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Abstract Efficient identification of cohorts of similar patients is a major pre-
condition for personalized medicine. In order to train prediction models on
a given medical data set, similarities have to be calculated for every pair of
patients – which results in a roughly quadratic data blowup. In this paper we
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In particular, we introduce the notion of chunking that uniformly distributes
the workload among the individual similarity calculations. Our benchmark
comprises the application of one similarity measures (Cosine similariy) and one
distance metric (Euclidean distance) on two real-world data sets; it compares
the performance of a column store (MonetDB) and a row store (PostgreSQL)
with two external data mining tools (ELKI and Apache Mahout).
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1 Introduction

The increasing amount of Electronic Health Records (EHRs) has led to an
enormous wealth of medical data in recent years. Consequently, personalized
medicine tries to exploit the opportunities coming from this phenomenon.
Similarity searches spark the interest of many clinicians, as for example in
internal medicine or in oncology not all parameters can be inspected visually
or measured directly. Thus interdisciplinary therapy boards collect data and
expertise for proposing therapy options for patients. As this so-called precision
medicine could lead to the perception that all patient cases are individual,
functions like “show me similar patients” and “show me their treatment and
the outcome” are of paramount interest in the current precision medicine scene.
Given the fact of very often incomplete and unstructured documentation in
clinical routine, these algorithms have to be able to scale with the data quality
and data size.

However, there are two sides to the coin. On the one hand, the accumu-
lated data can be used to provide individualized patient care as opposed to
models based on average patients. Two of the most common models based on
the average patient are SAPS [17] and SOFA [32]. These models perform well
in predicting various clinical outcomes [8,11] but it has been shown that per-
sonalized prediction models can lead to even better results [18]. Personalized
models use an index patient’s data and then predict future health conditions
(or recommend treatments) based on similar patients and not the average pa-
tient. On the other hand, these individualized prediction models come at an
increased computational complexity and therefore entail longer run-times be-
cause large patient data sets from EHR databases are used for each individual
index patient.

A patient similarity metric (PSM) is the basis for personalized health pre-
dictions. The PSM could be one of different algorithms such as neighborhood-
based algorithms or distance metrics. This PSM defines a cohort of patients
similar to a given index patient. Subsequently only data of similar patients
are used to predict the future health of the index patient or recommend a
personalized treatment. In order to train prediction or recommender models
appropriately, pairwise similarity computations between any two individual
patients are necessary. With n patients the amount of

(
n
2

)
similarity calcula-

tions is required. By increasing the data size, the computational burden of this
analysis increases.

Our use case applies to a scenario where a large data set (exceeding the
random access memory capacities) is already stored in a database system.
Hence we need a technology that is independent of RAM size and has support
for built-in hard disk support. We also assume that users of our system are not
skilled programmers and are just familiar with basic SQL statements. Hence we
want to avoid excessive programming as well as any installation, configuration
and execution of external data mining (DM) tools. Most DM tools score badly
with respect to these requirements. In particular, most DM tools just work on
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in-memory data and cannot scale for larger data sizes. Hence we develop and
test a solution that purely focuses on in-database calculations.

Similarity lies at the basis of many data mining and machine learning
tasks (for example, k-nearest neighbor or clustering). Hence we believe that
precomputing and storing similarities in a table for quick lookup is beneficial
for further analysis. In general, in-DB calculations are not appropriate for
tasks more complex than the similarity calculations considered in our work.
Recent developments show how to integrate Python machine learning tools
with MonetDB [26] to reap the best of both worlds.

1.1 Contributions

This paper focuses on increasing the performance of calculating the
(
n
2

)
pair-

wise similarity values. We make the following contributions:

– We present a concept acquisition module that helps find relevant data
values in a set of diverse item descriptions.

– We show that the similarity calculations can be achieved solely by in-
database analytics, without the need of external software. When the
data are reliably stored inside a database system and the majority of the
workload is processed directly within the database, the cost of external data
mining tools (like R, ELKI or Apache Mahout) is saved. Relying on SQL
as the data manipulation language and taking advantage of optimizations
of the internal database engine, data transfer latency and data conversion
problems (in particular, conversion into vectorized data representations of
the data mining tools) can be eliminated.

– We analyze two data models (a column-based and a row-based data rep-
resentation) and provide the appropriate similarity calculation expression
in SQL. We compare the performance of each data model on one column
store and one row store database system.

– We investigate optimization techniques and quantify their impact on pa-
tient similarity calculations. In addition to multi-threading and batch
processing we introduce chunking as a further optimization.

– For several optimized settings, we compare the in-database approach to
two external data mining tools (ELKI and Apache Mahout).

– For several optimized settings, we compare the performance of one sim-
ilarity measure and a distance metric (Cosine similarity and Euclidean
distance).

– We develop our method with a real-world dataset containing intensive care
unit (ICU) data. We verify our in-database approach with a second larger
real-world dataset containing data of diabetes patients.

1.2 Outline

This article is structured as follows. Section 2 presents several related ap-
proaches in the area of patient similarity analysis. Section 3 introduces the
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real-world data set and discusses the process of data extraction. Section 4
defines the applied similarity measure (Cosine similarity) and the applied dis-
tance metric (Euclidean distance). Section 5 describes the basic difference
between patient analysis with row-oriented versus column-oriented data for-
mats. Section 6 proposes three optimization methods. Section 7 presents sev-
eral benchmark results. Section 8 concludes the article.

2 Related Work

Patient similarity analysis is a relatively new field of study, nevertheless the
increased interest in the field has led to numerous studies being conducted.
The next two sections will give a twofold overview of the subject by first
presenting the literature on several application areas of the approach and,
secondly, exploring whether performance issues have already been addressed.

