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Summary
Neural networks are one option to implement decision support systems for healthcare applica-

tions. In this paper we identify optimal settings of neural networks for medical diagnoses: the

study involves the application of supervised machine learning using an Artificial Neural Network

(ANN) to distinguish between gout and leukemia patients.With the objective to improve the base

accuracy (calculated from the initial set-up of the neural network model) several enhancements

are analyzed – such as the use of hyperbolic tangent activation function instead of the sigmoid

function, the use of two hidden layers instead of one as well as transforming the measurements

with linear regression to obtain a smoothened data set. Another setting we study is the impact on

the accuracy when using a dataset of reduced size but with higher data quality. We also discuss

the tradeoff between accuracy and runtime efficiency.
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1 INTRODUCTION

Future precision medicine can vastly profit from data analytics and machine learning to obtain a patient-specific personalized diagnosis based on
various individual health indicators. Based on a body of prior experience documented in electronic medical records of other patients, machine
learning techniques can form the underpinning of medical decision support systems – ideally relying on an integration of both the capabilities of
storage and data analytics as for example in (Tashkandi, Wiese, & Wiese 2018). An Artificial Neural Network (ANN) is an established method to
perform classification (one of the supervised learning techniques) on clinical data. In medical data analysis, machine learning is a common procedure
used for classification of patients suffering from different diseases. In this paper, an ANN is used to predict and classify the diagnoses of either
gout or leukemia based on uric acid measurements. However we address the topic from a more technical perspective to find out which enhanced
settings (in terms of data preprocessing and neural network configuration) provide the most benefit.

1.1 Medical Background
We concentrate on the differentiation of two diseases that both can be identified by measuring the concentration of uric acid. In particular, one
of the common factors in leukemia and gout diseases is the abnormal uric acid signature in blood. Uric acid concentration in a healthy human in
developed countries ranges from 3.5 mg/dl in infants to about 6 mg/dl in adults (Alvarez-Lario & Macarron-Vicente 2011; Lasko, Denny, & Levy
2013; Wilcox 1996). In patients suffering from gout or leukemia, the uric acid concentration increases more than the normal range and is therefore
regularly monitored and treated. In case of gout, a combination of genetic mutations and environmental factors causes uric acid concentration
to increase. This further results in formation of uric acid crystals which precipitates into joints and causes painful arthritis (Lasko et al. 2013). As
for leukemia, turnover of white blood cells increases the uric acid concentration. The two diseases have different pathophysiology, which in turn
combined with their treatment procedures, results in different signatures of uric acid concentrations. Therefore, in this article, supervised learning
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is performed on uric acid measurements to classify the two diseases leukemia and gout. In this way, we can derive an automated recommendation
for medical staff regarding the likeliness of one disease or the other.

1.2 Machine Learning Techniques
Machine Learning is one of the top growing fields of recent times and is being utilized in various areas for many applications – such as financial
trading, healthcare, recommendations, online search and many more. Machine learning involves building of models from the given dataset which
can be utilized to make future predictions. This process is executed in two phases: (i) from the input dataset, calculate unknown dependencies and
(ii) from those dependencies predict outcomes on so far unseen datasets.

The two common types of machine learning are supervised and unsupervised learning. Supervised learning involves use of a labelled set of input
data to predict the output. In contrast, unsupervised learning involves unlabelled data. Because of this, there is no designated output such that the
learning model has to identify patterns in the input data. The work in this article addresses the supervised learning problem of classification which
involves categorizing the data into finite classes. More precisely, uric acid concentrations are classified into the two classes leukemia and gout.

1.3 Objectives
The main objective of this article is to perform supervised machine learning with neural networks and assess the accuracy of the system to
distinguish between the patients with either gout or leukemia. We verify and extend our previous preliminary analysis in (Bahra &Wiese 2018) by
considering several advanced settings of the neural network; we also analyze the tradeoffs between these different settings of the neural network
model. To achieve this objective, several tasks have to be performed and these are summarized as follows:

• identify files to be used from theMedical InformationMart for Intensive Care (MIMIC) dataset provided byGoldberger et al. (2000); Johnson
et al. (2016).

• identify data (patients with either gout or leukemia and their uric acid signatures) required for the study.

• perform pre-processing on the identified data (uric acid concentrations) with linear regression.

