that selects only one column of
a table fragmented among three servers will always involve all three of the servers
although one would be sufficient. To the best of our knowledge, the PostgreSQL
query processor does currently not consider excluding JOIN clauses of tables
that are not affected by the query.

INSERT. When the distributed database client receives a request to insert
a specific row into a table, it determines the affected table fragments and inserts
a row, restricted to the according columns, in each of those. In the example, an

P PatientID P ZIP P Diagnosis P Treatment

1 12345 Flu Nose spray
2 23456 Broken Leg Gypsum
3 23456 Asthma Asthma inhaler
4 12345 Cough Cough syrup

D DoctorID D DoB D Specialty

1 04.02.1971 Respiratory
2 27.07.1965 Fraction

Table 5. Server fragment 2
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CREATE OR REPLACE VIEW doctor

AS

SELECT s2_doctor_frag.d_doctorid AS d_doctorid,

s0_doctor_frag.d_name AS d_name,

s2_doctor_frag.d_dob AS d_dob,

s1_doctor_frag.d_zip AS d_zip,

s2_doctor_frag.d_specialty AS d_specialty

FROM s2_doctor_frag

LEFT JOIN s0_doctor_frag USING(d_doctorid)

LEFT JOIN s1_doctor_frag USING(d_doctorid);

CREATE OR replace VIEW patient

AS

SELECT s2_patient_frag.p_patientid AS p_patientid,

s0_patient_frag.p_name AS p_name,

s1_patient_frag.p_dob AS p_dob,

s2_patient_frag.p_zip AS p_zip,

s2_patient_frag.p_diagnosis AS p_diagnosis,

s2_patient_frag.p_treatment AS p_treatment,

s1_patient_frag.p_doctorid AS p_doctorid

FROM s2_patient_frag

LEFT JOIN s0_patient_frag USING(p_patientid)

LEFT JOIN s1_patient_frag USING(p_patientid);

Fig. 6. View creation

SELECT p_name, p_diagnosis, d_name AS attending_doctor

FROM patient, doctor

WHERE patient.p_doctorid = doctor.d_doctorid AND p_name = ’J. Doe’;

Fig. 7. Original SELECT statement

INSERT statement of the form shown in Figure 9 is translated into the three
INSERT statements shown in Figure 10.

DELETE. Deletion of rows can be broken down into two parts. Because
table fragments only contain a subset of columns, it is generally not possible to
evaluate the condition specified by the WHERE clause of the SQL DELETE
statement with a single table fragment. Therefore, as the first part, a SELECT
query is used to detect the values of the tuple identifiers of the rows that should
be deleted. This SELECT query is executed by the distributed database client by
either using the defined views or explicitly creating an according SELECT state-
ment based on table fragments. The result of this query is stored in a temporary
table. Subsequently, DELETE queries are executed for each table fragment with
the condition that the tuple identifier values are present in the temporary table.
Finally, the temporary table is deleted. In the prototype implementation, this is
done by putting all of those queries into a single transaction, which is a sequence
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SELECT p_name, p_diagnosis, d_name AS attending_doctor

FROM (SELECT

patientS0.p_name AS p_name,

patientS0.p_patientid AS p_patientid,

patientS2.p_diagnosis AS p_diagnosis,

patientS1.p_doctorid AS p_doctorid

FROM (SELECT p_name, p_patientid

FROM s0_patient_frag

WHERE ( true AND p_name = ’J. Doe’ )) AS patientS0

INNER JOIN (SELECT p_diagnosis, p_patientid

FROM s2_patient_frag

WHERE ( true AND true )) AS patientS2

ON patientS0.p_patientid =

patientS2.p_patientid

INNER JOIN (SELECT p_doctorid, p_patientid

FROM s1_patient_frag

WHERE ( true AND true )) AS patientS1

ON patientS2.p_patientid = patientS1.p_patientid) AS patient,

(SELECT

doctorS0.d_doctorid AS d_doctorid,

doctorS0.d_name AS d_name

FROM (SELECT d_doctorid, d_name

FROM s0_doctor_frag

WHERE ( true AND true )) AS doctorS0) AS doctor

WHERE patient.p_doctorid = doctor.d_doctorid AND p_name = ’J. Doe’;

Fig. 8. Rewritten SELECT statement

INSERT INTO doctor

VALUES (3, ’C. Hall’, ’12/11/1990’, 12345, ’Dermatology’);

Fig. 9. Original INSERT statement

of SQL statements that is being executed consecutively and if specified, auto-
matically deletes the created temporary tables at the end of the transaction. To
illustrate this, the DELETE statement in Figure 11 results in the transaction
shown in Figure 12. Note that the keyword TEMP specifies a temporal table
and the ON COMMIT DROP option specifies that the temporal table is deleted
at the end of the transaction.

