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fragmentations. In this paper we extend the data replication problem (DRP) by
not only considering hard constraints to ensure a fixed replication factor but
also adding soft constraints that express desired data locality of fragments. We
furthermore analyze the case that there are more fragmentations (leading to
the situation that some replication conditions are optional); and we study the

influences of data updates (insertions and deletions) on the data distribution.
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1. INTRODUCTION

When storing large-scale data sets in distributed
database systems, these data sets are usually frag-
mented (that is, partitioned) into smaller subsets and
these subsets are distributed over several database
servers. Moreover, to achieve better availability and
failure tolerance, copies of the data sets (the so-called
replicas) are created and stored in a distributed fash-
ion so that different replicas of the same data set re-
side on distinct servers. Two major challenges with
data fragmentation and replication are to enable effi-
cient query answering while retrieving data from sev-
eral servers and to handle changes in the data set while
maintaining data in a consistent state. Usually only a
single optimal fragmentation of a data table is obtained
in related approaches. Our approach is aimed at hav-
ing several fragmentations of the same table and then
finding a replication of fragments that takes overlaps
of fragments into account and due to this reduces the
amount of occupied servers.

In addition to technical requirements of data
distribution, intelligent query answering mechanisms
are increasingly important to find relevant answers to
user queries. Flexible (or cooperative) query answering

systems help a user of a database system find answers
related to his original query in case the original query
cannot be answered exactly. Semantic techniques
rely on taxonomies (or ontologies) to replace some
values in a query by others that are closely related
according to the taxonomy. This can be achieved
by techniques of query relaxation – and in particular
query generalization: the user query is rewritten
into a weaker, more general version to also allow
related answers. However, the relaxation procedure
is extremely time-consuming and it is hence highly
impractical to relax queries at query processing time.
In order to offer query relaxation with only a modest
overhead it is worthwhile to preprocess the data into
semantically coherent clusters based on the notion
of similarity in a given taxonomy or ontology. Our
approach clusters the data according to several so-called
relaxation attributes in the base table. This approach
has the advantage that semantically similar values
for an individual attribute can be obtained by only
retrieving data from a single fragment without the need
to consult the ontology and substitute values at runtime
– this hence improves the performance of flexible
query answering and allows for an improved parallel
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processing of queries. However, allowing multiple
relaxations leads to several different fragmentations of
the same data table. Hence, query relaxation is a
good application to study the support for multiple
fragmentations.

In this paper we extend the work in [1, 2, 3] by making
the following additional contributions:

• we add novel soft data locality constraints based
on affinity between fragments and formalise them
in a data replication problem as an integer linear
program;

• we extend the original m-copy replication scheme
by allowing more fragmentations (r > m) than
the replication factor m and making all excess
replication constraints optional;

• we devise a heuristic process to handle insertions
and deletions of data, as well as merging and
splitting of fragments;

• we analyze the runtime performance of the
proposed procedure in a 10-node SAP HANA
cluster.

1.1. Related Work

We survey related work referring to fragmentation and
data distribution as well as to optimization and bin
packing. Lastly, we survey the topic of ontology-based
flexible query answering which forms the basic use case
of our fragmentation and replication procedure.

Fragmentation and Data Replication. There is a long
history of fragmentation approaches for the relational
data model and they are widely covered in standard
textbooks like [4]. Most approaches consider workload-
aware fragmentations that optimize distribution of data
for a given workload of queries. In addition, data
locality with respect to data dependencies and common
query patterns heavily affects a system’s performance.
A wide range of cost metrics needs to be taken
into account, e.g. the number of processes required,
CPU time, job latency, memory utilization, disk and
network I/O. Moreover, the problem of data replication
is a major issue in distributed database systems
that are prone to failures. Various algorithms have
been proposed for data partitioning and replication
in distributed database systems with the goal of
minimizing those costs. A good overview of general
research challenges can be found in [5, 6].

We survey some fragmentation and replication
approaches in more detail.

Several approaches apply vertical (column-wise)
fragmentation and consider attribute affinity in a given
workload of transactions as an optimization measure. A
recent comparative evaluation of vertical fragmentation
approaches is provided in [7]; as opposed to these
approaches, we aim at an application of horizontal (row-
wise) fragmentation for large data sets and we apply the
notion of affinity to horizontal fragments.

