Flexible Query Answering with the powerset-Al
Operator and Star-Based Ranking

Lena Wiese

Institute of Computer Science
University of Gottingen
Goldschmidtstrafle 7
37077 Gottingen
Germany
lena.wieseQuni-goettingen.de

Abstract. Query generalization is one option to implement flexible query
answering. In this paper, we introduce a generalization operator (cal-

led powerset-AI) that extends conventional Anti-Instantiation (AI). We

analyze structural modifications imposed by the generalization to obtain

syntactic similarity measures (based on the star feature) that rank gene-

ralized queries with regard to their closeness to the original query.

1 Introduction

Flexible query answering supports users in the search for data in databases
or information systems. Users might be unaware of the exact structure of the
data and hence an exact formulation of the query conditions is often difficult.
However, when using a conventional database system it tries to exactly answer
the user query. In case the database system is not able to find an exactly matching
answer, the query fails and the database system returns an empty answer. This
is undesirable for the user, because he has to find alternative ways to express
his query in order to receive some information. Flexible query answering systems
offer intelligent procedures to revise user queries and are able to return answers
that are related to the user’s original query intent. However, one problem of
flexible query answering is overabundance of related answers: too many answers
are returned that might even be irrelevant for the user.

In this paper, we focus on query generalization of logical queries with the
Anti-Instantiation (AI) operator. We extend the basic Al operator used in prior
work by defining a novel powerset-AI operator. Queries resulting from powerset-
AT retain more equality conditions than the conventional Al operator. To address
the overabundance problem, we propose a ranking based on the amount of equa-
lity conditions retained. In this way, the higher-ranked queries can be answered
by the database system with priority while the lower-ranked ones are assumed to
be less important for the user. In this paper we make the following contributions:

— We extend the conventional Al operator by introducing our novel powerset-
AT operator that allows to obtain a greater set of syntactically and seman-
tically distinct generalized queries than conventional Al.

— We apply the star feature (counting equality conditions between query con-
juncts) of the original query and a generalized query to obtain a value for
the closeness of the generalized formula to the original formula.

After surveying related work in Section 2, we introduce theoretical back-
ground in Section 3 and present the powerset-Al operator in Section 4. Syntactic
similarity of queries is analyzed in Section 6 and Section 7 concludes the paper.

2 Related Work

The CoopQA system [1, 2] applies three generalization operators to a conjunctive
query (which — among others — can already be found in the seminal paper of
Michalski [3]): Dropping Condition (DC') removes one conjunct from a query;
Anti-Instantiation (AI) replaces a constant (or a variable occurring at least
twice) in @ with a new variable y; Goal Replacement (GR) takes a rule from
Y, finds a substitution # that maps the rule’s body to some conjuncts in the
query and replaces these conjuncts by the head (with 6 applied).

The operators DC, AI and GR have been applied to obtain neighborhood
proposals [4] or related answers guided by explanations [5] in multi-agent commu-
nication. Other approaches propose some form of semantic query generalization
where terms a generalized according to their meaning; these methods can be
combined with generalization operators, including ranked data tables [6], fuzzy
logic [7], taxonomies [8] or clustering [9]. More generally, the term “cooperative
database system” was for example used in [10] for a system called “CoBase”
that relies on several type abstraction hierarchies (TAH) to relax queries and
hence to return a wider range of answers. In a similar manner, Halder and Cor-
tesi [11] employ abstraction of domains and define optimality of answers with
respect to some user-defined relevancy constraints. The approach by Pivert et
al using fuzzy sets [12] analyzes cooperative query answering based on semantic
proximity. Other related systems are Flex [13], Carmin [14] and Ishmael [15]
that introduce and analyze dedicated generalization operators.

Hurtado et al [16] relax RDF queries based on an ontology. Similarly, [17] in-
troduce the two operators APPROX and RELAX in the query language SPARQL.
[18] improve upon existing work of RDF relaxation by finding related answers
without generating all relaxed queries. Query relaxation has also been investiga-
ted for XML queries. For example, [19] analyze expressiveness of generalization
operators for (a fragment of) XPath queries. Similarly, [20] apply structural ge-
neralization of XML queries; the authors also provide a recent survey of related
work on approximate XML query answering.