• perform supervised learning with 3-folds cross validation on original and linear regression transformed uric acid measurements in different
settings.

• improve the data quality by reducing the data set to patients with at least 3 uric acid measurements and observing the impact on the
accuracy.

• assess the impact on the runtime efficiency of these enhancements.

In more detail, our study starts with identifying the tables from the MIMIC-III database. From those tables, patients with gout and leukemia
diseases and their corresponding uric acid measurements are identified. The data is then cleansed, and is further used for supervised learning.
The neural network for the supervised learning is designed using 1 hidden layer and sigmoid activation function. Accuracy is then calculated to
measure the effectiveness of the model. Furthermore, to improve the initial accuracy of the model, a couple of enhancements are tried. These
enhancements include the use of the hyperbolic tangent (tanh) activation function, 2 hidden layers and linear regression for transformation of the
original uric acid measurements. Lastly, the size of the dataset is reduced in order to avoid a bias that results from singular uric acid values in the
measurement sequence of a patient. It is achieved by removing the sequences with less than 3 measurements.

1.4 Outline of the Article
After discussing the background and objectives of the article in Section 1, Section 2 surveys related work in the area. Section 3 covers the detailed
description of the MIMIC database and includes tables identification as well as dataset selection and creation. Section 4 covers the supervised
learning performed on our use case, introducing the basics of neural networks along with their implementation. Results and observations of
supervised learning are then discussed in Section 5; this section also covers various enhanced techniques which include the use of normalization,
hyperbolic tangent function as activation function, 2 hidden layers instead of 1, and linear regression for data preprocessing or transformation.
Results with a reduced dataset size are presented in Section 6. The runtime behaviour of our settings is discussed in Section 7. The final Section 8
summarizes our work.
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2 RELATEDWORK

Several studies in health care are based on machine learning. In this section we survey some applications of machine learning in health care in the
last two decades.

Lee, Liao, and Embrechts (2000) analyzed heart disease databases with techniques like data visualization and correlation analysis to identify
important features in heart disease and to build a multivariate relationship model to visualize the relationship between any two features. They
describe two different approaches, discriminant analysis and neural networks classification, to identify high risk patients.

García-Gómez et al. (2004) study classification of soft tissue tumors into either benign or malignant classes based on a pattern-recognition
approach. They use MR images as input data and perform machine learning with several approaches – ANN, support vector machine (SVM)
and k-nearest neighbor – for the classification task. They conclude that neural networks give relatively good results compared to the other two
techniques.

Joshi, Pakhomov, Pedersen, and Chute (2006) perform machine learning on electronic medical records to unambiguously expand acronyms in
clinical reports. The learning is carried out with three different algorithms, Naïve Bayes, decision tree and SVM. They observe that accuracy of the
model is better with all the features combined as compared to when features are used individually and in pairs, independent of the algorithm used.

Huang, McCullagh, Black, and Harper (2007) perform supervised learning on diabetes data to classify patients into diabetic and non-diabetic
classes. The study also involves identification of features which give a good accuracy for the model. They used several learning algorithms – Naïve
Bayes, IB1 (an instance based learning algorithm) and C4.5 (a decision tree algorithm) – to achieve the objective.

A. Nguyen, Moore, McCowan, and Courage (2007) use SVM to classify lung cancer patients into multiple classes of T (the tumor stage which
describes size and position of the tumor) and N (the node stage which describes presence of spread into the lymph nodes) stages of lung cancer.

Juhola (2008) classifies otoneurological data into six classes: vestibular schwannoma, benign positional vertigo, Menière’s disease, sudden deaf-
ness, traumatic vertigo and vestibular neuritis. Seven techniques – k-nearest neighbour searching, discriminant analysis, Naïve Bayesian decision
rule, k-means clustering, decision trees, multilayer perceptron neural networks and Kohonen networks – are employed for this task. It is observed
that linear discriminant analysis performed better than the other six techniques.

Maes, Twisk, and Johnson (2012) apply supervised learning methods, such as linear discriminant analysis, pattern recognition and factor analysis,
to differentiate between myalgic encephalomyelitis, chronic fatigue syndrome and chronic fatigue.

