Adaptive Workload-based Partitioning and
Replication for RDF Graphs

Ahmed Al-Ghezi and Lena Wiese

Institute of Computer Science, University of Gottingen
{ahmed.al-ghezi|wiese}@cs.uni-goettingen.de

Abstract. Distributed processing of RDF data requires partitioning of
big and complex data sets. The partitioning affects the performance of
the distributed query processing and the amount of data transfer between
the network-connected nodes. Static graph partitioning aims to generate
partitions with lowest number of edges in between but suffers high com-
munication cost when a query trespasses a partition’s border, because
then it requires moving partial results across the network. Workload-
aware partitioning is an alternative but faces complex decisions regard-
ing the storage space and the workload orientation. In this paper, we
present an adaptive partitioning and replication strategy on three levels.
We initialize our system with static partitioning where it collects and
analyzes the received workload; then we let it adapt itself with two lev-
els of dynamic replications, besides applying a weighting system to its
initial static partitioning to decrease the ratio of border nodes.

1 Introduction

The exploding size of RDF-represented web data led to methods that ware-
house and process the data in a distributed system. The first challenge for such
systems is to partition the big RDF graph into several fragments, which then
need to be assigned wisely to the clustered working nodes. A SPARQL query is
represented as a graph on its own with some vertices and/or edges represented
as variables. Query execution is the process of finding all the sub-graphs in the
RDF-graph that match the query graph. Using several hosts connected in a clus-
ter, a SPARQL query can be received and executed in parallel by all the hosts
on their local share of data. Unfortunately, we have an expensive communica-
tion cost, whenever the query requires matching sub-graphs located in different
hosts. Working towards local query execution and avoiding the communication
cost is usually following two directions: (1) a better partitioning strategy, and
(2) replication of selected important triples across hosts. Partitioning requires no
extra storage space but finding the best strategy often involves solving a difficult
problem due to the complex relationships which are embedded in a typical RDF
graph. Replication has, in turn, two factors that mainly affect its feasibility: (1)
a good selection of graph parts to replicate, and (2) the available storage space
which restricts the amount of replicated data. Regarding the first factor, [9]
studied a set of DBpedia’s queries: more than 90% of the queries target only 163

frequent sub-graphs. This highlights the impact of the query workload to identify
important parts of the RDF graph and parts which should be kept together in a
single host. On the other hand, the storage space as the second factor affecting
a replication strategy limits the amount of replicated data which any host can
handle. However, the amount of storage space in a practical triple-store system
is variable; it depends on the size of the data set and of other important data
contained in the system like indices and statistics tables. Hence, a partitioning
and replication strategy focusing on saving disk space might perform poorly if
the system happens to have a lot of free storage space, and vice versa.
To address these challenges, our main contributions in this paper are:

— We present our RDF partitioning and replication approach, which is built
on two stages — with respect to the existence and absence of workload — and
three levels — with respect to storage space consumption.

— Given that the availability of storage space is variable, we describe the opti-
mized system behaviour with respect to the amount and type of replications,
to adapt to the different possible levels of storage space availability.

To the best of our knowledge, this is the first work in a distributed RDF triple
store, that considers the adaption of a partitioning and replication layer with
both the workload and the storage space availability.

The paper is structured as follows. We discuss related work in Section 2, then
we introduce the preliminaries and terminologies used in this paper in Section
3. We describe the system’s initial cold partitioning and replication approach
in Section 4. Section 5 describes how the system reacts to a collected workload
and adapts its storage layer. Finally we state our bench marking report and
conclusion in Section 6.

2 Related Work

Many recent works deal with general graph partitioning, including works target-
ing the problem of RDF graph partitioning. METIS [6] is a popular baseline for
many works like J. Huang [5], WARP [4], and TriAD [3] which applies a hash
function to assign many METIS partitions to hosts. Other works considere the
semantic embedded in the RDF data; Qiang Xu [12] apply a Page Rank inspired
algorithm to cluster the RDF data. EAGRE [13] identifies an entity concept for
the RDF data, which is then used to group and compress the entities which be-
long to the same RDF classes. Wu et al. [11] follow path partitioning: first identify
closed paths in the RDF graph, then assign the paths that share merged vertices
to the same partition. Margo et al. [7] perform edge partitioning by converting
the graph into an elimination tree and then trying to reduce communication cost
while performing partitioning on the resulting tree. Among the workload-based
approaches, however WARP [4] and Partout [2] can be considered baselines.
Following the work of Partout, Padiya et al. [8] identify properties which are
queried together and reflect this when partitioning the data set. Similar to the
min-terms used in Partout and WARP, Peng et al. [9] detect frequent patterns
in the workload, measured by the frequency of appearance.