A lot of research efforts have been made applying patient similarity anal-
ysis with different predictive approaches in mind. These approaches include
discharge diagnosis prediction by Wang et al. [34], future health prediction by
Sun et al. [31] and mortality prediction as found in Morid et al. [20], Lee et al.
[18], and Hoogendoorn et al. [15]. All of these patient similarity approaches can
also be found in the comprehensive survey by Sharafoddini et al. [29]. There
are several validation techniques and algorithms that can be employed in the
field of patient similarity analysis. Morid et al. [20] applied a similarity-based
classification approach with a k-nearest neighbor algorithm for Intensive Care
Unit (ICU) patient similarity analysis. Similarly, Hoogendoorn et al. [15] use
Euclidean distance with a k-nearest neighbor algorithm. The related and also
quite commonly used approach of cosine similarity as a metric is used by Lee
et al. [18] whose hypothesis revolves around personalized mortality prediction.
They were able to show that their approaches outperform traditionally used
scores like SAPS in prediction capabilities.

All of the above mentioned research papers on patient similarity analysis
lay the focus on the evaluation of the accuracy of the prediction models. There-
fore, most researchers do not particularly pay attention to the performance of
their methods and only a few mention the limitation induced by the increased
computational complexity of their analysis algorithms (for example, Lee et al.
[18], and Brown et al. [3]). Certainly, accuracy is the justifying factor when
the predictive models are presented. However, in the age of big data where the
EHRs get massively larger, the performance of analysis methods is critical.
High-dimensional data (i.e. data with a wide array of feature variables like
medical measurements) and a large data set naturally lead to an increased
computational burden. This can become a major issue, particularly for train-
ing prediction methods since these training sets rely on the calculation of all
pairwise similarity values between each patient in the training set. The pair-
wise patient similarity calculations insofar intensify the challenge of handling
big EHR data.
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Despite the above mentioned remarks about the computational complex-
ity generated by patient similarity analysis, there are few current efforts that
address performance optimization of such methods. In general, the analytics
engine is located outside the database or data warehouse, because the methods
require advanced tools that for example are capable of conducting sophisti-
cated statistical analysis. This is not the primary application field of database
systems but rather software such as R and SPSS. We can therefore observe
that in related work on patient similarity analysis the database systems are
only used as mere repositories for patient data and not taken into consideration
for use on even part of the workload.

In other application areas however, it was demonstrated that in-database
analytics outperforms ex-database applications like R while still maintaining
fully fledged transaction support. One example for this is the work by Pass-
ing et al. [24] who extend SQL with data analysis operators for processing (in
particular, k-Means, Naive Bayes, and PageRank) in a main-memory database
system. In a similar vein, [21] survey in-database evaluation of data with an
amount of features varying between 4 and 64 by implementing user-defined
functions for of several statistical models (like linear regression, PCA, clus-
tering and Naive Bayes). The article compares implementations for horizon-
tal (row-wise) and vertical (column-wise) data layouts. Focusing on a non-
relational graph data model, [4] compare graph algorithms (like reachability,
shortest path, weakly connected components, and PageRank) in a column
store, an array database and an external graph processing framework. Sim-
ilarly, [22] focus on evaluating recursive queries on graphs by using each a
columnar, a row and an array database. The general gist in these approaches
is that the huge advantage of in-database data analysis lies in the avoidance
of maintenance of external data analysis tools as well as any data extraction
and loading overheads.

3 Data Sets and Data Extraction

We describe the two data sets we used for testing our approach as well as the
process of extracting the test data. Note that the final data sets used for testing
contain purely numeric values and they are normalized to avoid any influence
of the different scales of the features on the resulting similarity values.

3.1 Data Set I (MIMIC)

The majority of our tests were executed with the data set MIMIC-III [16]
which is freely accessible for researchers worldwide. It contains patient data
that were collected in an Intensive Care Unit (ICU) between 2001 and 2012. All
personal information of the 46520 distinct patients in the MIMIC-III database
was removed or deidentified to comply with the Health Insurance Portability
and Accountability Act (HIPAA).
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The ICU constitutes a particularly intriguing case for clinical data analysis
[1]: the breadth and scale of the data that is collected on a daily and hourly
basis allows for extensive data analysis. MIMIC-III comprises data ranging
over a wide variety of domains:

– Descriptive items like demographic details and dates of death
– Laboratory values, for example blood chemistry and urine analysis
– Medication records of intravenous and oral administration
– Physiological values like vital signs
– Free text notes and reports such as discharge summaries and electro-

cardiogram studies
– Billing information of, among others, ICD codes and Diagnosis-Related

Group (DRG) codes

The MIMIC-III utilizes a snowflake schema in data warehouse terms [5]. This
implies that all of the above mentioned domains of patient data are realized in
individual fact tables which are connected to a hierarchy of dimension tables.
Figure 1 presents an example using a snippet of the database, namely the
fact table chartevents. Chartevents mainly stores physiological records that
are being collected on roughly an hourly basis. The dimension tables that are
connected to it are patients, admissions, icustays, and d items. The former
three constitute data on a single patient with the following hierarchy: Each
individual patient and her/his basic data is stored in patients. Since natu-
rally every patient can have multiple admissions to a hospital, the relation
admissions stores data on when a patient was admitted, released, or died as
well as additional information that is susceptible to change for each admission
like insurance coverage. During each admission a patient can be transferred in
and out of the ICU which is tracked in Icustays. In total, MIMIC-III contains
61532 distinct ICU-stays comprised of 58976 admissions by 46520 individual
patients.

Lastly, d items is one of several dictionary tables in the database. An item
in MIMIC-III refers to measurements such as ‘heart rate’ in chartevents or a
specific type of drug whose administration is captured in an inputevents table.