Lasko et al. (2013) use an unsupervised learningmethod to identify features in gout and leukemia diseaseswith the use of the uric acid signatures.
The work described in their paper is implemented on data extracted from Electronic Medical Records Roden et al. (2008). In their paper it is
mentioned that the data is noisy, sparse and irregular, therefore, it is smoothened with the use of Gaussian process regression. On this data, deep
learning is performedwith the use of Sparse Autoencoders. Furthermore, the features learned from first and second layers of Sparse Autoencoders,
are then utilized for a supervised learning classification task (to classify between gout and leukemia) using Logistic Regression.

Shouval et al. (2014) survey different supervised learning algorithms – namely, ANN, decision tree and SVM – on a hematopoietic stem cell
transplantation database for the classification task.

Kourou, Exarchos, Exarchos, Karamouzis, and Fotiadis (2015) review supervised learning methods, namely, ANN, Bayesian Networks, SVM and
decision trees for prognosis of cancer and its prediction. Their paper even highlights the case studies used for machine learning tools to predict
cancer susceptibility, cancer recurrence and cancer survival.

Beaulieu-Jones and Greene (2016) develop a semi-supervised learning method and use it to improve survival predictions of patients suffering
from ALS. Semi-supervised learning results from a combination of supervised and unsupervised learning. The method for semi-supervised learning
is developed using Denoising Autoencoders (an unsupervised learning approach) for phenotype stratification, in combination with Random Forests
(as supervised learning) for classification. In their paper, unsupervised learning is performed to reduce the amount of features of the input dataset,
which is then followed by performing supervised learning on this reduced dataset.

Weng, Reps, Kai, Garibaldi, andQureshi (2017) use supervised learning for cardiovascular risk prediction. To achieve this, the following algorithms
are used: random forest, logistic regression, gradient boosting machines and neural networks. It is concluded in their paper that neural networks
perform better than the rest.

It can be seen from this survey that classification of diseases is a popular use case and ANN is a widely used technique for this classification task.
In contrast to the surveyed approaches, in this paper we apply supervised learning on a dataset different from the ones used before. In addition
we study the effect of several enhancements (in particular of linear regression for data smoothening). Moreover, we assess the runtime behaviour
of the different settings.
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# unique # admissions # admissions
admissions Leukemia Gout

Initial admissions 2, 837 618 2, 219

Admissions after eliminating patients with both diagnoses 2, 773 584 2, 189

Admissions after eliminating patients with no uric acid measurements 1, 076 398 678

Final admissions after eliminating admissions with no uric acid measurements 640 306 334

TABLE 1 Selection of hospital admissions for analysis

3 DATA SET

MIMIC-III is the third iteration of a large clinical database called Medical Information Mart for Intensive Care as reported byGoldberger et al.
(2000); Johnson et al. (2016). It comprises of the medical data of patients admitted to critical care units, Coronary Care Unit (CCU), Cardiac Surgery
Recovery Unit (CSRU), Medical Intensive Care Unit (MICU), Neonatal Intensive Care Unit (NICU), Surgical Intensive Care Unit (SICU) and Trauma
Surgical Intensive Care Unit (TSICU), at the hospital Beth Israel Deaconess Medical Center in Boston. According to Goldberger et al. (2000), the
current version of the database is 1.4 as of September 4, 2016, and consists of health-related records of de-identified 46,520 subjects out of which
38,645 are adults and 7,875 are neonates. The patients are de-identified according to Health Insurance Portability and Accountability Act (HIPAA)
standards, which involved removal of 18 fields, such as patients’ name, telephone numbers, addresses, etc., as listed in HIPAA. It also involved
shifting of the dates, including date of birth, by a random offset, as directed by the HIPAA. The database not only includes the information of
the vital sign measurements, medicines administered, laboratory measurements, fluid balance, imaging reports, out-of-hospital mortality but also
patients’ demographics, nurses’ and physicians’ notes, procedure and diagnostic codes, and more. Note that the MIMIC database was prepared by
compiling data from two data sources, CareVue and Metavision Intensive Care Unit (ICU) databases, used at the hospital.