UPDATE. Performing updates on rows of a specific vertically fragmented
table resembles the deletion of rows due to the fact that the WHERE condition
has to be specified. Therefore, as the first step, a temporal table is created
that stores the tuple identifier columns of the affected rows. Subsequently, the
distributed database client determines the involved table fragments and performs
an update operation on each of those. To make sure that the proper rows are
updated, the condition that the tuple identifier values are present in the temporal
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INSERT INTO s0_doctor_frag (d_doctorid,d_name)

VALUES (3, ’C. Hall’);

INSERT INTO s2_doctor_frag (d_doctorid, d_dob, d_specialty)

VALUES (3, ’12/11/1990’, ’Dermatology’);

INSERT INTO s1_doctor_frag (d_doctorid,d_zip)

VALUES (3, 12345);

Fig. 10. Rewritten INSERT statement

DELETE FROM doctor WHERE d_name=’G. Douglas’;

Fig. 11. Original DELETE statement

table is enforced. Those operations are again executed in a single transaction and
the temporal table is dropped when the transaction is committed. Consider the
UPDATE query in Figure 13 for which the resulting transaction is shown in
Figure 14.

7 Evaluation

The prototype implementation is tested with two popular TPC benchmarks
(TPC-E and TPC-H) for databases [29, 30]. Each of these benchmarks is suitable
to evaluate different aspects of the Separation of Duties Problem. The database
defined by the TPC-E benchmark consists of 33 tables and a total number of
191 columns; we only use the TPC-E schema which due to its size it is suitable
to evaluate the effects of the number of constraints and dependencies on the
performance of the ILP solver and the resulting fragmentations. In contrast,
from the TPC-H benchmark we use data as well as queries in order to test
the distributed runtime performance of our approach. It consists of a database
containing 8 tables that models a typical database in a business environment.
Moreover, it defines 22 complex SQL queries that are typical in decision support
scenarios. Therefore, this benchmark is well-suited to test the implementation’s
capabilities in terms of query processing.

All of the tests were executed on a single PC equipped with an Intel Xeon E3-
1231v3 @ 3.40GHz (4 Cores), 32GB DDR3 RAM and a Seagate ST2000DM001
2TB HDD with 7200 rpm. The PC is running Ubuntu 16.04 LTS. The database
servers – including the trusted database server hosting the owner fragment – are
running in separate, identical virtual machines which are assigned 4 cores and
8GB of RAM. The virtual machines are running Ubuntu Server 16.04 LTS with
an instance of PostgreSQL 9.6.1 installed. By running the servers in identical
virtual machines, it is guaranteed that the results are not influenced by hardware
or software differences. Lastly, the CPLEX version used by the implementation
is CPLEX 12.7.
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START TRANSACTION;

CREATE TEMP TABLE tmpdelete ON COMMIT DROP AS

(SELECT d_doctorid

FROM (SELECT doctors0.d_doctorid AS d_doctorid,

doctors0.d_name AS d_name

FROM (SELECT d_doctorid, d_name

FROM s0_doctor_frag

WHERE d_name = ’G. Douglas’) AS doctors0) AS doctor

WHERE d_name = ’G. Douglas’);

DELETE FROM s0_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

DELETE FROM s2_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

DELETE FROM s1_doctor_frag

WHERE (d_doctorid) IN (SELECT * FROM tmpdelete);

COMMIT;

Fig. 12. Rewritten DELETE statement

UPDATE patient SET p_zip = 23456 WHERE p_name = ’G. Miller’;

Fig. 13. Original UPDATE statement

7.1 TPC-E Data Set

The TPC-E benchmark is intended to model the workload of a brokerage firm.
It consists of 33 database tables which fall into four categories [29]:

– Customer tables: There are 9 tables that contain information about the
brokerage firm’s customers.

