Closeness Constraints for Separation of Duties
in Cloud Databases as an Optimization Problem

Ferdinand Bollwein' and Lena Wiese?

! Institute of Computer Science, TU Clausthal
ferdinand.bollwein@tu-clausthal.de
2 Institute of Computer Science, University of Goettingen
wiese@cs.uni-goettingen.de

Abstract. Cloud databases offer flexible off-premise data storage and
data processing. Security requirements might however impede the use of
cloud databases if sensitive or business-critical data are accumulated at a
single cloud storage provider. Hence, partitioning the data into less sen-
sitive fragments that are distributed among multiple non-communicating
cloud storage providers is a viable method to enforce confidentiality con-
straints. In this paper, we express this enforcement as an integer linear
program. At the same time visibility of certain data combinations can
be enabled. Yet in case of violated visibility constraints, the number of
different servers on which data is distributed can still be optimized. We
introduce novel closeness constraints to express these requirements.

1 Introduction

Cloud databases are a generic tool for outsourcing not only data storage but
also data processing: cloud databases offer advanced query and manipulation
languages to create database schemas, insert data into tables, query data based
on some conditions, update and delete data. Moreover, cloud databases offer
joins and aggregation functions. Hence a typical business application of cloud
databases is that a cloud customer uploads data into the cloud database and
locally only runs scripts to retrieve and manage data on the customer side. This
relieves the cloud customer from the burden to install, configure and update a
large-scale database system on customer side. Furthermore, depending on chan-
ging customer needs, the storage capacity can flexibly be reduced or expanded.
However, when private and business-critical data are processed by the cloud da-
tabase as unencrypted plaintext, cloud database customers have to put a high
level of trust in a confidentiality-preserving and privacy-compliant treatment of
the data. One way to reduce this trust is to enable the cloud customer to manage
distribution of data on as many providers (and under as many user names) as
necessary to avoid harmful accumulation of data at a single site.

Separation of duties for cloud databases means that data are split into frag-
ments and these fragments are stored on independent cloud providers. In this
paper, vertical fragmentation is used as a technique to protect data confiden-
tiality in cloud databases. Consistently with related work the confidentiality

requirements are modeled as subsets of attributes of the relations. The resulting
fragments are explicitly linkable however, it is assumed that they are stored on
separate servers which are assumed to be non-communicating. The problem of
finding such fragmentations is modeled as a mathematical optimization problem
and it is one of the main objectives to minimize the number of servers involved.
Moreover, constraints are introduced to improve the usability of the resulting
fragmentations and to allow for efficient query answering. Those constraints are
modeled as soft constraints in contrast to the confidentiality requirements which
are obligatory to be satisfied.
In this paper, we make the following contributions:

we formalize the enforcement of confidentiality constraints by obtaining mul-

tiple fragments as a mathematical optimization problem.

— we formalize the distribution of these fragments on multiple servers while at
the same time minimizing the amount of these servers; that is we obtain a
distribution on as few servers as possible.

— moreover, further constraints are introduced to improve the usability of the
resulting fragmentations and to allow for efficient query answering; we dis-
cuss a weakness of conventional visibility constraints and introduce additi-
onal closeness constraints concerned with the distribution of the attributes
to allow for efficient query processing.

— visibility and closeness constraints are modeled as soft constraints — in con-

trast, confidentiality constraints are hard and have to be fully satisfied.

We start this article with a survey of related work in Section 2. Section 3
sets the necessary terminology; Sections 4 and 5 analyze a standard and an
extended Separation of Duties problem; Section 6 provides a translation into an
integer linear program; Section 7 briefly describes a prototypical implementation;
Section 8 concludes the article.

2 Related Work

Horizontal (row-wise) and vertical (column-wise) fragmentation are the two basic
approaches to partition tables. Fragmentation as a security mechanism follows
the assumption that links between data are highly sensitive (for example, linking
a patient name with a disease) whereas individual values (only patient names or
only diseases) are less sensitive. The existing approaches can be divided into:

— keep-a-few approaches: some highly sensitive data are maintained at the
trusted client side while non-sensitive fragments are stored on an external
server (like a cloud database); this approach was pioneered in [5].