Some of these approaches consider replication. This
is particularly important for in-memory columnar stores
like [8].

In a recent article, [9] combine frequent pattern
mining and optimization steps for finding optimal
vertical fragments. They use the apriori algorithm
to identify those attributes that are often accessed
together in transactions. This extends the traditional
approach of an affinity matrix because several attributes
can be considered at the same time. In a next step
they extend this approach using a branch-and-bound
algorithm that optimizes the combination of attributes
in a common vertical fragment further.

In terms of horizontal fragmentation, usually a single
optimal fragmentation is identified; in contrast to
this our approach tolerates multiple fragmentations in
parallel and adapts the replication procedure to the
overlaps in the fragmentations. However, all of the
following horizontal fragmentation approaches can be
combined with our replication approach.

[10] address Multiple Query Optimization (MQO)
with a high level of operation sharing between queries.
The authors apply a divide and conquer approach to
find a horizontal partitioning in a data warehouse that
helps trading off speed and optimality of the solution.

In [11] the authors introduce a workload aware
horizontal partitioning strategy that analyses query
executions to identify and group sets of data items that
are accessed together frequently. It is based on a graph
structure with nodes representing (sets of) tuples and
edges indicating that the connected tuples are often
used together within a single transaction. They also
consider replication of fragments. As opposed to our
approach, the number of fragments is a fixed parameter
of the system. That approach was later implemented in
practice in the “Relational Cloud” database system [12].
More recently in a competitor system, [13] reduce the
amount of inter-partition dependencies and implement
an advanced transaction routing.

Horizontal fragmentation can also improve data
processing in in-memory stores as shown in [14]; their
system features replicated indexes and stored procedure
routing.

[15] use an internal data structure for evaluating
several partitioning configuration. It is integrated with
parallel query optimizers of so called “Massively Parallel
Processors” (MPPs). A similar approach is chosen by
[16] where data partitioning is based on hashes, ranges
or indices in combination with a query optimizer.

As one of the few approaches addressing a combined
horizontal and vertical fragmentation, [17] propose
a hybrid partitioning method that also considers
partitioned indexes as well as materialized views.

Several database systems provide automatic fragmen-
tation like IBMs DB2 Database Advisor [18], Vertica’s
DBDesigner [19] or Oracle’s partitioning by reference
[20]. Some fragmentation approaches have been veri-
fied using database systems like Teradata [21], H-Store
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[14] or Postgres [22].
A major challenge is still to be able to adapt a given

fragmentation to changing data sets. One approach
that addresses this issue is [23] for the particular
case of data sets growing continuously to large sizes.
Alternatively, the incremental repartitioning technique
of [24] can adapt an existing fragmentation to changes
in the data set while supporting workload-aware
replication with fine-grained quorums. In a further
approach, [22] rely on repartitioning transactions to
manage data set modifications. The approach of [25]
is based on access counters for data fragments. When
reaching a certain threshold the fragment is transferred
towards the node that accesses it the most (but not
necessarily directly to it).

Providing data replication in conjunction with data
fragmentation is necessary in practical distributed
systems. [26] propose two heuristics considering
redundancy and thus data replication. On the one hand
they presented a fast greedy algorithm that performs
well when the data is not very dynamic. On the other
hand they presented a genetic algorithm based heuristic
that delivered a better solution quality for the price
of longer runtimes. A greedy algorithm is also the
foundation of the work of [27]. Here, data distribution
is coordinated using a master node that frequently
receives access patterns. It then starts to allocate
fragments in decreasing order of their size. Multiple
replicas can be considered. However the algorithm
requires concrete knowledge of the network topology
(including link costs), a knowledge that distributed
database systems are usually not aware of. [28] presents
a simulation framework for testing several dynamic
replication strategies. They also use it to test six
strategies and evaluate them in terms of bandwidth
consumption and overhead, while limiting their studies
to read-only scenarios.

None of these approaches considers multiple fragmen-
tations in parallel; in contrast to these approaches, we
take advantage of common subfragments between differ-
ent fragmentations such that one fragmentation can be
recovered from others. Moreover, they disregard seman-
tical similarity of values inside a fragment as is needed
for our application of query relaxation.