3 Preliminaries

In this section, we state the main definitions (RDF graph, METIS partitioning
[6] and the partition’s border region) needed throughout this paper.

Definition 1 (RDF Graph). Let G = {V, E, P} be a graph representing the
RDF data set. V is a set of all the subjects and objects in the set of RDF triples
D; ECV xV is a set of directed edges representing all the triples in the data
set; P is a set of all the edges’ labels in the RDF data, and we denote p. as
the property associated with edge e € E. The RDF data set is then defined as
D ={(s,pe,0) | e =(s,0) :e € EAp. € P}

Definition 2 (METIS Partitioning). We refer to METIS as a function metis(v)
which for any v € V' returns the static partition number which v belongs to. We
could then define the partition r; = {v € V' | metis(v) = i}.

Definition 3 (Border Region). For a partition r;, border(i) = {v € r; |
(v, vm) € E : vy, & r;}. The border region with depth § is defined as the follows:
border(i,d) = {v € V | v & r;, outdepth(v,i) < &} , where the outdepth(v,i) is
the distance between any vertex v ¢ r; and the partition border border(i).

Note that border (i) refers to nodes inside a partition while border(i, d) refers to
nodes in neighboring partitions. Last, we define the query workload.

Definition 4 (Queries Workload, Query Answer). A query q is a set of
triple patterns {ti,ts,...,tn}; each triple pattern (3,p,0) € q has at least one
but not more than two constants, while the rest are variables. This set composes
a query graph qg. The query answer q, is the set of all sub-graphs in RDF
graph G that match the query graph and substitute the corresponding variables.
A workload is defined as a set: Q = {(q1, f1), (@25 f2), -+, (Gm, fm)}, where q; is a
SPARQL query, and f; is the frequency of its appearance in the workload. The
workload answer Q, is the set of the query answers of Q). The length of query q
s the maximum distance between any two vertices in its graph qq.

4 Cold-Start Partitioning

Without a pre-assumption about the query workload, our system starts by per-
forming static graph partitioning using METIS. This produces n partitions for
given n hosts. Each host handles its share of data and can provide space to
accept replications. The best area for replications is located at the hosts’ border
regions with some distance in depth. We differentiate in our system between two
types of replication: full and compressed.

4.1 Compressed Replicated Data

In triple stores like RDF3X!, a dictionary is used to map the textual URIs
found in the triples to compressed numerical data which are then stored in

! https://code.google.com/archive/p/rdf3x/

different indices. In the context of replication, the later architecture produces two
types: full replication where the host has full information about the graph data
including the dictionary entries, and the compressed replication where the host
has only the numerical data or even part of it. Given RDF data set represented
by graph G which has size T triples, the minimum length of numerical code
value used in dictionary is given by: 1092% bits, where & is the average number
of edges per vertex in GG. The total size in bytes of the T triples when stored in
the numerical form is given by:

size(T) = 3 log2(ic) l(;g2(£) (1)

4.2 Initial Cold Replication

At this stage, each host has a given amount of storage space assigned for repli-
cation denoted by S, and employs all of this space by replicating triples from its
neighbour hosts which are located at outdepth = 0 form its border; it then itera-
tively increases the outdepth and replicates the affected triples until the storage
space is fully taken. However, at each outdepth the host needs to make a decision
whether it should replicate the full or compressed data which was explained in
Section 4.1. The hypothesis here is that the full replication for certain outdepth
costs more space but performs faster than the corresponding compressed repli-
cation. On the other hand, the importance of triples decreases at their outdepth
increases, since their probability to contribute in queries workload decreases [5].
We now provide cost and benefit functions for each outdepth level § and host i
such that each host can make a systematic decision about the type of replication
it should perform. The cost function at outdepth = ¢ reflects the fraction of the
storage space which the host 7 would pay if this outdepth was fully replicated.

(|border(6,i)| — |border(6 — 1,4)|) - 8 - s¢ @)
S

Where s; is the size of a single compressed triple in Bytes given by Equation
1, and S is the size in Bytes of the currently remaining storage space of the
original S input. The factor 8 is estimated practically from [1] as the ratio of
full to compressed size. The benefit of host ¢ performing full replication of the
triples at outdepth = ¢ is related to the fraction of the triples that are expected
to participate in the workload, which is inversely proportional with ¢ :

benefit(i,) = % . % (3)

cost(i,d) =

The factor R can be greater than 1 when the network performance is relatively
poor, or the length of the queries is expected to be small.

For every partition ¢, we calculate the cost and benefit ratios starting with 6 = 1;
we make a decision to build full-data replication if the benefit is greater than
the corresponding cost, or otherwise consider building compressed replication,
or stop if there is no more storage space left.