3.2 Data Extraction

Patient similarity computations are in essence pairwise vector comparisons.
The idea is to select specific predictors (that is, features used in prediction
models) that are available for all patients in the EHR and place them in
a vector, which we call patient vector. These features can be extremely
diverse: from vital signs like heart rate and blood pressure, over lab results like
white blood cell count and serum potassium, to whether the patient received
mechanical ventilation. Of course, elementary features such as weight, age
and gender can also be taken into consideration. All in all, in theory medical
professionals can potentially create the patient vector of their choice and adjust
it to their specific needs.
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Fig. 1 MIMIC-III chartevents table in snowflake schema

SELECT item_id, label

FROM d_items

WHERE (lower(label) LIKE %blood pressure%

OR lower(label) LIKE %bp%)

AND lower(label) LIKE %mean%;

Fig. 2 SQL query for mean blood pressure

The selected features have to be extracted from the EHR. Usually, a pa-
tient’s interesting data is scattered all over a hospital’s data warehouse, or
even across multiple institutions in case of for example a transfer between two
hospitals. As a result, complex queries have to be made in order to compile all
relevant data points. This also applies to the MIMIC-III data set. The MIMIC
database in its version II [27] only consisted of one main data source, the
Philips CareVue system which was used between 2001 and 2008. Version III
retained all the data of version II but added data that was collected with a new
system, Metavision, between 2008 and 2012. As mentioned above, every piece
of information or measurement is an item in MIMIC’s d items table. Now as a
consequence of the merging of two data sources, MIMIC-III contains multiple
item ids referencing the same type of measurement or item. As an example let
us look at the heart rate item which has item id 211 in version II. In version
III, however, item id 211 and 220045 refer to heart rate respectively. This
conceptual redundancy applies virtually to all measurements in the database.
For data extraction this means that multiple item ids have to be grouped in
order to excerpt data for one concept.

The merging of data systems mentioned in the previous paragraph is not
the only aspect of MIMIC-III’s design that forces us to group several items
together. This is best illustrated when looking at an example. Let us assume
we want to include a patient’s mean blood pressure as a predictor in our vector.
When querying the database for ‘BP’, ‘Blood Pressure’, and ‘Mean’ with the
SQL query shown in Figure 2 we get the result shown in Table 1.
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itemid label

52 Arterial BP Mean
224 IABP Mean
443 Manual BP Mean(calc)
456 NBP Mean

2732 Femoral ABP (Mean)
3312 BP Cuff [Mean]
3314 BP Left Arm [Mean]
3316 BP Left Leg [Mean]
3318 BP PAL [Mean]
3320 BP Right Arm [Mean]
3322 BP Right Leg [Mean]
3324 BP UAC [Mean]
5731 FEMORAL ABP MEAN
6653 femoral abp mean
6702 Arterial BP Mean #2
7618 BP Lt. leg Mean
7620 BP Rt. Arm Mean
7622 BP Rt. Leg Mean

220052 Arterial Blood Pressure mean
220181 Non Invasive Blood Pressure mean
224322 IABP Mean
225312 ART BP mean

Table 1 Query Result for mean blood pressure from d items

Fig. 3 Added concept dimension

This overabundance of possible items, that refer to some kind of measure
related to the concept ‘mean blood pressure’, clarifies that there is the need
for a mapping step in the process of data extraction. As a matter of fact, the
creators of MIMIC-III seem to be aware of this issue, as there is a dedicated
column called conceptid in the d items table, though the value is null for each
entry. Therefore, the first step for extraction is to devise a mapping from items
to concepts.

In order to introduce these concepts, we build on what what is already
present in MIMIC-III and utilize the utilize column in d items. This will require
the introduction of another dimension table, which shall for logical reasons be
called concepts. In this relation, we store all concepts, and assign them an ID.
Figure 3 illustrates the added dimension to the relevant segment of Figure 1
(MIMIC-III snowflake architecture).

Once the mapping has been established the actual extraction can be un-
dertaken whose first step is to gather data on every ICU-stay of a certain time
frame. This time frame is then subdivided into intervals, eg. we extract patient
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data from the first two days of an ICU-stay and further partition this into 12
hourly intervals.

Lastly, it has to be decided how null values should be treated. A null value
in the context we are now in, is a missing value for a defined interval. Sharafod-
dini et al. [29] found that most approaches have decided to remove patients
with missing values from the pool of similar patients altogether; our system
therefore follows the same approach. In order to delete all tuples belonging
to an ICU-stay that contains null values, the distinct intervals for each con-
ceptid -grouping have to be counted. Should this number be smaller than the
maximum interval, all tuples comprised of the same icustay-identification are
deleted.

We want to reinforce the point that data extraction is the major precon-
dition for further analysis and often is one of the most time-consuming steps
in the data analysis workflows. In particular for large distributed data sets
implementing these data filtering steps inside the database system can offer
benefits due to platform-independence of the SQL language and built-in in-
dexing support.

3.3 Data Set II (Diabetes)

To validate our approach, we used the diabetes dataset from the Health Facts
database [30] as a second dataset. It is publicly available via the UCI machine
learning repository [7]. This validation dataset was originally provided by the
Center for Clinical and Translational Research, Virginia Commonwealth Uni-
versity [30]. The data set covers patient data from 130 US hospitals collected
over a period of 10 years (1999–2008). It was extracted to study the relation-
ship between the measurement of Hemoglobin A1c (HbA1c) and early hospi-
tal readmission. The predictor selection by [30] was based on medication and
blood measurements associated with diabetes. In addition, demographic data
were extracted like race, gender and age. Moreover, they defined a readmission
attribute. We applied some preprocessing to obtain a dataset without null val-
ues. We also converted several categorical terms into integer numbers to obtain
a purely numerical data set. As a result our test data set contained 101,766
rows with 43 columns.

3.4 Normalization

As mentioned before, data have to be normalized to equalize the influence of
the different scales of the features on the resulting similarity values. Normal-
ization to the range 0 to 1 is executed and the normalized data set is stored
in a separate table. Storing both the original data set and the normalized
data set is not a problem because we rely on sufficient disk space. This is also
a benefit of using the database system itself for the calculation because we
can access both data tables in parallel. In contrast, executing the normaliza-
tion with external data mining tools relying only on RAM capacity also leads



10 Ingmar Wiese et al.

to this kind of data duplication but for larger data sets is bound to lead to
exceeded memory.