— non-communicating servers approaches: fragments are stored on different
servers that do not interact; this approach was pioneered in [1].

These approaches only consider fragmentation of a single table into two frag-
ments. In the former case (keep-a-few), a server fragment and an owner fragment

is obtained; in the latter case (non-communicating servers) two fragments are
obtained to be stored on two servers.

In [6] the authors consider multiple fragments however they require these
fragments 1) to be unlinkable to be stored on one single external server and
2) to be non-overlapping. In contrast to this, we assume that the servers are
non-communicating (and hence allow linkability in particular by tuple ID to
enable recombination of results on the client side) and we allow a certain level
of overlaps (and hence redundancy of data) to improve data visibility.

Vertical [2] as well as horizontal [14] confidentiality-preserving fragmentations
have also been analyzed on a logical background. Last but not least, the article
[10] surveys several approaches.

3 Relations and Fragmentation

In this paper we assume the common setting of a database table that has to be
vertically split into fragments in order to hide some secret information. A data-
base table consists of a set of columns (the names of which are also called attribu-
tes). Each attribute has a data type and an according domain of values denoted
dom(a;). More formally, we talk about a relation schema R(A) = R(aq,...,ay)
that consists of a relation name R and a finite set of attributes A = {a1,...,a,}.
A relation (instance) r on the relation schema R (ay,...,ay), also denoted by
r(R), is defined as an ordered set of n-tuples r = (t1,...,tn) such that each
tuple t; is an ordered list ¢t; = (v1,...,vy) of values v; € dom(a;) or v; = NULL.

In order to enforce confidentiality constraints, we obtain a vertical fragmen-
tation of the table. Each fragment contains a subset of the attributes in A. We
have to define a special tuple identifier to be able to recombine the original
table from the fragments. More formally, a fragmentation of a table is a set
f = (fo,..., fx) of fragments f; where each f; contains a tuple identifier tid (a
candidate key of the relation which can itself consist of several attributes) and
further attributes: f; = {tid, a;,,...,a;, } where a;, € A. The fragment fo is the
dedicated owner fragment (which is in particular needed to satisfy the singleton
confidentiality constraints); all other fragments fi,..., f,, are server fragments
which should be allocated on different non-communicating cloud storage pro-
viders. Following [1], due to the non-communication assumption, we allow the
different server fragments to be linkable (in particular, by the tuple ID but also
be common attributes to achieve higher visibility as described in a later section).

When fragmenting a relation vertically, there are two main requirements. The
first one (completeness) is that every attribute must be placed in at least one
fragment to prevent data loss. The second property (reconstruction) that must
be satisfied is more technical: by including a candidate key in every fragment,
it is possible to associate the tuples of the individual table fragments. Equi-
join operations on those attributes can then be used to reconstruct the original
relation. There is also a third property (disjointness) which is often required. This
property demands that every non-tuple-identifier attribute is placed in exactly
one vertical fragment. However, especially in the context of this work, there are

reasons to omit this property to increase the usability of the resulting vertical
fragmentation. Detailed information on this is presented in Section 5. Based
on this preliminary information, the correct/lossless vertical fragmentation of a
single relation is formally defined as follows:

Definition 1 (Vertical Fragmentation). Let r be a relation on the relation
schema R(A). Let tid C A, the tuple identifier, be a predefined candidate key of
r. A sequence £ = (fo,..., fx) where f; C A for all j € {0,...,k} is called a

correct vertical fragmentation of r if the following conditions are met:

— Completeness: U?:o =4
— Disjointness: f; N f; C tid, for all f; # f; with f;, f; # 0
— Reconstruction: tid C f;, if f; #0

A fragmentation that satisfies completeness and reconstruction but not necessa-
rily the disjointness property is called a lossless vertical fragmentation of 7.
The cardinality card(f) of a correct/lossless vertical fragmentation of r is defined
as the number of nonempty fragments of £: card(f) = ij:o 1.

fi#0

At physical level, the relation fragment or table fragment "derived from fragment
[fj is given by the projection ¢, ().