3.1 Dataset Identification
There are 26 Comma Separated Values (CSV) files in the MIMIC-III data set. Out of those 26 files, the following 4 files are considered for our case
study:

• D_ICD_DIAGNOSES: gives the disease codes (ICD-9 codes) for gout and leukemia diagnoses

• DIAGNOSES_ICD: identifies the hospital admissions and patients suffering from gout and leukemia

• D_LABITEMS: gives the ID for uric acid signatures

• LABEVENTS: gives the data about uric acid measurements of the patients identified with gout and leukemia

There are 78 ICD-9 codes for leukemia and 11 for gout identified from the D_ICD_DIAGNOSES table. Then, from the DIAGNOSES_ICD table, a
total of 2,837 hospital admissions are identified with the above diagnoses – out of which 618 hospital admissions are for leukemia and 2,219 are
for gout. These many admissions correspond to 2,259 patients or unique SUBJECT_IDs; in R, the duplicated function with logical negation operator
(!) was used to find these unique SUBJECT_IDs. Among these subject IDs, 454 patients suffered from leukemia and 1,805 suffered from gout.
Furthermore, 22 patients are common for both the diagnoses. After removing IDs of those patients, a total of 2,773 hospital admissions were
identified for the patients suffering either leukemia (584 HADM_IDs) or gout (2,189 HADM_IDs) but not both. These 2,773 admissions correspond to
2,215 patients, out of which 1,783 patients suffered from gout and 432 from leukemia. Moreover, the hospital admissions are reduced from 2,773
to 1,076 by removing records with no uric acid measurements for those patients. The number of admissions further decreased to 640 as there are
no uric acid observations corresponding to those admissions. And finally, these 640 unique admissions correspond to 567 unique patients, out of
which 311 suffered from gout and the remaining 256 patients suffered from leukemia. Tables 1 and 2 summarize the above information.

As for the uric acid signatures, 3 IDs were identified from the D_LABITEMS table. Corresponding to those IDs, 19,906 observations representing
uric acid measurements are identified from the LABEVENTS table. These 19,906 observations reduced to 7,076, as the removed observations did
not correspond to the identified SUBJECT_IDs. Furthermore, 7,076 observations reduced to 5,665, as those observations did not correspond to
the identified hospital admission IDs. The Table 3 summarizes the above information.
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# unique # patients # patients
patients Leukemia Gout

Initial observations 2, 259 454 1, 805

Observations after eliminating patients with both diagnoses 2, 215 432 1, 783

Observations after eliminating patients with no uric acid measurements 761 273 488

Final patients after eliminating admissions with no uric acid measurements 567 256 311

TABLE 2 Selection of patients for analysis

# uric acid measurements
Initial observations 19, 906

Observations after eliminating patients with different diagnosis 7, 076

Final observations corresponding to final admission IDs 5, 665

TABLE 3 Selection of uric acid measurements for analysis

3.2 Dataset Creation
The data, i.e, uric acid concentrations (from Table 3), is then arranged into 567 sequences, grouped according to the patient IDs (from Table 2).
These sequences are then broken down to a size of 17 values per row, where the first two values are the label (1 for leukemia and 0 for gout) and
patient ID, and the remaining 15 values are the uric acid concentrations. Note that the sizes of measurement sequences are unequal. In order to
make use of all measurements in the data set, patients with more than 15 measurements occur multiple times: each sequence of 15 consecutive
measurements is treated as a new sequence. On the other hand, for sequences with less than 15 measurements, value 0 is used for the remaining
part of the sequence. This resulted in a total of 813 sequences. The sequences are then shuffled with the use of sample function provided by R
Team (2014).

4 METHOD

4.1 Neural Networks
Neural networks are one class of several supervised learning classification techniques (as introduced in Section 1.2), and are based on the concept
of perceptrons which was originally introduced by Rosenblatt (1958) and is now widely discussed in standard textbooks and surveys like Kotsiantis
(2007); Nielsen (2015). In this work, a 3-layered neural network is used, where the first layer, L1, is the input layer, the second layer, L2, is the
hidden layer, and the last layer, L3, is the output layer. Note that the output of one layer is the input of the next layer, and there are sl number of
nodes in layer l. Figure 1 illustrates these settings.

4.1.1 Defining the Layer Sizes
To begin, the number of nodes sl in all the layers are defined. According to our dataset (from Section 3.2), the input size is 15, that is, the number of
nodes (s1) in layer 1 (L1) is 15. This is because, from Section 3.2, out of 17 values per row, 15 values are the uric acid measurements. The number of
output nodes is 1, as the label (leukemia or gout) per row is single-valued (from Section 3.2). The number of nodes in the hidden layer s2 is varied
in the upcoming tests in order to assess the changes (positive, negative, or no change) in the result. We chose to test s2 = 5, s2 = 10 and s2 = 25.