3 Background

In this paper we focus on flexible query answering for conjunctive queries.
Throughout this article we assume a logical language .Z consisting of a finite set
of predicate symbols (for example denoted Ill, Treat or P), a possibly infinite set

dom of constant symbols (for example denoted Mary or a), and an infinite set of
variables (for example denoted z or y). A term is either a constant or a variable.
The capital letter X denotes a vector of variables; if the order of variables in
X does not matter, we identify X with the set of its variables and apply set
operators — for example we write y € X. We use the standard logical connectors
conjunction A, disjunction V, negation — and material implication — and uni-
versal V as well as existential 3 quantifiers. An atom is a formula consisting of a
single predicate symbol; a literal is an atom (a “positive literal”) or a negation
of an atom (a “negative literal”); a ground formula is one without variables; the
existential (universal) closure of a formula ¢ is written as 3¢ (V¢) and denotes
the closed formula where all free variables are bound the respective quantifier.

Il11|PatientID|Diagnoses
h Treat |PatientID|Prescription
Pete Cough - -
Pete Antitussive
Mary Flu -
— Mary Inhalation
Mary Bronchitis - -
- Lisa Inhalation
Lisa Asthma - -
- Tom Antitussive
Lisa Cough Tom Throat Lozenge
Tom Cough £

Table 1. Health records

A query formula @ is a conjunction of literals with some variables X occurring
freely (that is, not bound by variables); that is, Q(X) = L;, A... A L;,. By
abuse of notation, we will also write L;; € when L;; is a conjunct in formula
Q. A query Q(X) is sent to a knowledge base X' (a set of logical formulas) and
then evaluated in X' by a function ans that returns a set of answers containing
instantiations of the free variables (in other words, a set of formulas that are
logically implied by X'); as we focus on the generalization of queries, we assume
the ans function and an appropriate notion of logical truth given. A special case
of a knowledge base can be a relational database with database tables; as for
example in [21] we apply a closed world assumption that makes all information
not contained in the database false. As already established in [22] we apply a
notion of generalization based on a consequence operator = as follows.

Definition 1 (Deductive generalization wrt. knowledge base [22]). Let
X be a knowledge base, $(X) be a formula with a tuple X of free variables, and
Y(X,Y) be a formula with an additional tuple Y of free variables disjoint from
X. The formula ¥(X,Y) is a deductive generalization of ¢(X), if it holds in X
that the less general ¢ implies the more general ¢ where for the free variables X
(the ones that occur in ¢ and possibly in 1) the universal closure and for free
variables Y (the ones that occur in ¢ only) the existential closure is taken:

VXY (6(X) > $(X.Y))

The three operators Dropping Condition (DC), Anti-Instantiation (AI) and
Goal Replacement (GR) used in [2] satisfy the definition of deductive genera-

lization (Definition 1), provided the consequence operator () satisfies some
reasonable properties. For example, the semantic consequence = should be im-
plemented by syntactic entailment that satisfies generalized modus ponens (for
GR), congunction elimination (for DC) and existential introduction (for AI).

Ezxample 1. As a running example, we consider a hospital information system
that stores illnesses and treatments of patients (see Table 1). The example query
Q(z1,x2,x3) = Li(x1, Flu) NIll(x1, Cough) asks for all the patients z; that suffer
from both flu and cough. This query fails with the given database tables as there
is no patient with both flu and cough. However, the querying user might instead
be interested in the patient called Mary who is ill with both flu and bronchitis.
Query generalization (and in particular Anti-Instantiation) will enable a flexible
query answering system to find this informative answer.

4 The powerset-Al Operator

Conventional Anti-Instantiation chooses one occurrence of a term (that is, a
constant or variable) of a query and introduces a new variable y for. In this way
the conditions of the query are relaxed. In particular, Al covers these cases:

— turning constants into variables: P(a) is converted to P(y) (see [3])
— breaking joins: P(z) A S(x) is converted to P(z) A S(y) (introduced in [22])

For each constant a all occurrences must be anti-instantiated; the same applies
to variables x — however, with the exception that if = only occurs twice, one
occurrence of x need not be anti-instantiated due to equivalence. Operator 1
lists the steps of conventional Al

Operator 1 Anti-instantiation (AI)

Input: Query Q(X)= L1 A...A Ly of length n
Output: Generalized query Q" (X,Y) with Y containing one new variable y
1: From Q(X) choose a term ¢ such that ¢ is
— either a variable occurring in Q(X) at least twice
— or a constant
2: Choose one literal L; where t occurs
3: Let L;- be the literal with one occurrence of ¢ replaced with y
4: return Q*"(X,Y)=LiA...ALj 1 ALyALj1A...A Ly

Ezample 2. For Q(x1) = (1, Flu) A Ill(x1, Cough) an example generalization
with AT is Q4 (x1,%) = lll(x1, Flu) A Ill(x1,y). It results in an non-empty (and
hence informative) answer: [ll(Mary, Flu) A Ill(Mary, Bronchitis).