It is further worth noticing that the tuple identifier is required to form a
proper subset of the fragments which prohibits fragments consisting of the tuple
identifier attributes only. This requirement is due to the fact that the tuple
identifier’s sole purpose should be to ensure the reconstruction property.

4 Standard Separation of Duties Problem

The security requirements are specified at attribute level, i.e. certain attributes
or combinations of attributes are considered sensitive and must not be stored by
a single untrusted database server. This can, consistently with related work [5,
1,4, 3,11], be modeled with the notion of confidentiality constraints.

A confidentiality constraint is a subset of attributes of a table: a confidenti-
ality constraint is written as ¢ C A. We differentiate the following two cases:

1. Singleton constraints where the cardinality card(c) = 1; that is, ¢ contains
only a single attribute ¢ = {a;}. In this case, the servers are not allowed to
read the values in column a;.

2. Association constraints (see [10]) with cardinality card(c) > 1. In this case,
the servers are not allowed to read a combination of values of those attributes
contained in the confidentiality constraints. However any real subset of these
attributes may be revealed.

Definition 2 (Confidentiality Constraints). Let R(A) be a relation schema
over the set of attributes A. A confidentiality constraint on R(A) is defined by a
subset of attributes ¢ C A with ¢ # (. A confidentiality constraint ¢ with |c| =1
is called a singleton constraint; a confidentiality constraint ¢ that satisfies |c| > 1
is called an association constraint.

As an example, consider a table containing information about patients of a
hospital. We might have highly sensitive identifying attributes like name and
SSN (social security number); these would then be turned into singleton confi-
dentiality constraints. On the other hand, some attributes are only sensitive in
combination: the birth year, the ZIP code and the gender in combination can
act as a quasi-identifier which can reveal a patient’s identity. In this case, any
subset of birth year, ZIP code and gender may be revealed but not the entire
combination.

As attributes contained in a singleton constraint are not allowed to be acces-
sed by an untrusted server, they cannot be outsourced in plaintext at all. Be-
cause we refrain from using encryption those attributes have to be stored locally
at the owner side. On the other hand, association constraints can be satisfied
by distributing the respective attributes among two or database servers. More
precisely, a correct vertical fragmentation f = (fy,..., fix) has to be found in
which one fragment stores all the attributes contained in singleton constraints
and all other fragments are not a superset of a confidentiality constraint. As a
common convention throughout the rest of this work, fragment fy will always
denote the owner fragment which stores all the attributes contained in single-
ton constraints. This fragment is stored by a local, trusted database. The other
fragments f1,..., fr denote the server fragments and each of those is stored by
a different untrusted database server. We require the server fragments f1, ..., fx
to obey a given set of confidentiality constraints C' = {c1,...,¢}. A server frag-
ment f; is confidentiality-preserving if ¢ ¢ f; for all ¢ € C. This leads to the
formal definition of a confidentiality-preserving vertical fragmentation:

Definition 3 (Confidentiality-preserving Vertical Fragmentation). For
relation r on schema R(A) and a set of confidentiality constraints C, a cor-
rect/lossless vertical fragmentation f = (fo, ..., fr) preserves confidentiality with
respect to C' if for all c € C and 1 < j < k it holds that ¢ € f;.

It is necessary to introduce some reasonable restrictions to the set of confi-
dentiality constraints. These restrictions are of theoretical nature and will not
restrict its expressiveness. These requirements are summarized by the following
definition of a well-defined set of confidentiality constraints (we extend the de-
finition of e.g. [10] to our special treatment of tuple identifiers):

Definition 4 (Well-defined Set of Confidentiality Constraints). Given a
relation r on the relation schema R(A) and a designated tuple identifier tid C A.
A set of confidentiality constraints C' is well-defined if it satisfies:

— For all ¢,d € C with ¢ # ¢, it holds that ¢ € ¢'.
— For all c € C, it holds that c N tid = .

