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Abstract. Efficient and secure data management in the cloud is a topic
of high relevance. Cloud databases play an important role – in particu-
lar, because they can offer various options for processing large amounts
of data. In this article we discuss several practical aspects of applying
property-preserving encryption (PPE) to data stored in wide column
stores – an encryption type that allows for secure sorting and search-
ing on encrypted data. We present the CloudDBGuard framework that
comprises implementations of several PPE schemes and takes care of the
necessary metadata management. CloudDBGuard also makes progress
in terms of query interface standardization by providing a unified API
that supports both Apache Cassandra and Apache HBase.

1 Introduction

Wide column stores (WCSs) comprise a certain group of non-relational databases
(“NoSQL” databases; see [22] for a comprehensive survey). Because of their
flexible and efficient behavior, WCSs are widely used by cloud storage providers.
This raises concerns how confidential data can be protected from a curious cloud
storage provider or other attacks by unknown third parties. So far, WCSs do not
offer any means to ensure the protection of confidential data from unauthorized
access. Our main goal was hence to leverage secure and user-adaptable property-
preserving encrypted storage of data in this type of databases. Our prior work
[20] focused on developing a framework to enable the seamless integration of
property-preserving encryption with the WCSs HBase and Cassandra – see [18]
for the implementation details. Here we report on various extensions of our
framework that improve runtime properties and functionality:

– For some encryption schemes we were able to improve their runtime further.
– Moreover, we were able to hide the complexity of the used encryption strate-

gies behind an easy-to-learn API (application programming interface), which
simplifies the practical usage of the framework.

– Furthermore, the user has to keep just one master password in mind instead
of having to deal with several cryptographic passwords.

– We report on a combined benchmarking that applies several of these encryp-
tion schemes in one query.
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The article is organized as follows. Section 2 provides the necessary back-
ground on wide column stores, property-preserving encryption and onion layer
encryption. Section 3 gives an in-depth description of the components of our
framework. Section 4 reports on the runtime experiments with 10 benchmark
queries that combine several property-preserving encryption types. Section 5
concludes this article with a discussion and suggestions for future work.

2 Background and Related Work

2.1 Motivating Example

An application scenario for the CloudDBGuard framework is a mail server that
stores confidential emails of several users. While the users are relieved from stor-
ing all emails locally, they still require management features from the mail server.
PPE enables the mail server to manage the emails efficiently while preserving
their confidentiality. For example, a user wants to search for emails containing
a certain search word – is enabled by searchable encryption. Furthermore, the
user requires the server to sort the emails by date in order to retrieve only the
most recent ones or the emails from a specified time interval – this is enabled
by property-preserving encryption. In order to benchmark this scenario (in Sec-
tion 4), the widely-used Enron corpus [12] served as our data set. The Enron
dataset comprises e-mails of 150 employees of a company. Our test queries com-
bine equality tests (to find a sender exactly), range queries (to find emails in a
certain timespan) and word search (on the email body).

2.2 The Data Model of Wide Column Stores

Wide column stores (WCSs) are inspired by Googles BigTable architecture [6].
Several open source databases rely on a very similar data model; yet, they differ
in implementation details and access methods (like query languages or APIs).
Our framework supports Apache Cassandra [13] and Apache HBase [5].

WCSs use tables, rows and columns like traditional relational (SQL-based)
databases. However, the fundamental difference is that columns are created for
each row independently instead of being predefined by the table structure (that
is, database schema). Every row has at least one mandatory column containing
its identifier (commonly referred to as “row key”). The identifier of a row has
to be unique for the whole table and cannot be used by another row. Rows
are maintained in lexicographic order by their identifier. WCSs support data
partitioning in distributed systems. Ranges of the row identifiers serve as units
of distribution such that data are partitioned row-wise (that is, horizontally).
Due to this range-based partitioning, similar row identifiers are always kept
physically close together in the same partition.

To avoid a fixed database schema, WCSs use an internal data format con-
sisting of key-value-pairs. The key part has several components: the so-called
keyspace, a table name, a column name and the row identifier. One of these
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components is a timestamp, enabling the database to maintain an automatic
version control, which can be operated in two ways: either by setting a maxi-
mum number of versions to keep, or by specifying a “time-to-live” (TTL) after
which data items are to be deleted. More formally WCSs can be considered
sparse, distributed, multidimensional maps (see [6]) of the form

(keyspace, table, column, row identifier, timestamp)→value.
The WCS data model is hence different from traditional column stores. The
internal workings of WCSs are described in detail in Chapter 8 of [22].