5 Load-Aware Partitioning and Replication Step

Initial partitioning of the RDF graph with METIS provides solid ground for
the system to start executing queries while decreasing the amount of network
data transfer between working hosts. Next, our system collects the executed
queries in order to perform another partitioning which is based on the workload.
In this step, we first update the existing METIS partitioning by performing
optimization based on the available workload knowledge, we then support the
METIS partitioning by providing efficient replications on multiple levels.

5.1 Weighted METIS

The cold partitioning which took place in Section 4, produces METIS partitions
that have a minimum number of edges across the partitions, given that all the
edges are equally weighted with 1. Since METIS provides the possibility of as-
signing numerical weights to edges of the input graph, we provide a weighting
system that instructs the METIS with the more important edges in order to
avoid putting them on the resulting partitions’ cut. This weighting system is
produced from the collected workload and its results. The key advantage here
is that we remove the important vertices from the partition borders, and at the
same time we consume no more space, because no new data is added, but it
could require moving triples across hosts. The work of [10] compared between
different graph partitioning algorithms that try to achieve balanced partitions
in terms of the workload, but none of them directly considered the weighting
provided by METIS to partition RDF graphs. In contrast, we define the function
for each e € E as w(e) = J - (f(e) + f(pe)) + B where

— f(e) is the frequency of appearance of e in the workload queries answer @,

— f(pe) is the frequency of appearance of p. (the property associated with edge
e) in the workload query answer,

— [is equal to 0 when the frequency of p, in the data set is larger than a fixed
threshold, or equal to 1 otherwise,

— J is the ratio between the average count of edges per vertex in the RDF
graph and the average query frequency in the workload.

5.2 Building Global Query and Fragments Graphs

In this step we again employ the storage space S assigned by each host, by
replicating border triples to support the METIS partitions. But we make use
of the collected workload by generating full replication of those border triples
which have more priority, and compressed replications for the other lower priority
triples. For this we first normalize the workload, generate a global queries-graph,
and then describe the algorithm we run to compute the border triples priority.

‘Workload Normalization

In a query workload @, we first remove any non-frequent constants (excluding
properties) and any variables found in each ¢ € @ and replace them with single
variable (2. This normalizes the workload and avoids the generation of irrelevant
small fragments. The item is considered non-frequent if its frequency is less than a
normalization threshold. This threshold was left to the application case in WARP
and Partout. We let the system find this threshold by determining the first
statistical quartile of the items frequencies, such that we have a fully automated
process. Recall from Definition 4 that each ¢ is a set of triple patterns; the
normalized workload can be defined as: To = {(te1, f1), (te2, f2), .., (tok, fx)}

Q1,Frequency:4

Q2,Frequency:6

P1°
P3 P6 P2
P2
P @

Q3,Frequency:1 P1 P1

Q5,Frequency:10, Pa
> @
: " @i °

Fig. 1. Example workload (left) and global queries-graph (right)

P3

The Global Queries-Graph

The normalized queries workload is converted into a global queries-graph by
modeling each distinct triple pattern as a vertex. Fig. 1 shows an example work-
load and its global queries graph. An edge between two vertices in the graph
means that the two triple patterns modeled by the two vertices occur together
in one or more queries in the normalized workload. The edge weight represents
the total count of this occurrence. We define the global queries-graph as:

Definition 5 (Global Queries-Graph). For a normalized workload To =
{(te,, f1), (to,, f2), .., (te,., fm)}, the global queries-graph is G, = {V,, E,},
where V, = To and E, = {(te,,te,) | Ik, fr) € Q : ti € qu Nt; € qr}.
Each edge (to,,te,) in G, is weighted with the total number of times that the
normalized triple pattern te, falls with te, in the same query.

Algorithm 1: Generate The Workload-based Replication

input : A global queries-graph Q, = {V,, Ep}, and RDF graph G = {V, E}
1 for each host i do

2 //Create a fragment F, for each (v, f) € V,, each F, is a set of assigned triples:
F=A{F,| (v, f) € Vp,F, ={d € D | FragAssign(d) = v}} ;
3 for § =0 to oo do
4 Dy = {(s,p,0) € D | (s € border(i,d) A o € border(i, 6 — 1))V (0 €
border(i,d) A s € border(i,d — 1))} ;
5 if D; = () then
6 ‘ break;
7 end
8 for each d’ € D; do
9 for each (to, f) € Vp do
10 if d matches to then
11 matchImpact < matchImpact + f ;
12 Q={(t@j,fj)€vp‘H(t@,t@j)EET)};
13 fragmentMatch <+ fragmentMatch + getFragMatch(q,to,d’);
14 FragNo + FragAssign(d’)
15 end
16 end
17 FrragNo + Frragno U{d'} ;
18 benefit(d’) «
benefit(i,0) - (srrmeroraearragmentirater t mawRecoraednTaten Trpaet)’
19 cost(d') « cost(i, 5);
20 if benefit(d') > cost(d’) then
21 ‘ Build full replication of triple d in host i ;
22 else
23 ‘ Build compressed replication of triple d in host ¢ ;
24 end
25 end
26 end
27 end