– Broker tables: There are 9 tables that contain information about the bro-
kerage firm.

– Market tables: There are 11 tables that contain information about com-
panies, markets, exchanges and industry sectors.

– Dimension tables: There are 4 tables that contain common information
like zip codes or addresses.

Using the TPC-E database schema, our tests explore the influence of diffe-
rent sizes of sets of well-defined confidentiality constraints, visibility constraints
and dependencies on the solver’s performance and the resulting fragmentation.
The trusted database server’s capacity is set to zero: it should not store any
data; this means that for the tests, singleton constraints are disallowed in the
confidentiality constraints; moreover, the case that an association constraint con-
tains an attribute that (after applying all possible dependencies) has an entire
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START TRANSACTION;

CREATE TEMP TABLE tmpupdate ON COMMIT DROP AS

(SELECT p_patientid FROM

(SELECT patientS0.p_patientid AS p_patientid,

patients0.p_name AS p_name

FROM (SELECT p_patientid, p_name

FROM s0_patient_frag WHERE p_name = ’G. Miller’)

AS patientS0) AS patient

WHERE p_name = ’G. Miller’);

UPDATE s2_patient_frag SET p_zi=23456

WHERE (p_patientid)IN (SELECT * FROM tmpupdate);

COMMIT;

Fig. 14. Rewritten UPDATE statement

confidentiality constraint in its closure is disallowed, too: more formally, we di-
sallow attributes a such that there is a constraint c with c ⊆ ā. This restriction
is introduced to allow a maximal number of possible choices for the placement
of the attributes during the optimization process because attributes contained
in singleton constraints or single attributes with a sensitive closure can only be
placed in the owner fragment which would limit the number of decisions the ILP
solver has to draw.

Settings. The constraints and dependencies are generated randomly. To mea-
sure scalability of the approach, we introduce scale factors σC , σV , σ∆ ∈ R+

0 for
confidentiality constraints, visibility constraints and dependencies, respectively.
Note that the overall number of non-primary key columns is n = 142 in the TPC-
E database. The scale factors can be interpreted as constraints/dependencies per
non-primary key column. Because the primary-key columns act as tuple identi-
fiers, they are supposed to be insensitive and are therefore neither part of the
constraints nor part of the premise or consequence of dependencies.

Hence, if A∗ =
⋃33
s=1As \ tids denotes the set of all non-primary key columns

of the 33 tables and P(A∗) denotes its powerset, the selection process is carried
out as follows:

– Confidentiality Constraints: For each of the designated cardinalities ν ∈
{2, 3, 4, 5}, sets of confidentiality constraints Cν ⊆ P(A∗) of cardinality
|Cν | = dn4 · σCe are selected randomly from A∗. For each ν and Cν it holds
that |c| = ν for all c ∈ Cν . The resulting set of confidentiality constraints is

then given by C :=
⋃5
ν=2 Cν . Moreover, during the generation of the confi-

dentiality constraints it is ensured that the resulting set C is well-defined.
Therefore, this process results in a well-defined set of confidentiality con-
straints C of cardinality |C| = 4 · dn4 · σCe which is equally divided into
confidentiality constraints of cardinality 2, 3, 4 and 5. A scale factor of
σC = 1 would therefore result in a set of 144 confidentiality constraints
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which corresponds roughly to the size of non-primary key attributes in the
database. As confidentiality constraints with lower cardinality are generally
harder to satisfy than constraints with high cardinality, restricting ν to the
values {2, 3, 4, 5} is not a serious limitation.