2.3 Property-preserving encryption

Property-preserving encryption (PPE) retains certain properties of the plaintext
(like order of numerical values) on the ciphertext – or it relies on additional index
structures on encrypted values (to support efficient search on encrypted data).
The types of PPE relevant for this work are deterministic encryption (DET),
order-preserving encryption (OPE) and searchable encryption (SE):

– DET. The purpose of DET is enabling the database server to check for
equality by mapping identical plaintexts to identical ciphertexts.

– OPE. The purpose of OPE is enabling a server to learn the relative order
of data elements without revealing their exact values. OPE encrypts two
elements p1, p2 of a domain D in a such way that p1 ≤ p2 ⇒ Enc(p1) ≤
Enc(p2) for all p ∈ D. Thus, its use cases are sorting and range queries over
encrypted data. A lot of OPE schemes have been proposed with different
strategies to map a plaintext to a ciphertext domain (see [2, 23, 11, 7]).

– SE. The purpose of SE is enabling a server to search over encrypted data
without revealing plaintext data. Most SE schemes use indexes (see [8, 9, 16]),
which are encrypted in such a way, that only a token (a so-called trapdoor)
sent by the querying user allows for comparing the searchword with the
ciphertext. There are also schemes, that avoid having an index by embedding
the trapdoor in a special format into the ciphertext itself (see [16]).

2.4 Onion Layer Model

Our framework adapts the basic idea of CryptDB’s [14] onion layer model
(OLM): each encrypted data item is surrounded by an outer layer consisting of a
strong randomized (RND) encryption. The inner layers consist of the property-
preserving encryptions of the data item. The outer RND layer is only removed
when the inner layer is needed for query answering. While CryptDB supports
relational (SQL) databases, our usage of WCSs requires some changes to the
original setting. In particular, row identifier columns must be treated differently
from all other columns regarding the onion layer design. They must leak the
order of values to allow for row sorting (see the discussion in [20]).
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3 The CloudDBGuard framework

In prior work we identified and implemented database-compatible and practi-
cally feasible encryption schemes and quantified their performance with various
benchmarks. The following subsections introduce a couple of beneficial exten-
sions of the previously developed concepts.

3.1 API

CloudDBGuard aims at executing queries over encrypted data in wide column
stores. Yet, it does not follow the approach of a proxy server between the ap-
plication and database for re-writing queries, decrypting query results, etc (like
various other approaches in this field [15, 14]). Instead it introduces an applica-
tion programming interface (API) taking care of these tasks, that is used by the
client application. This API has various advantages over the proxy model:

– A third entity besides client and server can be avoided, which results in less
computation and network overhead.

– Most proxy approaches make use of the fact that the majority of SQL queries
use a well defined (and rather small) subset of SQL commands. In contrast,
some NoSQL databases do not even have query languages. Thus, there would
be no uniform way for a proxy to manage incoming requests. The API of
CloudDBGuard hides the complexity of the databases’ native APIs.

– The WCS data model is realized differently by the databases. In our API
the differences in these realizations appear unified for the user.

– The user is able to configure the parameters of the used property preserving
encryption schemes much more fine-grained and individually.

The client application using the API of CloudDBGuard runs in a trusted
environment. For the API to be able to manage its tasks, it has to maintain
auxiliary data, namely keys, metadata and (if necessary) indexes on client side.
Since this data has to be stored persistently, it is kept outside the application in
the client system’s file system. The API manages the database connections, data
transfer, encrypting and decrypting. Furthermore it keeps track of metadata and
key management. Currently, CloudDBGuard utilizes advanced (index-based) en-
cryption schemes, which allow the system to scale better when datasets become
large. Partly, they even provide new functionality (like the ability to search for
single words without the need of secondary indexes). The database server never
sees any decryption keys, hence it is never able to decrypt private data. Thus,
any adversaries (even administrators of the cloud services) are not able to gain
sensitive information only from read access. There is no need to change database
implementations in order to work with CloudDBGuard.

As FamilyGuard uses encryption schemes that potentially use a high number
of cryptographic keys, the manual management of these keys is impractical for
the user, but since the database server is not allowed to possess them either, they
have to be managed and stored on the client side. This is why FamilyGuard uses
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a Java Cryptography Extension KeyStore (JCEKS) provided by the Java Cryp-
tography Extension (JCE) for that task. A JCEKS allows storing an arbitrary
number of keys, each of which can be accessed using a custom label. The user
has to provide only one single password for the client to gain access to all keys.

3.2 Selective Encryption

Selective encryption only encrypts pre-determined sensitive columns (consider a
table of employees, where only the salary has to be kept secret, but not the name,
department, etc). Selective encryption helps to save computation time when
reading from as well as writing to the database, because it reduces the number
of required encryption and decryption operations. It also reduces storage space,
because it avoids unnecessary indexes. In the CloudDBGuard API, individual
columns can be marked as not to be encrypted.