The conventional Al operator only replaces a single occurrence of a term. We
now introduce a novel Al operator that replaces several occurrences of a term at

once. In doing so, different equality conditions can be retained — a property that
is impossible with the conventional Al operator. We call the operator powerset-
Al because first the powerset of all equality conditions is computed and then
an element of this powerset (that is, a subset of equalities) is chosen for anti-
instantiation. We first provide an example showing limits of conventional Al.

Ezample 3. Suppose a user is interested in four (possibly different) patients
being treated with an inhalation. The user hence submits the query

Q' (z1,x2,x3) = Treat(xy, Inhalation) N\ Treat(xo, Inhalation)
A Treat(xs, Inhalation) A Treat(xy4, Inhalation).

Demanding that the z; are pairwise distinct (z; # z; for i, € {1,...,4}), the
database cannot find an answer to this query and hence the query fails. Conven-
tional Anti-Instantiation can replace only a single occurrence of Inhalation by a
new variable y;; for example

Q' (z1,22,23,11) = Treat(z1,y1) A Treat(xo, Inhalation)
A Treat(xzs, Inhalation) A\ Treat(xz4, Inhalation)

Again demanding that the z; are pairwise distinct, the query @ is still failing. A
second application of conventional Anti-Instantiation can replace another occur-
rence of Inhalation by a new variable yo; for example

Q21,22 %3, Y1, y2) = Treat(z1,y1) A Treat(za, yo)
A Treat(xzs, Inhalation) A\ Treat(xz4, Inhalation)

In this case an answer can be found; however, no equality between y; and ys is
expressed. For example, one answer for our table is Treat(Pete, Antitussive) N
Treat(Tom, Throat Lozenge)A Treat(Mary, Inhalation)A Treat(Lisa, Inhalation).

The powerset-Al operator we propose keeps the equality condition by repla-
cing several occurrences of a term with the same new variable.

Ezample 4. Continuing the above example, we can simultaneously replace the
first two occurrences of Inhalation with the same new variable y:

Q4(x1, x2,23,y) = Treat(z1,y) A Treat(xs,y)
ATreat(x3, Inhalation) A Treat(x4, Inhalation)

In this way the equality condition between the first and second occurrence is
retained. With this query we can retrieve the answer Treat(Pete, Antitussive) A
Treat(Tom, Antitussive) A Treat(Mary, Inhalation) A Treat(Lisa, Inhalation) wit-
hout retrieving any less relevant answers as in the previous example.

We now formalize the approach of powerset-Al. First we need the notion of
occurrences of a term t.

Definition 2 (Occurrences of a term). If a term t occurs k times in a query
then the set of occurrences in the (left-to-right) order of appearance in the query

is defined as Oy = {t.1,... t.k}.

For the set of occurrences O; the powerset p(Q;) contains all 29t subsets.

When anti-instantiating a constant, all non-empty subsets of p(O;) can be chosen
leading to semantically different generalized queries. In other words, we consider
the sets Py = {S € p(O;) | 1 < |S] < |O%|} for anti-instantiation with a new
variable y.

When anti-instantiating a variable with at least two occurrences, the situa-
tion is different. For such variables it suffices to consider only the sets of occur-
rences of size up to half of the total amount of occurrences. More formally, we
consider Py = {S € p(O;) |1 < |S] < L@j} for anti-instantiation with a new
variable y. The reason for this is that all anti-instantiations considering larger
sets of occurrences (that is, sets {S € p(Oy) | [@] < |S| < |O}) lead to
queries that are equivalent (more precisely, identical up to variable renaming)
to one considering one set from P;. Operator 2 lists the steps of powerset-Al.