The first condition requires that no confidentiality constraint c is a subset of anot-
her confidentiality constraint ¢’. By the definition of a confidentiality-preserving
vertical fragmentation, the satisfaction of ¢ would be redundant because ¢ ¢ f;
for j € {1,...,k} implies that ¢ € f; for j € {1,...,k} if c C ¢.

The second condition requires that the tuple identifier attributes are considered

insensitive on their own and in combination with other attributes. The tuple
identifier’s sole purpose is to ensure the reconstruction of the fragmentation by
placing it in every nonempty fragment. If, for example, there would be a confi-
dentiality constraint ¢ C tid, a confidentiality-preserving vertical fragmentation
would require that the corresponding tuple identifier attributes cannot be placed
in any server fragment. Therefore, every attribute has to be placed in the owner
fragment which basically means that the relation cannot be fragmented at all.

Storage space restrictions might also be an important factor for the vertically
fragmented relation: the owner and the server fragments may not exceed a da-
tabases’ capacity. Hence, we assume that there is a weight function that assigns
a weight to each subset of attributes w, : P(A) — Rx>o.

It is quite obvious that the cardinality of the confidentiality-preserving frag-
mentation to be found is a crucial factor for the quality of the fragmentation.
Keeping the number of involved server as low as possible will reduce the cu-
stomer’s costs, lower the complexity of maintaining the vertically fragmented
relation and also increase the efficiency of executing queries. Therefore, in the
following problem statement, the objective is to find a confidentiality-preserving
correct vertical fragmentation of minimal cardinality. Additionally, the capacities
of the involved storage locations must not be exceeded. Formally, the (Standard)
Separation of Duties Problem is hence defined as follows:

Definition 5 (Standard Separation of Duties Problem). For relation r
over schema R(A), a well-defined set of confidentiality constraints C, a dedicated
tuple identifier tid C A, a weight function w,., storage spaces Sy, ..., Sk (where
So denotes the owner’s storage and Si,...S) denote the servers’ storages) and
mazimum capacities Wy, ..., Wy, € R>g. Find a correct confidentiality-preserving
fragmentation £ = (fo, ..., fx) of minimal cardinality such that the capacities of
the storages are not exceeded, i.e. wy(f;) < W; for all0 < j <k.

One should note that in this general formulation the owner fragment can
possibly contain all of the attributes if Wy is sufficiently large. Moreover, in order
to solve the problem, one could first assign all attributes in singleton constraints
to the owner fragment and afterwards solve the remaining subproblem without
singleton constraints. Hence, by considering appropriate values for Wy one can
influence the size of the owner fragment and the overall resulting fragmentation.

5 Extended Separation of Duties Problem

In many scenarios, it is desirable that certain combinations of attributes are
stored by a single server or in other words, these combinations are visible on a
single server, because they are often queried together. This can be accounted for
with the notion of wvisibility constraints:

Definition 6 (Visibility Constraint). Let R(A) denote a relation schema
over the set of attributes A and let v be a relation over R(A). A visibility
constraint over R(A) is a subset of attributes v C A. A fragmentation f =

(fos- -, fr) satisfies v if there exists 0 < j < k such that v C f;. In this case,
define sat,(f) == 1 and sat,(f) := 0 otherwise. Furthermore, for any set V the
number of satisfied visibility constraints is

saty (f) :== Z sat, (f).

veV

In contrast to confidentiality constraints, the fulfillment of visibility constraints
is not mandatory, i.e. confidentiality constraints are hard constraints while visi-
bility constraints are soft constraints. Roughly speaking, the following extended
version of the Separation of Duties Problem aims at finding a confidentiality-
preserving vertical fragmentation that minimizes the number of fragments and
maximizes the number of satisfied visibility constraints. While there is not much
sense in finding a fragmentation that does not satisfy the completeness property,
breaking the disjointness property can help to increase the number of satisfied
visibility constraints and therefore, in the upcoming problem definition a lossless
but not necessarily correct fragmentation will be required.