4 Similarity Measures

Once the data extraction is complete, a metric that is used to establish a
similarity measure between two patients has to be chosen. This metric has
to be applied to all possible combinations of the n patients in the data set
which will result in

(
n
2

)
= 1

2 (n − 1)n comparisons which is ∈ O(n2) in terms
of complexity. This quadratic complexity can undoubtedly become an issue
when dealing with a sizable amount of patients.

4.1 Cosine Similarity

In analogy to Lee et al. [18] we apply the cosine similarity in our investigations.
Cosine-similarity-based metrics measure the distance between two patient vec-
tors by means of the angle between them. More precisely, cosine similarity
returns the cosine of the angle between the two vectors. The cosine is deter-
mined by dividing the dot product of the two patient vectors by the product
of their respective norms:

cos(θ) =
p · q
‖p‖‖q‖

=

∑
i pi · qi√∑

i(pi)
2
√∑

i(qi)
2

(1)

where θ is the angle between two patient vectors, p and q, and i ranges over all
features. Because cosine is bounded between −1 and 1, so will be the cosine
similarity between patients. However, with the restriction that the components
of a patient vector can never be a negative value, the resulting cosine similarity
will be in the range of 0 to 1. There are many implementations of patient sim-
ilarity analysis applying cosine similarity in different health prediction areas
like for example [18,12,19].

4.2 Euclidean Distance

A similarity measure can usually be derived from a distance metric. Several
options arise for the conversion of a distance value into a similarity value [6].

Hence, as an alternative to the cosine similarity, we also tested the Eu-
clidean distance. The Euclidean distance is one of the most common distance
measures. The Euclidean Distance describes the shortest distance between two
data points in a line. In other words, for any two patient vectors it takes the
square root of the sum of squared differences in each dimension. In an n-
dimensional feature space for two vectors p and q the Euclidean distance be-
tween these two vectors is shown in the following Equation 2 (where i ranges
over all the features).
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d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (2)

The Euclidean distance is also often used for patient similarity analysis,
for instance in [23,33,13].

5 In-Database Similarity Calculations

Optimized similarity computation inside the database system promises great
performance enhancements. In order to avoid data extraction into text files
and analyzing them with an external data mining tool, in-database analyt-
ics performs the similarity calculations directly within the database and also
stores results there for use in prediction models. As we show in the following
sections, the calculations themselves offer a lot of room for improvement con-
cerning how many vectors are computed at the same time and which vectors
are compared to which.

5.1 Data Models

The ‘natural’ form in which the patient vectors exist after the data extrac-
tion described in Section 3.2 can be regarded as column-oriented schema. As
shown in Table 2, it consists of three columns, VectorID, PredictorID, and the
value. Therefore, each VectorID occurs in m rows (when there are m selected
predictors). The columnar orientation is due to the fact that rows in MIMIC-
III’s fact tables consist of single measurements described by patient and item
identification (subject id, hadm id, icustay id, and itemid, respectively). How-
ever, there is also an advantage to this way of representing the vectors when
it comes to using aggregation functions – which will become clear in the next
section when we take a look at how to calculate the similarities in-database.

Before delving into details, we discuss an alternative schema. Each predic-
tor will be represented by its own column and as a result, every row in this
schema constitutes one patient vector as illustrated in Table 3.

The downside of this approach is, however, that it requires an extra step
after data extraction. Since all vectors are already available in the column-
oriented format, a reorganization has to take place. Data have to be grouped
or partitioned (depending on the functionality offered by the chosen DBMS)
by VectorID. Next, for each predictor the value has to be obtained and placed
in the corresponding column.

Our system implements both approaches in order to determine whether
the row-wise approach has advantages over its column-wise counterpart. This
will be especially interesting when comparing both schemas on DBMSs that
follow two different paradigms, namely column store vs row store systems.
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V ectorID PredictorID V alue
1 Predictor1 value1
...

...
...

1 Predictorm valuem
2 Predictor1 value1
...

...
...

2 Predictorm valuem
...

...
...

n Predictor1 value1
..
.

..

.
..
.

n Predictorm valuem

Table 2 Column-wise vector schema

V ectorID Predictor1 Predictor2 · · · Predictorm
1 value1 value2 · · · valuem
...

...
...

...
...

n value1 value2 · · · valuem

Table 3 Row-wise vector schema

5.2 Cosine Similarity in SQL

The first step of assessing patient similarity calculations in-database, is to find
out whether SQL offers the functions to implement the cosine similarity met-
rics. When looking at Equation 1, we notice that cosine similarity relies on
square root, summation and multiplication. All of these mathematical opera-
tors/functions are part of the SQL standard, so that cosine similarity can be
implemented within the SELECT -statement of an SQL query.

Moreover, the data table has to be self-joined to receive all pairs of vectors
which can then be assigned the similarity value by the metric. For this purpose,
it is important to note that all distance functions are symmetric, that is,
distance(v1, v2) = distance(v2, v1), for all patient vectors vi. Thus, merely
self-joining on a different VectorID would result in the Cartesian product and
hence n2 rows, given n patient vectors. What we really want is all possible
combinations of patient vectors which means

(
n
2

)
= 1

2n(n − 1) – roughly less
than half of the Cartesian product. The simple solution to this issue is to join
each patient vector with just vectors of a higher ID: the upper part over the
diagonal can be ignored for the distance calculation such that we obtain a
triangular similarity matrix as shown in Table 4. Depending on whether the
column-wise or the row-wise vector schema is used, the SQL statements differ
in particular regarding the amount of self-joining.