– Visibility Constraints: Generating the visibility constraints is carried out
similarly to the generation of confidentiality constraints. The only difference
in the process is that the resulting set does not have a limitation of being well-
defined. Hence, for each of the cardinalities ν ∈ {2, 3, 4, 5}, sets of visibility
constraints Vν ⊆ P(A∗) of cardinality dn4 · σV e are selected randomly such
that |v| = ν for all v ∈ Vν . The overall set of visibility constraints is hence

given by V :=
⋃5
ν=2 Vν which has a cardinality of |V | = 4 · dn4 · σV e and is

equally divided into visibility constraints of cardinality 2, 3, 4 and 5.
– Dependency: Sampling dependencies is carried out differently because a

dependency δ = δ.premise  δ.consequence is defined by the two sets
δ.premise and δ.consequence. The scale factor σ∆ determines the cardi-
nality of the set of dependencies ∆ which is given by |∆| = dn · σ∆e. The
dependencies itself are generated iteratively as follows: First, two random
values νp ∈ {2, . . . 5} and νv ∈ {1, . . . , 5} are determined which define the
cardinalities of the premise and the consequence. Then, δ.premise ⊆ P(A∗)
and δ.consequence ⊆ P(A∗) are chosen randomly such that |δ.premise| = νp
and |δ.consequence| = νc. This process is executed dn · σ∆e times to obtain
the final set of dependencies. The cardinality of the premise of each depen-
dency is restricted to a value between 2 and 5 because on the one hand a
premise of cardinality one could make a single attribute sensitive and on
the other hand if the cardinality gets too large, it will become easier to
place the attributes into multiple fragments such that the dependency only
slightly influences the resulting fragmentation. Moreover, the cardinality of
the consequence of each dependency is restricted to be smaller than 5 to
guarantee a moderate balance between the cardinality of the premise of a
dependency and the impact it has on the resulting fragmentation in terms
of its consequence.

For each of the executed test runs the weights α1 and α2 required by the pro-
blem statement of the Multi-relational separation of duties problem in presence
of data dependencies are chosen such that they satisfy the inequality α2|V | < α1

presented in Lemma 2. Therefore, the resulting fragmentation shall be of minimal
cardinality and the number of satisfied visibility constraints shall be maximal
among all feasible fragmentations of minimal cardinality.

We executed several test runs with these settings. For all test runs a time
limit of 30 minutes is set for the optimization process. Previous tests have shown
that after this time a feasible solution can be found but the objective value does
not significantly improve after this time.

Furthermore, different measurements are introduced to measure the quality
of the resulting fragmentation. These measurements are based on the objective
value of the best integer solution objI found by CPLEX and the lower bound
objLP on the objective value which could be established by CPLEX during the
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optimization progress by solving the LP-Relaxation of different subproblems of
the ILP; the LP-Relaxation of an ILP is obtained by allowing the variables to
take continuous instead of integral values. These measurements are defined as
follows:

– Relative MIP gap: The relative MIP gap is a well-known general expres-
sion used by ILP solvers such as CPLEX to measure the quality of calculated
solutions of mixed integer linear programs, i.e. linear programs of which some
of the variables are restricted to be integer and others are real valued. Of
course, it is also applicable for the special class of integer linear programs
and it is defined by the following expression:

|objI − objLP |
|objI |

The relative MIP gap measures the percentage of how much the objective
value of an optimal solution can maximally deviate from the objective value
objI of a feasible solution due to the established lower bound. Therefore,
if this measure equals p, there is an uncertainty whether the objective va-
lue could potentially be reduced by up to p percent. Our overall objective
function considers both the minimization of the cardinality (number of ex-
ternal servers) as well as the satisfaction of the visibility constraints.

– Card gap: We introduce this measure specifically for the Separation of Du-
ties Problem to account for the quality of a feasible solution’s fragmentation
and it is defined as follows: ⌊

|objI − objLP |
|α1|

⌋
The purpose of this expression is to measure the uncertainty about the frag-
mentation’s cardinality of a feasible solution. For example, if this expression
equals one, then it might be possible to reduce the fragmentation’s cardi-
nality by one and potentially, one database server less is necessary. If this
expression equals zero, the fragmentation’s cardinality is minimal and the
number of servers necessary cannot be reduced.

– Sat gap: Similarly, we introduce this measure to account for the uncertainty
of a solution in terms of visibility constraints with the following expression:⌊

|objI − objLP |
|α2|

⌋
If this expression equals zero, the number of satisfied visibility constraints
is maximal for the feasible solution. Further, if this expression equals n ≥ 1,
it is uncertain, whether up to n more visibility constraints could potentially
be satisfied.