Operator 2 powerset Anti-instantiation (powerset-AT)

Input: Query Q(X)= L1 A...A Ly of length n
Output: Generalized query Q9" (X,Y) with Y containing one new variable y
1: From Q(X) choose a term ¢ such that ¢ is
— either a variable occurring in Q(X) at least twice
— or a constant
Let O be the set of all occurrences of ¢ and p(O;) the powerset
If t is a constant, compute the set Pr = {S € p(Oy) | 1 < [S| < |O¢|}
If ¢ is a variable, compute the set P, = {S € p(O;) |1 < |S| < L%J}
Choose one set S € P; of occurrences
Let L;,,...,L;,, denote the literals of Q(X) containing the occurrences in &
Let L;l,. .., Lj ~denote the literals with each occurrence of ¢ in S replaced with
the new variable y
Let Li,,,1,...,Li, denote the literals of Q(X) apart from L;,,..., L
9: return Q" (X,Y)=Lj, A...ALj ALi, . A...A Ly,

®

tm

Ezxample 5. Similar to the above example, we can replace occurrences of a varia-
ble contained in the original query with the same new variable y. Suppose a user
is interested in a patient x with four specified diseases. The user hence submits
the query

Q" (z) = Il(x, Flu) A Nl(z, Bronchitis) A Ill(xz, Asthma) A 1ll(x, Cough)

Replacing three occurrences of = by y leads to a query equivalent to one obtained
by replacing one occurrence of = by y:

Y(x,y) = H(x, Flu) A Lll(y, Bronchitis) A Il (y, Asthma) A 1ll(y, Cough)

is identical to
5(z,y) = Li(y, Flu) A 1ll(z, Bronchitis) A 1ll(z, Asthma) A 1ll(z, Cough)

only with the roles of x and y reversed. Moreover, a query that replaces two
occurrences of x by y, e.g.

4(z,y) = Ll(z, Flu) A Ill(x, Bronchitis) A Ill(y, Asthma) A Ill(y, Cough)

leads to a non-failing query and the answer Ill(M ary, Flu) AIll(Mary, Bronchitis) A
Ili(Lisa, Asthma) A Ill(Lisa, Cough) can be returned to the user.

We now show that the powerset-Al operator complies with Definition 1 in-
dependent of any specific knowledge base X.

Proposition 1. powerset-Al is a deductive generalization operator.

Proof. As in Operator 2, let L;; A ... A L; , be the subquery containing occur-
rences of term ¢. Let L; A...A L; be the subquery with the occurrences of
term ¢ replaced by y. It holds that = VX3y (L, A...AL;, — Lj A...ANLj).
The same applies to the whole query: = VX 3y (Q(X) — Q9" (X,Y)).

Note that by choosing different sets S in a powerset-Al step a set of different
output queries Q9¢"(X,Y) can be produced. Moreover, multiple powerset-Al
steps can be executed in sequence by choosing a different ¢ for each step. The
question we want to analyze next is how to obtain a ranking on all these output
queries based on their structural differences.

5 The Star Feature and Similarities

Features are properties that can be attributed to objects; in our case objects are
queries. The similarity of two objects can then be determined by evaluating (for
example, counting) the feature commonalities and differences. Here we focus on
the so-called star feature. We borrow the definition of a star of a chosen literal
from [23]. The star contains all predicate symbols of other literals that share a
term with the chosen literal. In this way, the star can express connections bet-
ween different literals. In particular, two occurrences of the same variable (inside
different literals) correspond to a join condition of an equality join; and using
the same constants corresponds to a join followed by a selection with the con-
stant as the specific value required for the join attribute. Hence, losing one such
shared variable or constant in a generalization corresponds to “breaking joins”
(see [22]) which should be penalized with a lower similarity. Moreover, losing a
literal with many connections is worse than losing a literal with few connecti-
ons to other literals. The star is the appropriate feature for this: stars of other
literals are less affected by breaking a join with a literal with less connections.
More formally, we denote Terms(L;, @) the set of terms (that is, constants and
variables) of literal L; in a conjunctive query @Q; moreover, let Pred(Q) be the
set of predicate symbols occurring in Q. For a given literal we use the following
definition of its star (cf. [23]) resulting in a multiset of predicate symbols:

Definition 3 (Star of a literal [23]). For a literal L; in a given query Q we
define the star of L; to be a multiset of predicate symbols as follows

Star(L;, Q) = {P | thereis a literal L; € Q,1 # j,
such that Lj = P(tq,...t;) and
Terms(Lj, Q) N Terms(L;, Q) # 0} C Pred(Q)

We compare the star feature of literals in the original query @ and a query
Q9" (which is obtained by one or more applications of the powerset-Al ope-
rator). We see that for each literal L; of the original query @ the amount of
connections to other literals is always greater or equal to the amount of con-
nections of the corresponding literal L in the anti-instantiated query. Hence,
Star (L, Q9¢™) C Star(L;, Q).