4.1.2 Forward Propagation
As the nodes are calculated starting from the layer L1 up to layer L3 in the network, this step is called forward propagation. The activation unit,
a
(l)
i , is used to define the output of the ith unit in layer l. Therefore, for the L1 layer, a(1)i = xi consists of one measurement value from an input
sequence; as for the layers L2 and L3, the nodes are computational and therefore, activations are calculated as a function of an input vector a(l)

(the activations of the previous layer), a weights matrix W and a bias vector b:
a. for layer l = 2: a(2) = f

(
W(1) ∗ a(1)

)
+ b(1)

Note that a(1) is an input data sequence and f is the sigmoid function (see below).
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FIGURE 1Our neural network settings:Weight matrixW and bias b are recalibrated in the learning step; weight decay parameter λ and the amount
of nodes in layer 2 s2 are varied in our tests.

b. for layer l = 3: a(3) = f(W(2)∗a(2))+b(2); this is the final output of the neural network denoting the classification into either gout or leukemia.
Here,W(l−1)

ij is the weight or the parameter of the connection between the jth unit in layer l−1 and the ith unit in layer l, bias unit bli corresponds
to the ith unit in layer l.

4.1.3 Initialization of WeightsW and Biases b and Activation Function
The weights in matrixW are to be initialized to a value close to 0 and therefore are randomly initialized from the interval [-0.5, 0.5] (as in D. Nguyen
and Widrow (1990)). The biases b are initialized to 0.

Function f : R → R is the activation function and is usually defined with sigmoid function as shown by the Equation 1; it produces an output
ranging over (0, 1).

f(z) =
1

1 + exp(−z)
(1)

An important identity to note is that the derivative f′(z) of sigmoid function f(z) (in Equation 1) is given by the Equation 2, and is used in the
learning phase.

f ′(z) = f(z)(1− f(z)) (2)

In order to adapt the bias vector b and the weight matrixW, we apply the squared-error cost function and minimize its value by backpropagation
in the neural network.

4.1.4 Cost Function
For a single training example (x, y) – where x is one input sequnence of 15 uric acid measurements and y is the class label for either gout or
leukemia – the squared-error cost function is given in Equation 3.

J(W, b;x, y) =
1

2
‖ hW,b(x)− y ‖2 (3)
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where, hW,b(x) = a
(3)
1 is the final activation of the neural network; the size of hW,b(x) is 1 × 1, as there is one output node and one training

example. More generally, for a given training set
{
(x(1), y(1)), .., (x(r), y(r)), .., (x(m), y(m))

}
of m training examples, the cost function is given as

Equation 4,

J(W, b) =

[
1

m

m∑
r=1

J
(
W, b;x(r), y(r)

)]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ij

)2
(4)

where the first term is the sum-of-squares error term averaged over all input sequnences and the second term is the regularisation term (or the
weight decay term) which decreases the value of the weights and avoids overfitting. Parameter λ in Equation 4 is the weight decay parameter.

To minimize the cost function J(W, b) as a function of weights matrix W and bias vector b, every parameter W(l)
ij and b

(l)
i is initialized to a

random value near to 0. Then an optimization algorithm is applied for minimization. We chose the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method introduced by Liu and Nocedal (1989) for the minimization of the cost function because it usually faster than a basic
gradient descent algorithm. The L-BFGS algorithm is employed with the use of function minFunc (see Schmidt (2005)).

4.1.5 Define λ and update ParametersW and b

The weight decay parameter λ (in Equation 4) needs to be defined. In the upcoming tests, the value of weight decay parameter λ is varied in order
to assess the changes (positive, negative, or no change) in the result. We chose to compare three different settings for λ – namely, λ = 0.0001,
λ = 0.00001, and λ = 0.000001.

The weights matrixW and the bias vector b for layers L1 and L2, which minimize the cost function J(W, b), are recalibrated after every iteration
of the L-BFGS algorithm. In other words,W and b are equal to final values of the partial derivatives of the overall cost function, ∂

∂W(l) J(W, b) and
∂

∂b(l)
J(W, b) respectively.