If all of these measures are equal to zero for a feasible solution’s objective value
objI and the established lower bound objLP , an optimal solution has been found.
However, these expressions require a good feasible solution on the one hand, and
a good lower bound on the other hand and if either of those cannot be found a
high uncertainty remains.
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Test runs To study the impact of confidentiality constraint, visibility con-
straints and dependencies individually, the evaluation is structured into several
test cases.

First, the effects of increasing the number of confidentiality constraints is
studied; hence, the scale factors σV and σ∆ are set to zero (no visibility con-
straints and no dependencies) and different values for σC are tested (I). Next,
σC is set to four, σ∆ is set to zero and different scale factors σV are used to test
the influence of an increasing number of visibility constraints (II). Lastly, to test
the effects of the number of dependencies σC is set to four, σV is set to 0.25 and
different scale factors σ∆ are evaluated (III).

For the first test case (I), the σV and σ∆ is set to zero and the number of
confidentiality constraints is increased with the scale factor σC ∈ {1, 2, 4, 8, 16}.
The results of these test runs are summarized by Table 6. An optimal solution is

|C| (# conf. Cardinality MIP Card Time
σC constraints) (# servers) gap gap Optimal? (s)

1 144 2 0% 0 yes 0.61

2 284 3 0% 0 yes 1.79

4 568 3 0% 0 yes 1.55

8 1136 4 0% 0 yes 11.99

16 2272 5 16% 0 in 1 of 5 runs in 1 run 297.27
(otherwise timeout)

Table 6. Increasing number of confidentiality constraints (average over 5 runs)

found nearly all of the scenarios as the relative MIP gap and the Card gap shows;
that is, it is not possible to find a solution with less external servers. As the scale
factor increases, more confidentiality constraints can only be satisfied when the
individual original tables are split into more fragments (that is, the cardinality
of the fragmentation increases). In the scenario with 2272 confidentiality con-
straints in four out of five cases we met our timeout limit of 1800 seconds and
stopped the execution of CPLEX. Each of the fragments of one original table has
to be stored on a server separate from the other servers storing fragments of the
same original table; thus, the number of necessary database servers increases,
too: for a scale factor of σC = 1 (that is, 144 confidentiality constraints), two
servers are sufficient, for scale factors σC = 2 (284 confidentiality constraints)
and σC = 4 (568 confidentiality constraints), three servers are necessary, for
σC = 8 (1136 confidentiality constraints), there have to be four servers and for
σC = 16 (2272 confidentiality constraints), five database servers have to be used.
The runtime to find the optimal solution increases significantly for a scale factor
of σC = 16; further optimizations of the solver could be employed to speed this
setting up.

For the second test case (II), only the scale factor σV is changed and σC = 4
(568 confidentiality constraints) and σ∆ = 0 (no dependencies) remain fixed. In
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other words, the effects of increasing the number of visibility constraints are eva-
luated. For all of the runs, the resulting fragmentation has a cardinality of three
(which is minimal); because the weights α1 and α2 have been chosen according
to Lemma 2, the visibility constraints do not affect the cardinality of the frag-
mentation. The overall results of test runs are presented in Table 7. When the

|V |(#vis. Cardinality MIP Sat Time
σV constraints) Sat (# servers) gap gap Optimal? (s)

0.25 36 27/36 3 0% 0 yes 101.84

0.5 72 44/72 3 1.83% 7.4 no timeout

1 144 68/144 3 4.08% 33.6 no timeout

2 284 105/284 3 6.85% 113.6 no timeout

Table 7. Increasing number of visibility constraints (average over 5 runs)

number of introduced visibility constraints increases, the percentage of satisfied
constraints decreases (see column “Sat”). Note that not all visibility constraints
can be satisfied because they are conflicting with confidentiality constraints. The
column “Sat gap” tells us how many more visibility constraints could potentially
be satisfied in an optimal solution.