Ezample 6. We compare the star of the first literal of

Q' (x1,z9,x3) = Treat(x1, Inhalation) A Treat(x2, Inhalation)
A Treat(xs, Inhalation) A Treat (x4, Inhalation)

to the stars of its generalizations in the queries

Q' (z1, 22, x3,y1) = Treat(x1,y1) A Treat(xzo, Inhalation)
A Treat(xs, Inhalation) A Treat(xq, Inhalation)
Q(x1, 2, 3,91, y2) = Treat(zy,y1) A Treat(x2,ys)
A Treat(xs, Inhalation) A Treat(x4, Inhalation)
Q%4(x1, 22, x3,y) = Treat(z1,y) A Treat(zo,y)
A Treat(xs, Inhalation) A Treat(x4, Inhalation)

We obtain Star(Treat(zy, Inhalation), Q') = { Treat, Treat, Treat} for the ori-
ginal query, Star(Treat(z;,y;), Q1) = 0, Star(Treat(zs,y:), QL) = 0, as well as
Star(Treat(z;,y), Q%) = { Treat}.

One way to judge the relation of two objects is determining a similarity
between them.

Definition 4 (Similarity Measure). For a set of objects O, a function sim :
O x O — R is called a similarity on O, if for all a,b € O it holds that

1. (Non-negativity) sim(a,b) > 0
2. (Mazimality) sim(a,a) > sim(a,b)

Based on feature sets of two objects a and b, similarity between these two
objects can be calculated by means of different similarity measures. That is, if
A is a feature set of a and B is the corresponding feature set of b, then AN B
is the set of their common features, A \ B is the set of features that are only
attributed to A, and B\ A is the set of features that are only attributed to B.
In Tversky’s seminal paper [24], a function f is applied to each set such that it
is mapped to a numerical value. Typically the cardinality function is used. We
will also follow this approach in this paper. That is, we obtain the cardinalities
of each set: [= |[AN B|, m = |A\ B, and n = |B\ A| and use them as input
to specific similarity measures. In this paper, we focus on the ratio model (in
particular, one of its special cases called Jaccard index).

Definition 5 (Tversky’s Ratio Model [24], Jaccard Index). A similarity
measure sim between two objects a and b can be represented by the ratio of
features common to both a and b and the joint features of a and b using a non-
negative scale f and two non-negative scalars o and B:

f(ANB)
f(ANB) +a- f(A\B)+ - f(B\ A4)

simr(a,b) =
The Jaccard index is a special form of the ratio model where o = 8 =1 and
f is the cardinality | - |:

it s0ee (0, B) = |AN B _|AnB| [
JT T JAN B+ A\ B| +|B\A] |AUB| I+m+n

The Jaccard index satisfies the property of monotonicity (see [24]): whenever
a formula has more features in common with one formula than with another
formula and they differ on less features, then the similarity between the first two
is higher than the similarity between the first and the last.

Definition 6 (Monotonicity [24]). For three objects a, b and ¢, if AN B D
ANC, A\BC A\C, and B\ A C C\ A, then sim(a,b) > sim(a,c). When the
inclusions are proper, the inequality is strict.

6 Similarity for powerset-Al

Based on the star feature, we want to calculate the similarity between the original
query @ and a query Q9" (which is obtained by one or more applications of the
powerset-Al operator). We calculate the Jaccard index for the feature sets by
taking the cardinalities of their commonalities and differences: if A is a feature set
of @ and B is the corresponding feature set of Q9¢", then AN B is the set of their
common features, A\ B is the set of features that are lost during generalization,
and B\ A is the set of features that have been added during generalization.
Note that the star feature is a multiset and we define the operators U, N and \
to be multiset operations. To obtain similarity sim(Q, Q9¢") between the original
query) and a query Q9°" we proceed as follows:

— For each literal L; in @ and the corresponding L} in Q9°" compute the star
features A = Star(L;, Q) and B = Star(L}, Q9°™).

— Compute the literal similarities simjqcc(Li, L}) for each such pair of literals.

— Compute the average by summing all literal similarities and dividing by the
total amount n of literals in the query.