4.2 Accuracy Calculation
To calculate the accuracy of the machine learning model on the training and the testing sets, forward propagation (as described in Section 4.1.2) is
performed such that for layers l = 2, 3: a(l) = f(W(l−1) ∗ a(l−1)) + b(l−1). Note that the activation matrix of layer l=1, a(1) = data (either training
or testing), f is the sigmoid activation function, andW and b are calculated using the L-BFGS algorithm.

Then the activation vector of the output layer, a(3), is used to assign labels to the data (either training set or testing set). If the value each element
in a(3) is greater or equal to 0.5, then, label 1 (corresponding to leukemia) is assigned to the element, else 0 (corresponding to gout) is assigned.
These assigned labels then form the prediction vector of size 542× 1 in case of training set and of 271× 1 in case of testing set.

Each element in prediction vector is then compared with the corresponding actual label of the data. If the labels are the same, 1 is assigned
to a comparison vector; if labels are not the same, then 0 is assigned to the comparison vector. Furthermore, the average is calculated for the
comparison vector, which is of size 542× 1 in case of training set and of 271× 1 in case of testing set. The average multiplied with 100 gives the
accuracy of the model in percent.

4.3 K-Fold Cross-Validation
To create training and testing sets used for the learning, the k-fold cross validation method is employed. In k-fold cross validation, the data is
randomly divided into k subsets of equal size and a single subset is referred to as fold. Of the k folds, k− 1 folds are combined to form the training
set and the remaining fold is used as the testing set, and the accuracy is calculated for the training and the testing sets which describes the stability
of the model. This is then repeated for k iterations, and for every iteration, the testing set comprises of a fold used exactly once. Moreover, to use
the model for new predictions and to estimate the overall accuracy of the model, consider the classifier for which the highest accuracy is achieved
for the testing set.

We applied 3-fold cross validation as well as 10-fold cross validation. As described in the previous paragraph, first the data is divided into equal
subsets. Therefore, 813 sequences (from Section 3.2) are divided into 3 equal subsets as well as 10 subsets, respectively. Then, supervised learning
is performed on these subsets for three iterations – each iteration either executing 3-fold or 10-fold cross validation. For each iteration, the testing
set is formed with a single subset used exactly once and the remaining subsets are used as the training set. The accuracy (calculated as in Section
4.2) is reported as the average of all iterations.
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FIGURE 2 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on original dataset using neural network
with 1 hidden layer.
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FIGURE 3 Accuracies (in %) and runtime (in seconds) of supervised learning with 10-fold cross validation on original dataset using neural network
with 1 hidden layer.

5 RESULTS ON COMPLETE DATASET

This section describes the results of supervised learning. The results represent the neural network model’s ability to distinguish between patients
suffering from either gout or leukemia based on abnormal uric acid measurements. The accuracies are determined for different cases, resulting
from the change in the values of weight decay parameter λ and the number of hidden layer nodes s2 (as in Section 4.1.1).

The accuracy is computed three times (iteration I1-I3) per case; this is because weights in W are randomly initialized (see Section 4.1.3) and
therefore, give slightly different values for each iteration. For final accuracy of the case, these accuracies are averaged out. Accuracy is measured
in percent.

5.1 Results of Cross-Validation on Original Dataset
The results in Figure 2 are of 3-fold cross validation performed on the original dataset with one hidden layer. The following observations can be
seen from Figure 2. All average test accuracies are very similar. The highest average test accuracy is 83% in case of 5 neurons in the hidden layer
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FIGURE 4 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on original dataset using neural network
with 2 hidden layers and the first layer size fixed to 5.

1 2 3
0

20

40

60

80

100

weight decay parameter lambda: 1) 0.01, 2) 0.001, 3) 0.0001 

Accuracy (percent): 2 hidden layers, 3fold CV, sigmoid activation

hidden layer size 5

hidden layer size 10

hidden layer size 15

hidden layer size 20

hidden layer size 25

1 2 3
0

2

4

6

8

Runtime (seconds): 2 hidden layers, 3fold CV, sigmoid activation

weight decay parameter lambda: 1) 0.01, 2) 0.001, 3) 0.0001 

hidden layer size 5

hidden layer size 10

hidden layer size 15

hidden layer size 20

hidden layer size 25

FIGURE 5 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on original dataset using neural network
with 2 hidden layers and varying both layer sizes.