The most important thing to notice is that only the scenario with the lo-
west number of visibility constraints (σV = 0.25 corresponds to 36 visibility
constraints) can be solved optimally and for this scenario the time increases
significantly compared to the same scenario without visibility constraints (see
σC = 4 in Table 6). The other three scenarios (72, 144, 284 visibility constraints,
respectively) exceeded the time limit and were canceled without having found
an optimal solution in terms of number of fragments and satisfied visibility con-
straints. One way to improve the results could therefore be to develop provably
good heuristics to provide good starting solutions for the solver on the one hand
and on the other hand, to establish tight lower bounds to point the solver in
the right direction and allow less choices for the variables. Moreover, what is
also an important conclusion of these results is that visibility constraint should
not be viewed as a means to allow the execution of as much queries as possible
on a single server. Rather, they should be used selectively to speed up a small
amount of queries that are particularly relevant for the database.

Finally for the third test case (III), the effects of increasing the number of
data dependencies are analyzed (see Table 8). For that, the scale factors σC = 4
(568 confidentiality constraints) and σV = 0.25 (36 visibility constraints) are
fixed and the scale factors σ∆ ∈ {1, 2, 4, 8, 16} (corresponding to 142, 284, 568,
1136 and 2272 dependencies, respectively) are used for the data dependencies.
Hence, these results resemble very much the scenario with σC = 4 and σV = 0.25
of the previous test runs with the additional introduction of data dependencies:
All of the the scenarios are solved optimally. A noticeable result is that increasing
the number of data dependencies can in fact reduce the time needed to solve
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|∆| (# depen- Card MIP Time
σ∆ dencies) (# servers) Sat gap Optimal? (s)

1 142 3 26.4/36 0% yes 60.22

2 284 3 27.2/36 0% yes 75.91

4 568 3 27/36 0% yes 41.36

8 1136 3 25/36 0% yes 47.18

16 2272 3 23.6/36 0% yes 21.57

Table 8. Increasing number of data dependencies (average over 5 runs)

the problem. An important take-away message from these test runs is that the
solver benefits from introducing data dependencies instead of using excessively
many confidentiality constraints.

7.2 TPC-H Data Set

The TPC-H benchmark is described as a decision support benchmark. This me-
ans, that it simulates a system used to support decision making in business ap-
plications. We deemed this an appropriate setting to test distributed query exe-
cution on the vertically fragmented data set. The 8 tables in the TPC-H schema
are customer, part, partsup, supplier, lineitem, orders, customer, nation and
region.

Unfortunately, the TPC-H data generator does not support PostgreSQL and
therefore, other tools had to be used to set up the TPC-H benchmark with
PostgreSQL. To set up the test database, the HammerDB [22] tool was used
with a scale factor of 1. Moreover, the query generator provided by DBT-3
[16] was used to obtain the 22 TPC-H queries conforming with PostgreSQL’s
standard.

7.3 Settings

The number of tables in the TPC-H database is reasonably small, so that the
following artificial scenario is used as the foundation for the tests:

– Confidentiality Constraints: The following rules are established for defi-
ning the constraints:
• The name and the account balance of the customers and suppliers are

sensitive:
c1 = {customer.c acctbal},
c2 = {supplier.s acctbal}

• The discount given on any order is sensitive:
c3 = {lineitem.l discount}

• A customer’s name and its address cannot be placed in the same server
fragment:
c4 = {customer.c name, customer.c address}
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• A customer’s name can not be associated with a specific order:
c5 = {customer.c name, orders.o custkey}

• A supplier’s name can not be associated with a line item:
c6 = {supplier.s name, lineitem.l suppkey}

• The date of an order can not be associated with the total price:
c7 = {orders.o odate, orders.o totalprice}

• A supplier’s name can not be associated with the supplier’s cost for a
specific part:
c8 = {supplier.s name, partsupp.ps suppkey, partsupp.ps supplycost}

– Dependencies: Moreover, the following dependencies are introduced, con-
cerning personal information about the customers and suppliers:

δ1 = {customer.c address} {customer.c name}
δ2 = {customer.c phone} {customer.c name}
δ3 = {supplier.s address} {supplier.s name}
δ4 = {supplier.s phone} {supplier.s name}

– Visibility Constraints: As the main purpose of visibility constraints is to
speed up the execution of specific queries, a visibility constraint is introduced
for each of the 22 queries consisting of all attributes in the query. Therefore,
if a visibility constraint is satisfied, the execution of the corresponding query
potentially involves a single database server only.