Ezample 7. We compute the stars of all literals of

Q' (z1, 2, x3) = Treat(z1, Inhalation) A Treat(z2, Inhalation)
A Treat(xzs, Inhalation) N\ Treat(xz4, Inhalation)

and the stars of its generalizations in the query

Q' (z1,22,23,51) = Treat(z1,y1) A Treat(xo, Inhalation)
A Treat(xzs, Inhalation) A\ Treat(xz4, Inhalation)

to compute the literal similarities. We obtain for all literal pairs sim jqcc (L1, L)) =
0, simjgec(La, Ly) = %, $iMjace (L3, L) = %, $imjaee(La, LYy) = % By summing
all literal similarities and dividing by 4 (the total amount of literals), we obtain
the query similarity sim(Q’, @Q}) = 0.5 Similarly, for the query

Q3(w1, 2, 23,y1,92) = Treat(w1,y1) A Treat(z2,72)
ATreat(zxs, Inhalation) A Treat(zy, Inhalation)

we obtain simjeee(L1,L]) = 0, simjoec(L2, Ly) = 0, simjoec(Ls, L) = %, and
§iMjace(La, L)) = % By summing all literal similarities and dividing by 4 (the
total amount of literals), we obtain the query similarity sim(Q’, Q5) = . Lastly,
for

Q5(x1, w2, 23,y) = Treat(z1,y) A Treat(xa,y)
ATreat(xs, Inhalation) A Treat(x4, Inhalation)

and
(the

we obtain simjecc(L1, L)) = %, $imjacc(La, L) = %, $imjacc(Ls, Ly) =
§iMjace(La, L)) = % By summing all literal similarities and dividing by

total amount of literals), we obtain the query similarity sim(Q’,Q3) = 3.

1
3
4

In the example we see that the query Q% where two occurrences of Inhalation
are replaced by one new variable y is ranked better than the query Q) where the
same occurrences are replaced by two new variables y; and y,. We now formally
show this fact when replacing multiple occurrences.

Theorem 1. Let QQ be the original query containing term t. Let S € p(O;) be
the set of occurrences of t chosen for powerset-AI. Let Q9" (x,y) be a query
obtained by anti-instantiating occurrences S of the term t with one new va-
riable y. Let QAI(ac,yl,...,y|5|) be a query obtained by anti-instantiating the

same occurrences of term t with |S| new variables y1,...,y,s|. Then it holds that
Simjacc(Qv QAI(xa Yiyee ey y\$|)) S 5imjacc(Qa Qgen(m) y))
Proof. As in Operator 2, let L;,,..., L; be the literals containing occurrences

of term ¢ that are replaced (Case 1). Let L;,,_ ., ..., L;, be the literals unaffected
by anti-instantiation (Case 2). We analyze the stars of the literals in these cases:

— Case 1: Let Lj ,..., L] be the literals in Q9°"(z,y) with the occurrences of
term ¢ replaced by y. Let L} ,..., L] be the literals in QM (z,y1,...,ys))
with the occurrences of term ¢ replaced by yi,...,y;s- It holds that for
A = Star(Li;,Q) and B = Star(Lj,, Q") and C = Star(L},, Q*") (where
j=1,...,m) both A and B definitely contain predicate symbols of literals
in Lj,...,L;,: In @, a literal L;, has connections to all other such literals

based on ¢, while in Q9" (x,y) these connections are based on y. C' does
not necessarily contain them; however, if it contains such a predicate symbol
then only due to some other term different from ¢ and y; in this case also A
and B necessarily contain this predicate symbol, too.

— Case 2: The literals L;, . ,,...,L;, occur unmodified in both Q9" (z,y)
and QA (z,y1,. .. ,Y|s|), too. When comparing A = Star(L;,,Q) and B =
Star(Li;, Q9°") and C = Star(L;;, Q') (where j = m+1,...,n), A, B and
C' are identical if L;, does not contain ¢. If L;, contains ¢, then A contains
all predicate symbols of literals L;,,..., L, due to connections based on ¢;
in contrast, B and C are identical: they are both reduced by the predicate
symbols of literals L;,, ..., L; (as long as no other occurrence of ¢ remains
in one such literal).

In both cases it follows that ANB 2 ANC, A\BC A\C,and B\ ACC\ A.
Due to these facts we can apply the notion of monotonicity according to Def. 6
and the theorem follows.

Hence we conclude that the star feature is an appropriate measure to rank
different queries obtained by applying several generalization steps (in particular,
powerset-Al) to the same original query.