Although visibility constraints provide a means of keeping certain attributes
close together, i.e. on a single server, they are not useful when a certain constraint
cannot be satisfied due to some confidentiality constraint. Consider a relation
r over the attributes A = {PatientID, DoB, ZIP, Diagnosis, Treatment} with the
dedicated tuple identifier PatientID. Moreover, let a weight function of r be defi-
ned by w,.(a) =1 for all a € A. Furthermore, suppose the owner fragment has a
capacity of Wy = 0, and there are 3 servers with capacities W7 = 2, Wy = 3 and
W35 = 2. For statistical purposes, a visibility constraint v = {DoB, ZIP, Diagnosis}
is introduced and to preserve the privacy of the patients, the confidentiality
constraint ¢ = {DoB, ZIP} is enforced. However, because ¢ C v, the visibi-
lity constraint cannot be satisfied. Hence, one possible solution to the pro-
blem is given by f = {fo, f1, fe, f3} with: fo = 0, fi = {PatientID, DoB},
fo = {PatientID, ZIP, Treatment}, f3 = {PatientlD, Diagnosis}. Another possi-
ble solution is given by the fragmentation ' = {f{, f1, f4, f4} with: f{ =0, f] =
{PatientID, DoB}, f4 = {PatientID, ZIP, Diagnosis}, f4 = {PatientID, Treatment}.
The important thing to notice here is that in f the attributes in v are spread
among three and in f' among only two servers. As a result, a query for the three
attributes DoB, ZIP and Diagnosis involves three servers for the first fragmenta-
tion and only two for the second. Hence, the query will be processed faster for
the second fragmentation because on the one hand, the server that stores fj can
evaluate conditions on both attributes ZIP and Diagnosis resulting in smaller in-
termediate results and on the other hand, there is less communication overhead
due to the necessity of two servers only. Therefore, it is reasonable to provide
constraints to make sure that certain attributes should be distributed among
as few servers as possible. Moreover, as in the following problem statement a
lossless fragmentation will be required, those constraints can also be used to
limit the number of copies of any individual attribute. This introduces an in-
teresting technique to reduce the setup time of a vertical fragmented relation.
These so-called closeness constraints are defined as follows:

Definition 7 (Closeness Constraint). Let R(A) denote relation schema over
the set of attributes A and let r be a relation over R(A). A closeness con-
straint over R(A) is a subset of attributes v C A. Let £ = (fo,..., frx) be a
correct/lossless vertical fragmentation of r, the distribution dist(f) of v is defi-
ned as the number of fragments that contain one of the attributes in y:

k
dist., (f) = Z 1

7=0:
finy#0

For any set I of closeness constraints, the distribution dist(f) is defined as the
sum of distributions of v € I.

The following extended problem definition aims at preserving confidentiality
by requiring a lossless fragmentation that does not violate any confidentiality
constraint. Moreover, the owner’s and the servers’ capacities must not be excee-
ded. Furthermore, the minimization of the weighted sum serves three purposes:
The summand «; card(f) is responsible for minimizing the cardinality of the
fragmentation. By subtracting the summand «s saty (f), each satisfied visibi-
lity constraint will lower the overall objective value. Lastly, the distribution of
the closeness constraints is minimized by the summand a3 distp(f). With these
explanations, the Extended Separation of Duties Problem is defined as follows:

Definition 8 (Extended Separation of Duties Problem). For relation r
over schema R(A), a well-defined set of confidentiality constraints C, a set
of wisibility constraints V', a set of closeness constraints I', a tuple identifier
tid C A, a weight function w,, storage spaces Sy, ..., Sk, maximum capacities
Wo, ..., Wi € R and weights o, as, a3 € R>g. Find a lossless confidentiality-
preserving fragmentation £ = (fo,..., fr) of minimal cardinality which satisfies
wy(f;) <KW for all 0 < j < k such that the following weighted sum is minimized

aq card(f) — ag saty (f) + ag distp(f).