Optimization and Bin Packing. Bin packing is one
of the classical NP-complete problems. As BPP is a
special case of the more general BPPC, these properties
carry over to BPPC as well. Some variants of classical
bin packing have been surveyed in [29]. A more recent
survey of treating BPPC as a variant of vertex coloring
can be found in [30]. BPPC has been shown to be APX-
hard (it is not approximable with a ratio less than 1.5;
see [31]). One of the primary sources of BPPC is [32]. A
recent branch-and-price approach for BPPC is analyzed
in [33].

However, as the number of fragments we consider in
our overlap-DRP is comparably low, these complexity

theoretic considerations usually do not affect the
practical implementation and any off-the-shelf ILP
solver will find an optimal solution.

There is also related work on specifying resource
management problems as optimization problems. An
adaptive solution for data replication using a genetic
algorithm is presented in [34]; they also consider
transfer cost of replicas between servers. Virtual
machine placement is a very recent topic in cloud
computing [35, 36]. However, these specifications do
not address the problem of overlapping resources as we
need for the query relaxation approach in this article.

Flexible Query Answering. A database system may
not always be able to answer queries in a satisfactory
manner. In particular, if a database answer is empty,
the corresponding query is said to be a “failing query”
(see for example [37]). The reasons for this can be
manifold; for instance, in a selection query, selection
conditions may be too strict to yield any result.
Some authors (for example [38]) differentiate between
“misconceptions” and “false presuppositions” as causes
for failure. Cooperative database systems search for
answers that – although not exactly matching the user’s
original query – are informative answers for the user:
they provide data that are “closely related” to the
user’s intention; or they fix misconceptions in a query
and return answers to the modified query. Current
search engines, web shops or expert systems use similar
cooperative techniques to provide users with data that
might be close to their interest.

The term “cooperative database system” was for
example used in [39] for a system called “CoBase” that
relies on several type abstraction hierarchies (TAH)
to relax queries and hence to return a wider range of
answers. In a similar manner, [40] employ abstraction
of domains and define optimality of answers with
respect to some user-defined relevancy constraints. The
approach using fuzzy sets [37] analyzes cooperative
query answering based on semantic proximity. With
what they call “incremental relaxation” they apply
generalization operators to single conjuncts in a
conjunctive query; hence generalized queries form a
lattice structure: queries with the same number of
applications generalization operators are in the same
level of the lattice. Ontology-based query relaxation
has also been studied for non-relational data (like
XML data in [41] or RDF data in [42]). With
these graph structured data it might even be harder
for a user to exactly express his query intent. In
[43], for example, they introduce the two operators
APPROX and RELAX in the query language SPARQL.
As opposed to our work, the apply a rule-based cost
function that counts the number of rule application –
that is they calculate a distance between the original
and the relaxed queries. In contrast, with our approach
we can apply different similarity measures (where
similarity is defined on terms) and flexibly adapt the
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cluster sizes by changing the similarity threshold α.
Our approach cannot only be applied to the flexible

query answering use case, but to all approaches
where multiple partitioning candidates occur. However
flexible query answering is an application where several
fragmentations can be used to accommodate several
user interests at the same time as explained below.

1.2. Organization of the article

Section 2 introduces the main notions used in this
article and gives an illustrative example; related work is
presented in Section 1.1. Section 3 describes replication
for a single fragmentation. Section 4 defines the
problem of data replication with overlapping fragments
if there are less than m fragmentations (where m is the
replication factor). Section 5 treats the more involved
case that there are more than m fragmentations.
Section 6 adds novel soft constraints to enforce data
locality for more performance of query answering.
Section 7 analyses the case that fragments are merged
or split. Section 8 describes replication and recovery in
a practical system. Section 9 concludes this article with
suggestions for future work.

2. BACKGROUND AND EXAMPLE

We provide background on fragmentation and data
distribution as well as on query generalization as a form
of flexible query answering.

2.1. Fragmentation

We will in the following sections present a data repli-
cation scheme for horizontal fragmentation where frag-
ments are sets of rows. As a special application for flex-
ible query answering, we will later on define a semantic
horizontal fragmentation and extend the conventional
notion of horizontal fragmentation correctness. Con-
ventional horizontal fragmentation correctness consists
of three subproperties: Completeness requires that any
row of the original data table is contained in one frag-
ments. Reconstructability requires that the union of the
fragments (that is, rows) yields the original database in-
stance. Non-redundancy means that no row is contained
in two fragments at the same time.