In the column-wise format (Table 2), groupings of tuples by VectorID make
up one patient vector. In this case, the join cannot only be on higher VectorIDs
but must also incorporate each predictor. The columnar schema hence intro-
duces a significant overhead. In fact, it will require 2 · n ·m join operations,
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SELECT v1.vid, v2.vid,

--The dot product of two vectors

SUM(v1.value*v2.value)

/* Divided by the product of

* the respective norms*/

/(SQRT(SUM(v1.value*v1.value))

*SQRT(SUM(v2.value*v2.value)))

AS CosineSim

FROM vectors v1 JOIN vectors v2

ON v1.pid = v2.pid AND v1.vid < v2.vid

GROUP BY v1.vid,v2.vid;

Fig. 4 SQL code for Cosine similarity with column-wise schema

SELECT p1.id, p2.id

(p1.pid_1 * p2.pid_1 +

...

p1.pid_m * p2.pi_m)

/ (p1.norm * p2.norm)

FROM patients p1

JOIN patients p2

ON p1.vid < p2.vid;

--norms calculated beforehand and

added as a column to patient vector table

Fig. 5 SQL code for Cosine similarity with row-wise schema

that is, two join operations per row (VectorID and PredictorID) times n vec-
tor groupings of m predictors. Figure 4 shows the similarity calculation when
utilizing the columnar schema. On the positive side, this version allows for the
usage of the built-in aggregate function (the SUM function) for the summa-
tion involved in calculating the dot product as well as the respective vector
norms. Nonetheless, it also displays the negative impact of the column schema,
namely the required joining on PredictorID and bigger VectorID (here pid and
vid respectively). We also tested a variant where the norm values (||p|| and
||q|| in Equation 1) of each patient vector were precomputed and stored in
a separate table. This avoids re-executing the squaring, summing and square
root computations several times for the same patient vector. However this
precomputation only had a negligible impact on the runtime.

In the row-wise representation (Table 3) of the vectors each tuple consti-
tutes a patient vector. Hence, this case requires just n join operations. In this
case, the precomputed norm values were added as an additional column to the
table. Figure 5 shows the calculation query for the row-wise data model. As
a downside, this approach cannot utilize aggregate functions (that is, SUM)
and the user must explicitly specify every single predictor (that is, pid i) of
the patient vector in the part in which the dot product is determined. How-
ever, the advantage when it comes to joining lies in the fact that only one join
condition is required.
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SELECT p1.vid, p2.vid, sqrt(

power(p1.pid_1 - p2.pid_1) +

...

power(p1.pid_m - p2.pi_m)

)

FROM patients p1

JOIN patients p2

ON p1.vid < p2.vid;

Fig. 6 SQL code for Euclidean distance with row-wise schema

5.3 Euclidean Distance in SQL

Figure 6 shows the Euclidean distance calculation in SQL for the row-wise data
schema; we refrain from testing the column-wise version due to its suboptimal
performance when tested with the Cosine similarity. In analogy to the SQL
code for Cosine similarity only one join condition on the VectorID is required.
Again exploiting symmetry of the distance, we only compute a triangular
distance matrix to avoid unnecessary computations; this is ensured by the
inequality on the VectorID. The SQL code applies the built-in square root
and power functions of the database systems.

6 Optimizations

The following sections will concern themselves with performance optimization
of the similarity calculations. To this end the concepts of batching, chunking
and multithreading will be introduced.

6.1 Batching

For our tests we used 32638 patient vectors extracted from the MIMIC-III
dataset – each consisting of 73 predictor values; hence

(
32638

2

)
= 532, 603, 203

pairwise similarities have to be calculated. Naturally, the RAM in a computer
is limited and relatively small when compared to mass storage like HDD or
SSD. If we assume that our similarities are stored as double-precision floating-
point decimals (64-bit), then these alone would take up:(

32638
2

)
· 8

230
≈ 3.97 GiB.

To this we have to add the raw vector data which – assuming that 135 predic-
tors are chosen – amounts to at least(

32638
2

)
· 73 · 8

230
≈ 289.68 GiB.

Therefore, we cannot expect that we will be able to obtain every similarity in
one query since these numbers would exceed standard RAM capacities. This is
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ID 1 2 3 · · · n-1 n
1 1 s s s s s
2 · 1 s s s s
3 · · 1 s s s

· · ·
... 1 s s

n-1 · · · · 1 s
n · · · · · 1

Table 4 Triangular Similarity Matrix

where a technique we call batching comes into play: we divide the whole patient
similarity calculation into equally sized bundles of index vectors that are then
compared to all vectors of higher ID. Every intermediate result produced by
a single batch is stored in the result table. Afterwards, the system can clear
the RAM and load all necessary data for the next batch. This gets repeated
until all similarities have been obtained.

The whole concept of batching can be regarded as a for-loop that starts
at 1 and is increased by the batch size until the final ID has been reached,
iterating over the similarity calculations. The declarative nature of SQL does
not provide looping without substantial effort. We employ an external tool
to manage the iteration in a JDBC application; the overhead induced by a
Java program is negligible since it will more less only count up IDs and send
commands to the database system. The major portion of the workload is still
handled in-database.

The batch size can be adjusted to according to the system, as the presence
of more RAM leaves more room for vectors and hence a higher batch size.
However, since each patient vector is only compared to vectors of higher ID,
there is a discrepancy in how many values are produced by a single batch.
This discrepancy gets bigger, the more we get away from the mean ID. While
the vector with ID 1 is paired with all other n − 1 vectors, ID n − 1 is only
paired with the last ID n; ID n itself is then need not be paired at all.

6.2 Chunking

We now address the issue of unequally distributed load caused by batching. If
we were to put all similarities in a matrix, the resulting matrix would be sym-
metric as a consequence of the symmetry in the distance function mentioned
in Section 5.2. Therefore, we do not need the lower left triangle of the matrix
as well as the main diagonal because there is no use in comparing vectors with
themselves in our context. This fact is illustrated in Table 4. With increasing
ID, the proportion of a row that were are interested in gets shorter, namely
n − i for IDi and n patients. Wrapping this in a sum, we receive our total
number of similarities:

∑n
i=1 n− i =

(
n
2

)
.