A reasonable choice for aq, as and ag is presented in the following. The idea
is to assign priorities to the three different objectives. In most scenarios, the
overall number of necessary servers will have the highest impact on the usabi-
lity and therefore, minimizing it should have the highest priority. Hence, the
desired solution’s cardinality should be minimal. The satisfaction of visibility
constraints has the second highest priority and therefore, the resulting fragmen-
tation should minimize the cardinality of the fragmentation and the number of
satisfied visibility constraints should be maximal among all other confidentiality-
preserving fragmentations of minimal cardinality that do not violate the capa-
city constraints. Finally, among those solutions, the distribution of the closeness
constraints should be minimized. This can be achieved by solving the linear
inequalities ao|V|+ as(k+1)|I'| < a1 and az(k+1)|I"| < ag. Solving these ine-
qualities is straightforward and under the assumptlon that [V] > O and || >0,

one possible solution is given by a; = 1, ag = and ag =

2IVI (k+1)\VIIF\

Listing 1 Extended Separation of Duties Problem

k k
RTINS SR DERTTH 9p S W
j=0 veV ~yeI j=0
k
subject to Z xij > 1, a; €A 2)
=0
Tij = Y a; € tid, j € {0,...,k} (3)
> @iy > wi;, ay €tid, j€{0,...,k} (4)
a; EA\tid

Z wr(a:)xi; < Wiy, je{0,...,k} (5)
a; EA
> <l -1, je{l. k), ceC (6)
a; €c
Zl’ijzuvjlvl, je{0,...,k},veV (7)
a; €V

k
Z U j > Zu, veV (8)
=0
> @iy < |yl6ss, yerl,je{0,...,k} (9)
a; €y

6 Integer Linear Program Formulation

In this section, the ILP formulation for the Extended Separation of Duties Pro-
blems as shown in Listing 1 will be discussed. All variables x;;, ¥, 2v, Uvj, Oy
are binary. In order to identify which fragments should be nonempty, variables
Yo, - -+, Yx € {0,1} are introduced for the owner fragment fy and for each server
fragment fi,..., fr. A value of one indicates that the respective fragment is no-
nempty. Furthermore, additional binary variables z;; € {0,1} for each a; € A
and j € {0,...,k} are used to indicate that attribute a; is stored in fragment
fj- Additional indicator variables u,; € {0,1} for all visibility constraints v € V/
and all fragments j € {0, ..., k} are introduced which are interpreted as follows:
If u,; = 1, all attributes in v must be stored in fragment f;. If u,; = 0, all
attributes in v may be (but do not have to be) stored in this fragment. Moreover
indicator variables z, € {0,1} are used to indicate that visibility constraint v
is satisfied by at least one fragment. This means that z, can be equal to one if
at least one u,; equals one. Moreover, additional variables d,; € {0,1} for all
closeness constraints v € I' and every fragment j € {0,...,k} are necessary to
express that fragment f; contains one or more attributes of .

The objective function (1) minimizes the weighted sum stated in Definition 8 in
terms of the variables y;, z, and d,;. Because the Extended Separation of Duties
Problem only requires a lossless fragmentation, there is no condition that ensures