– that is, with the lowest number s2 of nodes in the hidden layer – and the lowest setting for the weight decay parameter λ. However, the lower
weight decay parameter incurs a much more increased runtime. The results of 10-fold cross validation in Figure 3 present a similar picture with
the highest test accuracy of roughly 83% in case of 10 neurons in the hidden layer and the lowest setting for the weight decay parameter λ.

We tested different settings with 2 hidden layers. In the first case, the first hidden layer was fixed to size 5 and only the size of the second hidden
layer is increased; in the second case both the first and second hidden layer sizes are increased. In the first case in Figure 4, adding the second
layer reduced the accuracy for the largest weight decay parameter (λ = 0.01). For the other two weight decay parameters the accuracy remained
in the same range as with one hidden layer. The second case in Figure 5, with both layer sizes increased, also shows a decrease in accuracy for the
case of the largest weight decay parameter and low sizes of the first layer.

When trained with 10-fold cross validation, due to the larger training set size the decrease in accuracy did not occur (full results are not shown
here due to space restrictions). In other words, the results of 10-fold cross validation with two hidden layers are comparable to Figure 3.
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5.2 Pre-processing of the Dataset using Linear Regression
The time-series data present inMIMIC-III are incomplete, inconsistent, sparse and noisy. In order to regularize the data, we applied linear regression
to condition the data so as to handle irregularities in the data. We expected to smoothen the data by linear regression to obtain a general trend of
each of the uric acid signatures.

Linear regression tries to model the relationship between input and output variables by fitting a linear equation to the input (or observed) data.
To perform Linear regression to smoothen the data, the lm1 function provided by R, is used. The lm function is called for a single patient ID at a
time. The result of Linear regression for two different patient IDs (or sequences) can be seen in Figure 6.

FIGURE 6 Illustration of Linear regression transformation for two different sequences.

The results presented in the Figure 7 are of 3-fold cross validation performed on on the dataset transformed with linear regression before
supervised learning with one hidden layer. Interestingly, for the high weight decay parameter (λ = 0.01) the linear regression of the data set
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FIGURE 7 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on dataset with linear regression and using
neural network with 1 hidden layer.

1Syntax: lm(x ∼ y). In this work, x is uric acid concentrations and y corresponds to time measurements.
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FIGURE 8 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on dataset with linear regression and using
neural network with 2 hidden layers.

increased the accuracy to 83.3%). In the other cases the linear regression did not show any effect on the accuracy. The same observations were
made with 10-fold cross validation.

With 2 hidden layers, the observations with linear regression resemble the observation without linear regression: for the largest weight decay
parameter, the accuracy for low layer sizes is decreased when adding a second layer (shown in Figure 8). When fixing the first layer size to 5, the
accuracy decreased even more in this case. In all other cases, that is, for different layer sizes as well as for all 10-fold cross validation cases, the
linear regression with 2 hidden layers did not show any effect on the accuracy (results not shown here due to space restrictions).

6 REDUCED DATASETS

In this section, sequences with less than 3 non-zero data points are removed in order to remove biases in the result due to too short uric acid
measurement sequences. In other words, 3-fold cross validation is carried out on the data of the patients which have more than 2 non-zero data
points (uric acid measurements) per sequence. Therefore, the number of sequences reduced to 462 (out of 813, from Section 3.2). Subsequently,
the size of a single fold for cross validation was reduced accordingly, too. As in Section 5, the accuracies are determined for different settings; the
accuracy is computed three times per setting and for the final accuracy, these accuracies are averaged out.

6.1 Cross-Validation on Reduced Original Dataset
The results presented here are of cross validation performed on the reduced original dataset. The following observations can be seen from Figure
9 for one hidden layer with 3-fold cross validation. The accuracy increased when using the higher quality dataset to up to 88.4% in the case of
medium weight decay parameter (λ = 0.001). A similar improvement was observed with 10-fold cross validation (not shown here due to space
restrictions). In the case of 2 hidden layers these improvements also manifest for the case that both layer sizes are increased. Our main observation
is that accuracies are overall better for the reduced data set (as compared to the original one).

6.2 Cross-Validation on Reduced Transformed Dataset
We next tested the case of one hidden layer for the data set that is both reduced to retain only sequences of length at least 3 as well as transformed
by linear regression. The results are shown in Figure 10. The accuracy increased to up to 89.1% for the case of λ = 0.01 with hidden layer size
20 as well as 25. This is the best setting that could be obtained; in all other cases (two hidden layers or 10-fold cross validation) this improvement
could not be achieved.