3.3 Separation of Duties

Separation of Duties describes the concept of more than one person being re-
sponsible to complete a task. The same principle can be used to take care of
privacy issues that property-preserving encryption alone is not able to cover.
Consider again the employee example. If the salary is encrypted with OPE, the
exact salary of the employees still does not leak, but it can easily be inferred, who
earns the most or who earns more money than others. That might be unwanted.
If more than one database instance is available and the available databases are
managed by individual and independent authorities, CloudDBGuard can further
split up the table in order to avoid such conclusions. The salary column can be
stored separated from the rest to avoid the leakage of any connection between
salary and employee names. The API of CloudDBGuard supports separation of
duties during the process of creating a table. Individual columns of a table can
be spread across multiple database instances using the following three strategies:

– Random distribution: In this approach a logical table’s columns are dis-
tributed randomly across the database instances available for the keyspace.

– Round Robin distribution: This approach distributes columns of a logical
table in round robin fashion across the available database instances; the
data get distributed as evenly as possible at the point of creating a table.

– Custom Distribution: The user actively specifies, which columns have to be
stored separately from which other columns. Considering the example above
the user could select the sensitive salary column to be stored separately
from all other columns. A more in-depth analysis of customized separation
of duties as an optimization problem is given in [4, 3].

3.4 Table Profiles

The encryption schemes for order-preserving and searchable encryption have
their individual strengths and weaknesses. That is why the API of CloudDB-
Guard provides the option of specifying so-called table profiles when creating
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tables. A table profile determines which combination of PPE encryption schemes
is actually used during data insertion. The API supports three table profiles:

– Optimized reading: This profile prioritizes schemes that have advantages
for queries that involve mainly reading from the database. Thus it is the
best choice for “write-once” databases. The OPE schemes best suited for
fast reading are [23] and [11]. They have the same type of index, which
results in equal reading performance. However, [23] is the preferred choice
because it also shows good performance in case of a pre-sorted input (see
[19]). For the SE onion layer the scheme of [9] is used. It is the fastest scheme
for queries that we have implemented – in particular for repeated queries.

– Optimized writing: This profile prioritizes schemes that have advantages
for queries that involve mainly writing to the database. Thus, it should be
used for scenarios, in which writing occurs more often than reading. The
OPE scheme best suited for fast writing is [11], as long as presorted inputs
are avoided. For the SE onion layer the scheme of [16] is used; it does not
maintain indexes and can insert data faster than [9].

– Storage efficient: This profile prioritizes storage needs over computation
time and selects the schemes that require the least amount of storage for
data and indexes, on client side as well as on server side. Thus, OPE onion
layers use [2], since it does not require an index at all. For the same reason
SE onion layers use [16].

Other custom table profiles can be added easily. Independent of the used pro-
file, every column gets its own instances of the property-preserving encryption
schemes they use. That means, encryption scheme indexes are maintained per
column, not per table. This allows the separation of duties as described above;
querying answering involves only the index data that is actually required.

3.5 Unification of Data Models

The supported databases Cassandra and HBase follow the WCS data model
(see Section 2.2). Yet, they differ in the way of achieving that. Using different
databases with separation of duties therefore requires analyzing their differences.
Here we discuss how the CloudDBGuard API compensates them.

– The WCS data model dictates the existence of (at least) one column that
stores unique row identifiers per table. Cassandra and HBase have different
ways of addressing this column. Cassandra requires assigning a concrete
name and data type for it while creating a table. In contrast, HBase does
not need any of that information, because its row identifier columns are
unnamed and are always of type byte blob. Cassandra hence requires more
precise definitions for the row identifier column; defining a name and data
type is thus mandatory when creating tables with CloudDBGuard.

– Some WCSs allow the row identifier to consist of multiple parts. For example,
it is possible in Cassandra to combine multiple fields to create a row identi-
fier, which is then called a composite key. A composite key always consists
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of two parts. The first part is the partition key (for data distribution across
servers). The second part is the clustering key (for storing data within a par-
tition). Both parts can again consist of multiple fields. In contrast, HBase
does not know the concept compound row identifiers. If the combination of
multiple fields is desired, that has to be created manually (by string con-
catenation) and stored as a single row identifier. HBase’s native Java API
provides prefix filters, that can be used to simulate compound keys. The API
of CloudDBGuard hides the complexity of using these from the user.