In order to prevent this skewed assignment and obtain a balanced distribu-
tion of similarity calculations per patient vector, we introduce a new concept
called chunking. If we recall that

(
n
2

)
= 1

2n(n − 1) is another way of writing
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ID 1 2 3 . . . 1 + d (n−1)
2
e . . . n-1 n

1 1 s s s s · · ·
2 · 1 s s s s · ·
3 · · · · 1 s s s
... · · · · · 1 s s

n-1 s s · · · · 1 s
n s s s s · · · 1

Table 5 Balanced Similarity Matrix with Chunking

our total amount of similarities needed, it becomes apparent that to achieve a
balanced distribution among n patient vectors we need n−1

2 comparisons per
vector.

Since IDs are integers, we have to take care of odd numbers when dividing

by two. Therefore, we can round up, d (n−1)
2 e, if an ID is odd, and round down,

b (n−1)
2 c, if an is ID even. For the next steps, we split the n IDs into their

corresponding n similarity lists, that is, the list of IDs they are going to be
compared to:

– for odd ID i, compute similarities with IDs j ∈ {i + 1, . . . , i + d (n−1)
2 e} ∪

{1, . . . , i+ d (n−1)
2 e − n}

– for even ID i, compute similarities with IDs j ∈ {i+ 1, . . . , i+ b (n−1)
2 c} ∪

{1, . . . , i+ b (n−1)
2 c − n}

The result can be seen in Table 5 showing a uniform assignment of simi-
larity calculations per ID.

6.3 Multithreading

Many renowned database systems (including MySQL, Oracle, and PostgreSQL)
only utilize one thread per database connection. Yet, the average CPU consists
of 2 – 8 individual cores; it would hence be desirable to make use of them all,
in order to achieve the highest possible performance. However, multithreading
can also be a twofold affair. On the one hand programs can benefit a lot from
parallel execution of certain execution threads while on the other hand it in-
duces significant coordination overhead; moreover, not all processes are geared
for parallelization [14]. In theory, our similarity computations should be highly
parallelizable since the distance between two vectors does not depend on any
other value that is gained throughout the whole process. Nevertheless, we have
to fetch all vector data from disk and this I/O barrier cannot be broken by
multithreading.

In order to achieve multithreading on DBMS, we exploit connection pool-
ing. Establishing a database connection is time- and resource-consuming. Con-
nection pools help by providing a cache of database connections that can be
accesses and released in a short amount of time. Thus, our Java program



Concept Acquisition and In-Database Similarity Analysis 17

creates a connection pool and then allocates as many connections, and there-
fore threads, as the system includes cores to our similarity calculations. Since
chunking will equally distribute the workload, it is safe to assume that dividing
n vectors into n/k groups of vectors, where k is the amount of cores/threads
available in the system, will yield the best result. For example, let n be 40000
and k be 8, then each vector will be compared with (40000 − 1)/2 = 19999.5
other patients on average. These comparisons get distributed in eight threads,
each handling the similarity calculations of 5000 vectors.

7 Results

In this section the results achieved by the settings described in the previous
sections are presented and discussed. The performance optimizations are pre-
sented in the order they were conceived. As a unit of measurement milliseconds
per patient (ms/p) is introduced, that is, the time it takes to perform all cal-
culations assigned to one individual vector in the data set. Milliseconds per
patient are calculated by dividing the total time needed to run the similarity
computation over the whole data set by the amount of vectors in it.

7.1 Database Systems and Data Mining Tools

All computations were executed on a machine with 64 GB of RAM, an Intel
i7-7700k, and an SSD of 500 GB. PostgreSQL version 10.1 as an open source
row store and MonetDB version 11.27.11 as an open source column store
were used. Batching, Chunking and multithreading were managed by a Java
program setting up the database connection and issuing the SQL queries as
shown in Section 5. In the first tests, we focus on data set I (the ICU data set
MIMIC-III). The data set II (the diabetes data set) is used for validation in
Section 7.5.

In order to compare our in-database approach, we tested several external
data mining tools that offer comprehensive distance libraries. Unfortunately,
R showed extremely poor performance when executed on our data sets when
using the package philentropy provided by CRAN [9]. That is why we looked
for alternatives. We chose the two fastest Java-based data mining tools from
our tests (ELKI [10,28] and Apache Mahout [2]). Setting up these two tools
required us to acquire an in-depth understanding to the internal workings of
their data models and hand-coding the transformation into the in-memory
representation.

Mahout and Elki are data mining frameworks that can be included as a
dependency in every Java project with Apache Maven. The implementation
for both tools is similar. Firstly, the program connects via JDBC to MonetDB
fetching all patients’ data in a result set. In order to calculate the Euclidean
distance and Cosine similarity, we need to create patient vectors. This is why
we iterate over the result-set to put each feature in a vector which will be
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Fig. 7 Column Format

stored in an in-memory hashmap holding the row ID as key and the patient
vector as value.

Further, we iterate over the hashmap, create eight threads, and assign each
of the eight threads the patient keys to handle. In more detail, each thread
creates its own CSV file, calculates the distances between the assigned patients
and their chunks, and writes the results into a CSV file with the format

(uniqueid1, uniqueid2, distance/similarity).

To obtain the Cosine similarity, Mahout and ELKI both calculate cosine sim-
ilarity as 1−CosineDistance; hence we implicitly call the appropriate distance
implementations. For the Euclidean distances the corresponding implementa-
tions are used. The number of patients each thread is handling depends on
the previously set batching size (which in our case is 50 or 100). Meanwhile,
another thread is started by the main process to connect via JDBC to Mon-
etDB; it copies all finished CSV-files into the appropriate result table. This
procedure is repeated until all patients in the hashmap are processed by one
of the eight threads.