12 Guryash Bahra and Lena Wiese

1 2 3
0

20

40

60

80

100

weight decay parameter lambda: 1) 0.01, 2) 0.001, 3) 0.0001 

Accuracy (percent): 1 hidden layer, 3fold CV, sigmoid activation

hidden layer size 5

hidden layer size 10

hidden layer size 15

hidden layer size 20

hidden layer size 25

1 2 3
0

1

2

3

4

5

Runtime (seconds): 1 hidden layer, 3fold CV, sigmoid activation

weight decay parameter lambda: 1) 0.01, 2) 0.001, 3) 0.0001 

hidden layer size 5

hidden layer size 10

hidden layer size 15

hidden layer size 20

hidden layer size 25

FIGURE 9 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on reduced dataset using neural network
with 1 hidden layer.
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FIGURE 10 Accuracies (in %) and runtime (in seconds) of supervised learning with 3-fold cross validation on reduced dataset with linear regression
and using neural network with 1 hidden layer.

The overall observation is hence that the best result can be achieved with the reduced and transformed data set lowest setting for the weight
decay parameter λ. Transformation with linear regression in this case pays off with improved accuracies (as compared to the non-transformed
case). In particular, again we can observe that accuracies are overall better for the reduced data set (as compared to the original one).

7 RUNTIME COMPARISON

We implemented the steps to carry out the supervised learning presented in the previous sections in Octave Eaton (2019). Data preprocessing
was done in R. We measured the runtime of the neural network model learning phases for all settings for which we reported the accuracies in the
previous sections. Executions are run on a Ubuntu 16.04.2 LTS system with 8GB RAM and 1TB of hard disk. The right-hand sides of all the above
figures shows the runtime in seconds.

In case of the original dataset, we can observe that the higher amount s2 of nodes in the hidden layer(s) has a noticable impact on the runtime.
In those cases where the higher amount of hidden layer nodes only gives a marginal improvement of accuracy (as in Section 5.2), the lower amount
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of hidden layer nodes might be preferred in terms of runtime efficiency. Notably, the lowest value for the weight decay parameter (λ = 0.001) has
a very strong impact on the runtime. With this λ value the backpropagation has difficulties finding the optimization quickly. Overall, this λ value
does not pay off neither in terms of accuracy nor in terms of efficiency.

In case of the reduced dataset, we can observe that not only the accuracies are better but also the overall runtime decreased. Hence, having a
smaller set of data but with a higher overall data quality can lead to better classification results.

8 DISCUSSION AND CONCLUSION

In our experiments a neural network is designed to classify gout and leukemia patients based on their uric acid measurements. Tests showed that
using more layers only improved the accuracy insignificantly. Yet, it can be observed for our use case that the lower value for the weight decay
parameter leads to a runtime increase due to a more involved optimization steps and low values for this parameters should be avoided. In our
settings using a high weight decay parameter and 20 hidden layers turned out to be the best setting for both accuracy and efficiency. Moreover,
learning on the reduced dataset (with better data quality) performed better than on the complete dataset both in terms of accuracy as well as
efficiency. Hence, regarding the tradeoff of having higher data quality with a reduced dataset size versus having overall lower data quality with
a larger dataset size, we observed that a reduced dataset size provided the most benefit. It can also be observed that the using linear regression
transformed data did improve the accuracy of the system best when used in combination with the reduced data set. Overall we can conclude
that for our use case, this additional preprocessing step only provides a benefit on the reduced data set in terms of accuracy but not in terms
of performance. To sum up, we conclude that several enhancements and settings of neural networks might not lead to optimal accuracy results.
Hence, it should be carefully assessed which settings provide optimal results (both in terms of accuracy and efficiency) for the use case at hand.

In future work, our study can be extended by more features in addition to the uric acid signatures in order to improve the accuracy results. An
extension to cover other diseases than gout and leukemia can also be a worthwhile topic of future work. Moreover, an in-depth comparison and
combination with other related approaches (in particular, the feature learning approach in Lasko et al. (2013)) can be performed in order to assess
the overall reliability of disease classification as well as quantify their runtime impact. Last but not least, we aim to investigate the impact of patient
similarity Tashkandi et al. (2018) for identifying a cohort in combination with classification by neural networks.
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