7 Discussion and Conclusion

We introduced powerset-Al as a novel generalization operator that replaces terms
in a given query to obtain relaxed queries that provide related information. In
order to restrict query answering to the most relevant queries (and hence avoid
overabundance of answers), we proposed a ranking of these relaxed queries based
on the star feature. Future work will investigate the application of powerset-Al
in combination with other generalization operators (like GR and DC) and their
joint behavior as in [2]. Ongoing work covers efficient computation of query
relaxation with powerset-Al which includes duplicate checking and computing
answers without generating all queries as in [18].

References

1. Bakhtyar, M., Dang, N., Inoue, K., Wiese, L.: Implementing inductive concept
learning for cooperative query answering. In: Data Analysis, Machine Learning
and Knowledge Discovery. Springer (2014) 127-134

2. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Flexible Query Answering Systems, Springer (2011) 1-12

3. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intel-
ligence 20(2) (1983) 111-161

4. Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: Internatio-
nal Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
IFAAMAS (2007) 1010-1025

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S4, S., Alcantara, J.: Abduction-based search for cooperative answers. In: Com-
putational Logic in Multi-Agent Systems (CLIMA XII). Volume 6814 of LNCS.,
Springer (2011) 208224

Urbanova, L., Vychodil, V., Wiese, L.: Applications of ordinal ranks to flexible
query answering. In: International Conference on Scalable Uncertainty Manage-
ment, Springer (2012) 1629

Belohlavek, R., Vychodil, V.: A logic of graded attributes. Archive for Mathema-
tical Logic 54(7-8) (2015) 785-802

Wiese, L.: Taxonomy-based fragmentation for anti-instantiation in distributed da-
tabases. In: International Workshop on Intelligent Techniques and Architectures
for Autonomic Clouds (ITAAC13), Proceedings of the 2013 IEEE/ACM 6th In-
ternational Conference on Utility and Cloud Computing, IEEE Computer Society
(2013) 363-368

Wiese, L.: Clustering-based fragmentation and data replication for flexible query
answering in distributed databases. Journal of Cloud Computing 3(1) (2014) 18
Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase: A
scalable and extensible cooperative information system. JIIS 6(2/3) (1996) 223-
259

Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation.
In: SOFSEM2011. Volume 6543 of LNCS., Springer (2011) 284-296

Pivert, O., Jaudoin, H., Brando, C., HadjAli, A.: A method based on query caching
and predicate substitution for the treatment of failing database queries. In: ICCBR
2010. Volume 6176 of LNCS., Springer (2010) 436-450

Motro, A.: Flex: A tolerant and cooperative user interface to databases. IEEE
Transactions on Knowledge & Data Engineering 2(2) (1990) 231-246

Godfrey, P., Minker, J., Novik, L.: An architecture for a cooperative database
system. In: ADB-94. Volume 819 of LNCS., Springer (1994) 3—-24

Godfrey, P.: Minimization in cooperative response to failing database queries. IJCS
6(2) (1997) 95-149

Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: J.
Data Semantics X. Volume 4900 of LNCS., Springer (2008) 31-61

Selmer, P., Poulovassilis, A., Wood, P.T.: Implementing flexible operators for
regular path queries. In: Proceedings of the Workshops of the EDBT/ICDT 2015
Joint Conference (EDBT/ICDT). Volume 1330., CEUR Workshop Proceedings
(2015) 149-156

Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting
consistent updates of rdfs graphs. In: International Conference on Knowledge
Engineering and Knowledge Management, Springer (2012) 185-199

Fazzinga, B., Flesca, S., Furfaro, F.: On the expressiveness of generalization rules
for xpath query relaxation. ACM International Conference Proceeding Series, ACM
(2010) 157-168

Liu, J., Yan, D.: Answering approximate queries over xml data. IEEE Transactions
on Fuzzy Systems 24(2) (2016) 288-305

Biskup, J., Wiese, L.: A sound and complete model-generation procedure for
consistent and confidentiality-preserving databases. Theoretical Computer Science
412(31) (2011) 40444072

Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative
answering. JIIS 1(3/4) (1992) 293-321

Ferilli, S., Basile, T.M.A., Biba, M., Mauro, N.D., Esposito, F.: A general similarity
framework for horn clause logic. Fundamenta Informaticae 90(1-2) (2009) 43-66

Tversky, A.: Features of similarity. Psychological review 84(4) (1977) 327-352