7.2 Column vs Row Format

We first analyzed the question whether the extra step of converting column-
oriented vector groupings into their row-wise counterparts is worthwhile. Fig-
ure 7 provides the baseline results for both, PostgreSQL and MonetDB. The
bar chart (and all following) have to be read as follows: the number in the
bar itself indicates the batch size (either 50 or 100 patients at a time), the
x-axis is the milliseconds per patient scale and the y-axis states the respective
database systems.

As expected the columnar schema works better with the column store
system. In fact, MonetDB is actually faster by an order of magnitude compared
to PostgreSQL, or to be more precise, it exhibits an eightfold advantage in
speed. This can be explained by the great amount of joining that is demanded
by the columnar approach (see Section 5.2). A look at PostgreSQL’s query
plan revealed that it utilizes a costly hash-join. The PredictorID for each row
is hashed into a map and then used to determine where to join. The total
cost is stated in terms of disk pages that have to be fetched, here 4245993.31.
Unfortunately, MonetDB ’s query plan does not provide a cost estimate but
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Fig. 8 Row Format

from the result it is apparent that the internal columnar storage helps to
leverage performance when the data is also stored in a columnar fashion.

The more intriguing question is how MonetDB will fare when confronted
with the row-wise representation of patient vectors. The results for the row
schema are presented in Figure 8.

Most noticeably, MonetDB is still ahead of PostgreSQL. However, the mil-
liseconds per patient for both system have improved drastically: 98.95% for
PostgreSQL and 98.15% for MonetDB (compared to Figure 7). Thus, when
the column-wise computations took in total 4.26 hours in MonetDB and 34.63
hours in PostgreSQL, in row-wise format they now require 4.63 minutes in
MonetDB and 21.73 minutes in PostgreSQL, respectively. This can also be
seen in the cost that the PostgreSQL query planner now estimates to be
40687.33 pages to fetch; a decrease of 99%. This is mainly due to the fact
that PostgreSQL can now utilize indices on the vector IDs that only require
a sequential scan when joining. As a consequence, we can infer that the com-
putation run-times correspond to the estimated cost by the query planner.
Furthermore, we can conclude that the similarity calculations themselves have
very little weight in the whole process compared to the execution of the join.

At this point, it is reasonable to abandon the column-wise schema due to
its obvious speed limitations. The benefits we expect from multithreading and
chunking are not going to be able to make up for the high deficit created by
the column format. Therefore, only the row-wise data model was considered
for all following performance optimizations.

7.3 Multithreading and Chunking

We already raised the question whether multithreading pays off – because our
computations require a lot of disk I/O. Especially, after the first tests estab-
lished that the join part of the computations takes up most of the processing
time, we might assume that, due to its reliance on disk data, multithreading
might not give us a lot of improvements. Our test results in Figure 8 present
a different picture, though. Note that for PostgreSQL the multithreading was
implemented by connection pooling as described in Section 6.3.

When utilizing a batch size of 50 patients at a time, PostgreSQL again
improves by 15.72% (compared to Figure 8). A batch size of 100 was also
tested to see if this positive effect could be utilized to an even higher degree –
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Fig. 10 Row Format Multi-Threaded w/ Chunking

but again a batch size 50 proves to be the sweet spot. In contrast, MonetDB
does not display any improvements or degradations at all, even at a different
batch size. Most likely, having all threads access the disk in close succession
reduces the amount of time disk was waiting for write and read instructions.
Specifically, having the benefit of loading a lot of data into RAM at the same
time takes off load from the disk and the complex joins which are independent
of each other and therefore greatly parallelizable.

MonetDB was created with data analytics in mind. That is why it already
performs well without any user-induced multithreading and hence already uti-
lized multiple threads on its own for various tasks. Chunking on the contrary
is independent from any parallelization efforts and could potentially also show
benefits on MonetDB-based system. However, in Figure 10 we show another
contrasting picture: Performance has degraded by 23.83% in MonetDB com-
pared to only the multithreaded approach in Figure 9. In contrast, PostgreSQL
has improved by 9.55%; yet, still taking about three times as much time as
MonetDB needs. The control logic required to take advantage of chunking,
naturally, produces some slight overhead. In the case of MonetDB it seems
that this overhead is actually interfering with the computation process while
PostgreSQL can benefit from the more balanced workload by chunking.
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Chunking Cosine Cosine Euclidean Euclidean
total (min.) ms/patient total (min.) ms/patient

PostgreSQL 100 17.2834 31.7728 19.0 34.9286
PostgreSQL 50 16.5667 30.4553 18.0833 33.2435
MonetDB 100 5.5 10.1109 6.9334 12.7458
MonetDB 50 6.08334 11.1832 6.2834 11.5509
Mahout 100 4.1605 7.6484 4.1348 7.6012
Mahout 50 4.2573 7.8264 4.2449 7.8036
ELKI 100 4.3376 7.9740 4.2974 7.9001
ELKI 50 4.5007 8.2739 4.3535 8.0032

Table 6 Runtime Comparison of Database Systems and Data Mining Tools with Chunking

No Chunking Cosine Cosine Euclidean Euclidean
(triangular) total (min.) ms/patient total (min.) ms/patient
MonetDB 100 4.75 8.7321 5.6 10.2947
MonetDB 50 4.6334 8.5177 5.0167 9.2338
Mahout 100 4.49645 8.26604 4.3578 8.01115
Mahout 50 4.44634 8.17392 4.39976 8.08829
ELKI 100 4.43433 8.15184 4.39637 8.08206
ELKI 50 4.558 8.37918 4.52528 7.81812

Table 7 Runtime Comparison of Database Systems and Data Mining Tools without Chunk-
ing

7.4 Comparison of Database Systems and Data Mining Tools

In this section we compare the best setting for each of the database systems
with the two data mining tools ELKI and Apache Mahout. In addition we also
computed the Euclidean distance with each system as an alternative to the
Cosine similarity. Tables 6 and 7 show the exact runtime measurements (aver-
aged over several runs). Figure 11 visualizes these measurements by comparing
the best setting for each system (chunking for Postgres, ELKI and Mahout,
no Chunking for MonetDB). We make the following observations:

– Chunking also improves the runtime of both data mining tools. Our multi-
threaded implementation using ELKI and Mahout benefits from the more
balanced workload due to chunking.