the disjointness property. Constraint (2) ensures the completeness property by
requiring that for each a; € A there exists at least one j such that x;; equals one.
The following Constraint (3) requires that if a fragment is nonempty, it must
include the tuple identifier because if y; = 1 all z;; for all a; € tid must be equal
to one. Conversely, if the fragment should be empty, i.e. y; = 0, no tuple identi-
fier attribute should be placed in the fragment and therefore, z;; must be equal
to zero for each a; € tid. In the definition of fragmentation, the tuple identifier
is required to be a proper subset of each non-empty fragment. This is achieved
by Constraint (4) because every tuple identifier attribute a;; € tid can only be
placed in a fragment f;, i.e z;; = 1, if there is at least one non-tuple-identifier
attribute a; placed in the same fragment, i.e. z;; = 1. Condition (5) has two
functions. On the one hand, if fragment f; should be nonempty and y; = 1,
it ensures that the servers capacity W; is not exceeded. On the other hand, if
y; = 0 and f; should be empty, all x;; for a; € A must equal zero and therefore,
no attribute can be stored in that fragment. Side constraint (6) makes sure that
at most card(c) —1 attributes contained in a confidentiality constraint are stored
in the same server fragment f; for j € {1,...,k}. On the one hand, this ensures
that all attributes in a singleton constraint are stored in the owner fragment and
on the other hand that no association constraint is violated. Conditions for the
visibility constraints are (7) and (8). Each z, for all v € V' lowers the objective
value if z, = 1. Constraint (8) allows z, = 1 only if one of the u,; is is equal to
one. However, due to condition (7), a variable u;; can only take a value of one
if x;; = 1 for all a; € v. This means that visibility constraint v is satisfied by
fragment f;. Constraint (9) ensures that for each closeness constraint v and each
fragment f;, the variable ,; can only be zero if no attribute a; € v is stored in
fragment f;. Therefore, the distribution of v and the objective value increases
for every fragment f; that contains an attribute in ~.

From an ILP solution, the fragments f; can be derived by building the sets:

f{ o {ai€A|l‘i]‘:1}, lfyjzl
’ 0, else

These fragments then form a correct vertical fragmentation as required in the
problem statement.

It should be mentioned further that in some scenarios some visibility or
closeness constraints might be more important to satisfy than others. If this is
the case, one can simply introduce weights 53, € (0, 1] for all visibility constraints
v € V and weights 3, € (0, 1] for all v € I" and use the objective function

k k

6751 Zyj —Q2Zﬁyzv+a326'yzqyj

7=0 veV yel 7=0

in the ILP formulation. This way, visibility constraints with higher weight will
contribute more to the minimization of the objective function. Moreover, redu-
cing the distribution of closeness constraints with higher weights is more impor-
tant than reducing the distribution of closeness constraints with smaller weights.

7 Prototype and Evaluation

We implemented a prototype fragmentation and distribution system (availa-
ble at http://www.uni-goettingen.de/de/558180.html) based on the IBM ILOG
CPLEX solver and PostgreSQL. For testing we set up a TCP-H benchmark
(http://www.tpc.org/tpch/) on a single PC equipped with an Intel Xeon E3-
1231v3 @3.40GHz (4 Cores), 32GB DDR3 RAM and a Seagate ST2000DMO001
2TB HDD with 7200 rpm running Ubuntu 16.04 LTS. The database servers ran
in separate, identical virtual machines which are assigned 4 cores and 8GB of
RAM. The virtual machines are running Ubuntu Server 16.04 LTS with an in-
stance of PostgreSQL 9.6.1 installed. We implemented the distributed setting
using foreign data wrapper extension postgres_fdw. On the trusted server hos-
ting the owner fragment we created views for the remote server fragments. We
ran all 22 queries of the TPC-H benchmark against a non-fragmented local and
against the fragmented installation. It turned out that Postgres was not able to
process queries Q29 and ()17 not even in the unfragmented case and we stopped
execution after 30 minutes. Apart from these, for the view-based queries Table
1 shows the execution time (t) in seconds and the slow down (sd) compared to
the execution time of the same query on the original database (ot).

Q|1 2 3 4 5 6 7 8 9 10 |11 |12 13 |14 15 [16 |18 |19 |21 22
t [41.18(4.699(19.8 [18.6(37.0(4.039(|11.65|38.58(18.53[12.5/0.58(10.4 [11.8(3.765(8.69(2.98(51.0(1.93(79.111|10.58
ot [2.267|0.353|0.861(3.11/0.95|0.291{0.530(1.305|1.652|1.4 |0.19(/0.457 (1.7 |0.341|0.66[0.6 |5.99|0.65[1708.5|0.534
5d[18.16(13.31(22.99(5.97|38.9|13.88[21.99(29.57|11.22|8.85|2.98|22.75|6.85(11.04[13.1[4.95|8.51|2.98[0.05 19.81

Table 1. TPC-H queries (seconds) on fragments (t), unfragmented (ot), slowdown (sd)

Overall, the increase in execution time compared to the queries on the non-
fragmented database does not follow a specific pattern. The slowdown on the
distributed views was always less than 30 times — one query even executed faster
on the distributed installation. Execution time hence very much depends on the
query plan PostgreSQL establishes. To fully understand what causes the increase
in the execution times, one would have to study the execution strategy for each
of the queries individually; one could then develop strategies to achieve better
performances for queries on the vertically fragmented database.