– Apache Cassandra supports collection types: a field in a row cannot only
contain a single value, but also a list, set or map. Elements of these sub-
sets can be addressed by traversal (set), specifying an index (list) or a key
(map). In contrast, HBase does not support collection types. Instead, an
additional column qualifier can be used to realize collection types. With the
CloudDBGuard API, the user does not need to care about the difference.

– Cassandra offers a variety of data types, whereas HBase stores everything as
byte array. CloudDBGuard follows the HBase approach and stores only byte
arrays in encrypted columns in Cassandra as well. On the one hand, except
for OPE schemes, outcomes of all used encryption schemes are byte arrays
anyway. Storing them as such avoids conversions back to their original data
type and saves runtime. Only OPE ciphertexts have to be converted to byte
arrays, which can be done fast. On the other hand, seeing only byte blobs
in the database makes it much harder for an attacker to infer information.

4 Benchmark

Runtime tests of PPE often assess only one encryption scheme in isolation. In
contrast, we benchmark the performance of different types of property-preserving
encryption schemes (deterministic, order-preserving and searchable encryption)
in their combination. All experiments in this section were run on an Intel Core i7-
4600U CPU@2.10GHz, 8GB RAM, a Samsung PM851 256GB SSD using Ubuntu
16.04. The PPE schemes were implemented in Java 8, using cryptographic prim-
itives of the Java Cryptography Extension. The source code is available at
https://github.com/dbsec/FamilyGuard/. From the Enron corpus [12], we
parsed a random subset of 10 000 mails (with 1.03 · 107 words) to simulate an
average sized mailbox and created one table row per mail. Our queries select the
primary key (the mail identifier) of those rows that meet the specified conditions.
We select the primary key, as a unique and a relative small field, in order to let
the database fully evaluate these conditions. The small size of the column entries
enables to compare database performance without side effects. We wrote queries
for each type of scheme separately (Q1-Q3), the six possible combinations of two
types (Q4-Q9) and the combination of all the three types (Q10). Details about
the columns queried can be found in Table 1.

We tested all queries with each of the three table profiles introduced in Sec-
tion 3.4. Figures 1 shows the results. As can be seen, the query times remain
within acceptable time spans of less than two seconds for Cassandra (left) and
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Query Types of schemes Queried Columns Query Types of schemes Queried Columns

Q1 DET receiver Q6 DET + SE sender, body
Q2 OPE timestamp Q7 OPE + OPE sender, timestamp
Q3 SE body Q8 OPE + SE body, timestamp
Q4 DET + DET sender, receiver Q9 SE + SE body, subject
Q5 DET + OPE sender, timestamp Q10 DET + OPE + SE sender, timestamp, subject

Table 1. Types of generated queries

even less than one second for HBase (right). This reflects the fact that Cassan-
dra is optimized for writing while HBase is optimized for reading. Furthermore,
searchable encryption is by far the most expensive type of property preserving
encryption, as all queries involving it take the most time. It has a strong impact,
especially when the data fields are large (like in Q9, which involves performing
SE on mail bodies). In contrast, deterministic and order-preserving encryption
have less impact on runtime.

Fig. 1. Query Performance with Cassandra (left) and HBase (right). Measurements
for each query: optimized reading (left), optimized writing (middle), storage efficient
(right); DB communication (lower part of each bar) + API overhead (upper part)

5 Conclusion and Future Work

We presented the CloudDBGuard framework that extends our prior work in
two aspects. Firstly, its functionality was wrapped into an easy-to-use API that
hides the complexity of property-preserving encryption and even the native in-
terface of the underlying database from the user. Secondly, the concept of using
property-preserving encryption was combined with other ideas to increase secu-
rity (e.g., separation of duties) and improve runtime performance (e.g., selective
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encryption). The framework provideds built-in support for Apache Cassandra
and HBase. While the concepts of CloudDBGuard are designed for wide column
stores, they are not limited to them. Further databases and encryption schemes
can be added by implementing simple interfaces. The data model of wide column
stores can be mapped easily to key-value stores (in which the key part might
be composed as table:column:qualifier:timestamp) or document stores (where
rows can be mapped to documents and columns can be mapped to fields of
a document). The general idea of doing has been suggested by other authors,
too (e.g., [1, 24]). The major aspect is that the database systems (being open
source systems developed by a community) can remain unchanged. Moreover,
the API can be integrated into a proxy client between application and database
server. In this way, no modifications to the application would be necessary, but
an additional architectural component is introduced (as done in the approach
of CryptDB [14]). A step further would be the integration of the onion layer
model and PPE schemes into the database drivers/native APIs, combining the
architectural simplicity of the approach of CloudDBGuard with the opportunity
to leave the client application as well as the database server unchanged. This so-
lution however would be very database-specific and the option to transparently
use different databases would not be available.
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