The weights α1 and α2 that are also needed for the problem statement are chosen
to satisfy the inequality presented in Lemma 2. Finding an optimal solution
to this specific instance of the Multi-relational Separation of Duties Problem
and setting up the vertically fragmented database takes around two and a half
minutes and the resulting fragmentation satisfies 5 of the 22 visibility constraints.
Overall, the tables are distributed among 12 table fragments on a total of 3
database servers. One of those is the trusted database server and the remaining
two are untrusted.

7.4 Test runs

After the database is set up, the execution time of the 22 queries can be analyzed.
For that, each query is executed with the following methods:

1. The original non-fragmented database is queried. To ensure the comparabi-
lity, the original database is stored separately at the trusted database server.

2. The queries are rewritten by our trusted database client to act on table frag-
ments instead of the original tables. We measured the time for executing
(t), the time for rewriting the query (tr), the overall number of table frag-
ments (tf) that are involved in the rewritten query and the slowdown (sd)
compared to executing the query on the original database.

3. Instead of rewriting, the queries are cast to specific views set up in the
trusted database server to recreate the original tables. For this method, the
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execution time (t) is measured, the number of involved table fragments (tf)
and the slow down (sd) compared to the execution time of the same query on
the original database. The number of involved table fragments is calculated
by summing the number of table fragments that were necessary to create
every view involved in the query.

4. If a query can be evaluated by a single database server (because it physically
stores all the involved attributes), the query is directly cast to this server.
For this method, only the execution time (t) is stated because it can be
suspected, that their execution time is about the same as for the original
database.

Fig. 15. Runtime results for TPC-H queries

Figure 15 summarizes the results of the test runs while Table 9 shows the
exact results. This evaluation shows the major advantage of the separation of
duties approach. Because the columns of the tables are outsourced in plaintext,
every query can potentially be executed. In particular, we are able to process
all queries of the TPC-H benchmark. This is in contrast to approaches using
property-preserving encryption: The MONOMI system [31] executes only 19
out of 22 TPC-H queries due to lacking support for views and text pattern
matching; according to [31] the CryptDB system [27] executes only four out of
the 22 queries.

However, we had to cancel two of the queries, namely Q17 and Q20, because
the timeout limit (30 minutes) was exceeded. Yet, the reason why these queries
take so much time is not related to the vertically fragmented database as the
timeout was also reached for the original non-fragmented database. Therefore, it
can be concluded this issue is related to the PostgreSQL database engine which
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Query
I II III IV

t (ms) t (ms) tr (ms) tf sd t (ms) tf sd t (ms)

Q1 2267 40413 36 2 17.83× 41180 2 18.16× n.a.

Q2 353 4528 396 6 12.83× 4699 6 13.31× n.a.

Q3 861 15650 7 4 18.18× 19797 6 22.99× n.a.

Q4 3110 22917 12 4 7.37× 18571 4 5.97× n.a.

Q5 952 23658 5 7 24.85× 37036 10 38.9× n.a.

Q6 291 4167 1 2 14.32× 4039 2 13.88× n.a.

Q7 530 6817 14 6 12.86× 11653 9 21.99× n.a.

Q8 1305 33453 14 8 25.63× 38584 11 29.57× n.a.

Q9 1652 563036 9 7 340.82× 18532 9 11.22× n.a.

Q10 1417 8340 4 6 5.89× 12547 7 8.85× n.a.

Q11 193 595 7 3 3.08× 576 5 2.98× 218

Q12 457 5921 4 2 12.96× 10399 4 22.75× 424

Q13 1726 6103 2 2 3.54× 11821 4 6.85× 1696

Q14 341 3721 2 3 10.91× 3765 3 11.04× n.a.

Q15 663 8368 3 2 12.62× 8685 4 13.1× n.a.

Q16 603 3054 5 3 5.06× 2983 6 4.95× 634

Q17 timeout timeout 57 2 n.a. timeout 3 n.a. timeout

Q18 5998 50501 11 4 8.42× 51034 6 8.51× n.a.

Q19 646 859324 5 3 1330.22× 1927 3 2.98× n.a.

Q20 timeout timeout 61 5 n.a. timeout 8 n.a. n.a.