8 Discussion and Conclusion

We studied the problem of finding a confidentiality-preserving vertical fragmen-
tation as a mathematical optimization problem. To achieve a better distribution
of attributes among the servers we introduced closeness constraints in addition
to conventional visibility constraints.

In future work, we plan to combine the presented approach with partial en-
cryption of a table similar to several approaches surveyed in [10]. Balancing the
amount of encrypted and non-encrypted columns leaves room for further mathe-
matical optimization problems. Moreover combining fragmentation with existing

frameworks using novel property-preserving encryption schemes (like in [7-9, 12,
13]) offers even more options to balance leakage and distribution. Because sen-
sitive associations cannot only occur between columns but also between rows
of a database, another interesting extension of this work is to additionally ex-
plore horizontal fragmentation (as in [14]) which means that database tables are
fragmented and distributed row-wise.

References

1.

10.

11.

12.

13.

14.

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed
architecture for secure database services. In: The Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005) (2005)

. Biskup, J., Preu8}, M., Wiese, L.: On the inference-proofness of database fragmen-

tation satisfying confidentiality constraints. In: ISC. Lecture Notes in Computer
Science, vol. 7001, pp. 246-261. Springer (2011)

Ciriani, V., Di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Fragmentation and encryption to enforce privacy in data storage. In: European
Symposium on Research in Computer Security. pp. 171-186. Springer (2007)
Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Selective data outsourcing for enforcing privacy. Journal of Computer
Security 19(3), 531-566 (2011)

Ciriani, V., di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Keep a few: Outsourcing data while maintaining confidentiality. In: ESORICS.
Lecture Notes in Computer Science, vol. 5789, pp. 440-455. Springer (2009)
Ciriani, V., Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Combining fragmentation and encryption to protect privacy in data storage.
ACM Transactions on Information and System Security (TISSEC) 13(3), 22 (2010)
Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. pp. 85-100. ACM (2011)
Sarfraz, M.1., Nabeel, M., Cao, J., Bertino, E.: Dbmask: fine-grained access control
on encrypted relational databases. In: Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy. pp. 1-11. ACM (2015)

Spillner, J., Beck, M., Schill, A., Bohnert, T.M.: Stealth databases: Ensuring user-
controlled queries in untrusted cloud environments. In: 8th International Confe-
rence on Utility and Cloud Computing. pp. 261-270. IEEE (2015)

di Vimercati, S.D.C., Erbacher, R.F., Foresti, S., Jajodia, S., Livraga, G., Sama-
rati, P.: Encryption and fragmentation for data confidentiality in the cloud. In:
Foundations of Security Analysis and Design VII, pp. 212-243. Springer (2014)
di Vimercati, S.D.C., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Sama-
rati, P.: Fragmentation in presence of data dependencies. IEEE Transactions on
Dependable and Secure Computing 11(6), 510-523 (2014)

Waage, T., Homann, D., Wiese, L.: Practical application of order-preserving en-
cryption in wide column stores. In: SECRYPT. pp. 352-359. SciTePress (2016)
Waage, T., Jhajj, R.S., Wiese, L.: Searchable encryption in apache cassandra. In:
Foundations and Practice of Security. pp. 286-293. Springer (2015)

Wiese, L.: Horizontal fragmentation for data outsourcing with formula-based con-
fidentiality constraints. In: IWSEC. Lecture Notes in Computer Science, vol. 6434,
pp. 101-116. Springer (2010)