– MonetDB performance is competitive with the performance of the two data
mining tools.

– The Euclidean distance calculation in the database systems is more time-
consuming than the Cosine similarity, while this is the other way round
for the data mining tools. Using the built-in power and square root func-
tions seems to be the reason for this slower execution. When the exact
Euclidean distance values are not required, using the squared Euclidean
distance might improve this situation because the square root computa-
tion can be avoided.



22 Ingmar Wiese et al.

31.7728100PostgreSQL Cosine

30.455350

34.9286100PostgreSQL Euclidean

33.243550

8.7321100MonetDB Cosine

8.517750

10.2947100MonetDB Euclidean

9.233850

7.6484100Mahout Cosine

7.826450

7.6012100Mahout Euclidean

7.803650

7.9740100ELKI Cosine

8.273950

7.9001100ELKI Euclidean

8.003250

0 10 20 30 40

ms/p

Fig. 11 Row Format Multi-Threaded w/ Chunking for Postgres, ELKI and Mahout, w/o
Chunking for MonetDB

7.5 Validation with Larger Data Set

In order to validate our approach we executed the same tests with the second
data set containing diabetes-related patient data.

We repeated the test runs for the row format with this validation data set.
The column format was not considered for the validation because it showed
significantly less performance. The test runs with the larger validation data
set verify our previous results. Figure 12 shows the influence of different batch
sizes (150, 100 and 50 patients at a time). Comparing to Figure 9, PostgreSQL
needed significantly more time per patient when processing the larger valida-
tion data set. In contrast, MonetDB ’s performance per patient remained nearly
uninfluenced by the size of the data set.

Figure 13 shows the performance with additional chunking applied. For
PostgreSQL, chunking again improved the runtime per patient – although
comparing to Figure 10 the larger data size still shows its impact. Batch size
50 gave optimal run time performance when using PostgreSQL with chunking.
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Indeed decreasing the batch size further (to 25 patients at a time) led again to
an increase of the runtime. Most notably chunking for batch size 50 resulted in
a performance improvement of roughly 50% (comparing Figures 12 and 13).
Due to our chunking approach is able to scale much better with the larger
data set size. Yet again, for MonetDB chunking did not prove to be beneficial
and slightly increased the runtime. MonetDB ’s internal task scheduling seems
to work best when only applying batching.

8 Conclusion

In this article, we provided an in-depth investigation of in-database patient
similarity analysis on two real-world data sets. We introduced and tested sev-
eral optimizations. We compared one similarity measure and one distance met-
ric with a column store, a row store and two data mining tools. As stated in
the related work section, current investigations on patient similarity analysis
mainly focus on prediction accuracy rather than computational performance.
Applying our optimization approaches will speed up the pairwise patient sim-
ilarity calculations which is the prerequisite of measuring the prediction accu-
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racy. Furthermore, different patient similarity metrics could be used for dif-
ferent prediction approaches; our method can be used as a good basement for
testing the effect of similarity metrics on different prediction models. Specifi-
cally, the predictive models that require the use of high-dimensional predictors
and probably a big dataset will benefit when using our method.

To summarize our results, for the row store database system PostgreSQL a
performance gain (in the best case of around 50%) could be achieved by sev-
eral optimizations. The column store MonetDB, in general performed faster in
comparison, no matter which optimization method was applied to it. The col-
umn store performance was competitive with the two tested data mining tools.
While systems like MonetDB provide good out-of-the-box performance when
it comes to analytical tasks, they lack multi-user and transaction support.
These features are, however, crucial in real-world applications where multiple
users input and change data on a regular basis. Concerning these practical
requirements, a DBMS like PostgreSQL still be might be more suited than
MonetDB. Therefore, a reduction of the time required for patient similarity
calculations in such a DBMS can be regarded a helpful contribution to the
overall process of patient similarity analysis. Moreover, we observed that the
similarity calculations are dominated to the greatest extent by the amount of
self-joins; we hence conjectured that the selected similarity metrics has little
impact on the overall performance of the analysis. We confirmed this conjec-
ture by comparing Cosine similarity and Euclidean distance.

Benefits of in-database similarity analytics can be summarized as follows:

– SQL is a platform-independent language that can be executed unchanged
with numerous database systems. The simplicity of similarity calculations
in SQL reduce the risk of unwanted coding errors. In contrast, there is
no standardized way to interact with the data mining tools: programming
skills for each of the tools have to be acquired before being able to use
them; this may lead to a kind of lock-in effect that hinders switching and
comparing different tools.

– Similarity calculations in SQL can easily be adjusted for each of the fea-
tures (for example giving different weights to each feature or also consider-
ing categorical values in combination with numerical values). In contrast,
using the fixed interfaces of the data mining tools do not allow a flexible
adaptation of similarity calculations.

– Databases offer a reliable storage engine that can easily access data stored
on disk. In contrast, with the data mining tools extraction of data and
transformation into an in-memory representation is needed.

– Multithreading is offered by MonetDB as a built-in feature. In contrast,
thread handling for the data mining tools must be implemented by hand.

In ongoing work we currently use the different similarity and distance values
precomputed in the database systems to assess the effect of the choice of
similarity/distance on the accuracy of disease predictions. We are also applying
feature selection and dimensionality reduction on both data sets to filter out
the features relevant for the predictions.
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Future investigations might for example include further optimizations of
the join process – potentially following the line of Qin and Rusu [25] who
developed a dedicated dot-product join operator for relational database sys-
tems that can improve the processing of the Cosine similarity. Furthermore, it
might be worthwhile to contrast the presented relational approach with patient
similarity analysis in several non-relational data models [35].
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