Q21 1708506 136042 59 7 0.08× 79111 7 0.05× n.a.

Q22 534 10176 5 4 19.06× 10580 4 19.81× n.a.
Table 9. Comparison between the different execution methods

cannot find an adequate execution plan for those queries. Notably, [31] report the
same problems when running the TCP-H queries: “Queries 17, 20, and 21 cause
trouble for the Postgres optimizer: they involve correlated subqueries, which the
optimizer is unable to handle efficiently”.

As it was suspected, queries Q11, Q12, Q13 and Q16 that can be evaluated in a
reasonable amount of time by a single server of the fragmented database can be
executed in about the same time as in the non-fragmented database. For these
4 queries, a visibility constraint could be satisfied which perfectly illustrates the
benefits of introducing those constraints. Interestingly, query rewriting and using
views performed considerably worse for three of those 4 queries (Q11, Q12, Q13).
This is especially noticeable because rewriting the query also leads to a situa-
tion where the query involves only one database server but this is obviously not
detected by PostgreSQL in conjunction with the foreign data wrapper extension
postgres fdw. This observation justifies a prior analysis of the queries as imple-
mented in our distributed database client.
There is one query, Q21, for which the execution time on the fragmented da-
tabase is lower than the execution time for the non-fragmented database. For
this query, the fragmented database probably profited from a better execution
strategy that could be established by PostgreSQL due to the query rewriting or
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the use of the views. However, we assume that such situations occur very rarely
in practice and are caused by PostgreSQL’s execution strategy.
An interesting thing to notice is that query rewriting outperformed querying the
views 13 times; querying the views was better for only 7 queries. Even more inte-
resting, rewriting the queries performed better in 9 out of 12 times (ignoring the
canceled queries) when the number of involved table fragments was lower than
for the views. This illustrates the advantage of query rewriting over using views
because unnecessary table fragments can be omitted with the former method.
The overhead introduced by rewriting the queries is very small for all of the
queries compared to the execution time and can therefore be neglected. Conse-
quently, one can conclude that query rewriting is generally the better strategy
than using views. However, if for some reason a rewritten takes very long to pro-
cess, querying the views can potentially lower the execution time. An example
for such a situation is query Q19.

8 Conclusion and Future Work

In this article, we extended our separation of duties approach with which con-
fidentiality in cloud databases can be enforced based on vertical fragmentation.
Our approach enforces a security policy consisting of confidentiality constraints
while at the same time respecting data dependencies, minimizing the amount of
external cloud servers (the cardinality of the fragmentation) as well as maximi-
zing the amount of satisfied visibility constraints (the constraints introduced to
increase the utility of the resulting fragmentations). An implementation based
on the provided theories was presented by translating the separation of duties
problem into an integer linear program (ILP) representation and using an off-
the-shelf solver to obtain a confidentiality-preserving fragmentation. In addition,
we discussed our query rewriting approach, that enables an efficient distributed
execution of queries on the fragments.

To show the feasibility of the separation of duties approach, based on the
well-known TPC-E database schema the effects of different sizes of input data
were evaluated. The evaluation of a TPC-H benchmark showed the major ad-
vantage of the separation of duties approach. As the columns of the database
are stored in plaintext, it is possible to evaluate any database query, regardless
of its complexity. Compared to encryption schemes, there is also no additional
resource-intensive workload like decrypting the received data at the database
user’s site. Therefore, users of cloud databases who potentially run devices with
a low computational power, especially benefit from this approach.

Several options for future work arise. Our approach is currently most applica-
ble to situations where the constraint sets remain fixed over time. Studying cer-
tain classes of “allowed” modifications of these sets (confidentiality constraints,
visibility constraints and dependencies) as well as their influences on security,
data distribution and query execution is a major future topic which can be based
on [3]. Moreover we plan to provide an in-depth analysis of different classes of
integrity constraints similar to [4, 2] as well as considering the query execution
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cost as an extra optimization goal. More generally in order to integrate our prior
work on property-preserving encryption [34] we aim to analyze the combina-
tion of these encryption methods with separation of duties. Lastly it might be
worthwhile to analyze the separation of duties approach in non-relational data
models [36].
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