Generating The Workload-based Replications

The global queries-graph contains the workload-based information which enables
the recognition of the border triples that have more probability to participate
in future queries. Replicating those triples increases the chance of local query
executions. However, such probability is related to the outdepth of the border
triple and to the engagement level of this border triple with the global queries-
graph. The steps we follow in this stage are shown in Algorithm 1. Each host
starts from its border and processes the triples at its neighbours which are located
at outdepth = 0, then iteratively increases the outdepth. Those triples are given
by set Dy at step 4 in Algorithm 1. We look at each triple d € Dy, and compute
two values: The first is matchImpact which is the accumulative frequencies of
the normalized triple patterns in G, that d matches; while the second value is
the fragmentMatch which gives an indication about the engagement level of D
with G,. This level is computed by the function getFragMatch(§,te,d’), which
computes multiple splits of the triple patterns of ¢, given that each split must
contain tg, and at least one other tg, € ¢. The function finds the split [with the
maximum number of triple patterns that d’ matches, and returns the summation
of all edges’ weights between tg and other triple patterns in [.

6

Conclusion

In this work we presented a novel adaptive partitioning and replication approach
that can highly adapt to different levels of both workload and storage space. We
report on a benchmark based on three types of queries and three types of storage
levels in [1]. As a test set, we used the YAGO core? data set with more than 50M
triples. We compare our system with three implementations based on WARP,
Partout and Huang.

Acknowledgements. The authors would like to thank Deutscher Akademischer
Austauschdienst (DAAD) for providing fund for research on this project.

References

1.

2.

10.

11.

12.

13.

Al-Ghezi, A., Wiese, L.: Space-adaptive and workload-aware replication and par-
titioning for distributed rdf triple stores (2018), under review

Galérraga, L., Hose, K., Schenkel, R.: Partout: a distributed engine for efficient rdf
processing. In: Proceedings of the 23rd International Conference on World Wide
Web. pp. 267-268. ACM (2014)

Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: Triad: A distributed shared-
nothing rdf engine based on asynchronous message passing. In: Proceedings of the
ACM International Conference on Management of Data. pp. 289-300. ACM, New
York, NY, USA (2014)

Hose, K., Schenkel, R.: Warp: Workload-aware replication and partitioning for
rdf. In: IEEE 29th International Conference on Data Engineering Workshops
(ICDEW). pp. 1-6 (2013)

Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs.
Proceedings of the VLDB Endowment 4(11), 1123-1134 (2011)

Karypis, G.: Metis and parmetis. In: Encyclopedia of parallel computing, pp. 1117—
1124. Springer (2011)

Margo, D., Seltzer, M.: A scalable distributed graph partitioner. Proc. VLDB En-
dow. 8(12), 1478-1489 (Aug 2015)

Padiya, T., Kanwar, J.J., Bhise, M.: Workload aware hybrid partitioning. In: Pro-
ceedings of the 9th Annual ACM India Conference. pp. 51-58. ACM (2016)
Peng, P., Chen, L., Zou, L., Zhao, D.: Query workload-based rdf graph fragmen-
tation and allocation. In: EDBT. pp. 377-388 (2016)

Shang, Z., Yu, J.X.: Catch the wind: Graph workload balancing on cloud. In:
Proceedings of the IEEE International Conference on Data Engineering. pp. 553—
564. IEEE Computer Society, Washington, DC, USA (2013)

Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable sparql querying using path
partitioning. In: Data Engineering (ICDE), 2015 IEEE 31st International Confer-
ence on. pp. 795-806. IEEE (2015)

Xu, Q., Wang, X., Wang, J., Yang, Y., Feng, Z.: Semantic-aware partitioning on
rdf graphs. In: Chen, L., Jensen, C.S., Shahabi, C., Yang, X., Lian, X. (eds.) Web
and Big Data. pp. 149-157. Springer International Publishing, Cham (2017)
Zhang, X., Chen, L., Tong, Y., Wang, M.: Eagre: Towards scalable i/o efficient
spargl query evaluation on the cloud. In: Jensen, C.S.; Jermaine, C.M., Zhou, X.
(eds.) ICDE. pp. 565-576. IEEE Computer Society (2013)

2 https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/