Definition 2.1 (Horizontal fragmentation correct-
ness). Let I = {t1, . . . , tJ} be a data table (a set of tu-
ples), and F = {f1, . . . , fn} be a fragmentation of I
such that fi ⊂ I. F is a correct horizontal fragmenta-
tion, iff:

1. Completeness: for every tuple tj there is a
fragment fi such that tj ∈ fi.

2. Reconstructability: I = f1 ∪ . . . ∪ fn
3. Non-redundancy: for any i, i′ (i 6= i′) it holds
that fi ∩ fi′ = ∅

As a running example, we consider a hospital
information system that stores illnesses and treatments

Ill PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
2784 brokenLeg
8765 Asthma
1055 brokenArm

TABLE 1. Example ill table

Info PatientID Name Address

8457 Pete Main Str 5, Newtown
2784 Mary New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
1055 Anne High Str 2, Oldtown

TABLE 2. Example info table

of patients as well as their personal information (like
address and age) in the database tables shown in Table
1 and 2.

Derived fragmentation can be used to fragment
secondary tables according to a primary table and
then store the matching (joinable with a primary
fragment) tuples of secondary fragments together with
the primary fragment to improve data locality during
query processing. When having several tables that can
be joined in a query, data locality is important for
performance: Data that are often accessed together
should be stored on the same server in order to avoid
excessive network traffic and delays. If one table is
chosen as the primary clustering table (like Ill in
our example), fragmentations of related tables (like
Info in our example) can be derived from the primary
fragmentation. They are obtained by computing a
semijoin between the primary table and the secondary
table. Each derived fragment should then be assigned
to the same database server on which the primary
fragment with the matching join attribute values
resides. Note that while the primary fragmentation is
usually non-redundant (each tuple of the original table
is contained in exactly one fragment), that might not
be the case for derived fragmentations: one tuple of a
joinable tables might be contained in several derived
fragments. In the example, the entire fragmentation
on the Diagnosis column assigned to two servers then
looks as in Figures 1 and 2.

2.2. Data distribution as a Bin Packing
Problem

In a distributed database system data records have to be
assigned to different servers. The data distribution
problem – however not considering replication yet – is
basically a Bin Packing Problem (BPP) in the following
sense:

• K servers correspond to K bins
• bins have a maximum capacity W
• n data records correspond to n objects
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Server 1:

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Info

resp PatID Name Address

8457 Pete Main Str 5, Newtown
2784 Mary New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown

FIGURE 1. Derived fragmentation for respiratory diseases

Server 2:

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

Info

frac PatientID Name Address

2784 Mary New Str 3, Newtown
1055 Anne High Str 2, Oldtown

FIGURE 2. Derived fragmentation for fractures diseases

• each object has a weight (a capacity consumption)
wi ≤W

• objects have to be placed into a minimum number
of bins without exceeding the maximum capacity
W

This BPP can be written as an integer linear program
(ILP) as follows.

minimize

K∑
k=1

yk (1)

s.t.

K∑
k=1

xik = 1 i = 1, . . . , n (2)

n∑
i=1

wixik ≤W · yk k = 1, . . . ,K (3)

yk ∈ {0, 1} k = 1, . . . ,K (4)

xik ∈ {0, 1} i = 1, . . . , n, k = 1, . . . ,K (5)

We use xik as a binary variable that denotes whether
fragment/object fi is placed in server/bin k: if the
variable is 1 this means that fragment fi is assigned to
server k. The variable yk denotes whether server/bin
k is used (that is, is non-empty); in other words, if
yk is 1, some fragment is assigned to it, if it is 0,
then no fragment is assigned to server k. Moreover,
each server/bin has a maximum capacity W and each
fragment/object fi has a weight wi that denotes how

much capacity the item consumes. As a simple example,
W can express how many rows (tuples) a server can
store and wi is the row count of fragment fi.

This representation can be interpreted as follows:
The objective function (1) enforces a minimization of
the number of used servers. Constraint (2) requires
that each fragment is placed on exactly one server.
Furthermore, constraint (3) requires that the capacity
or each server is not exceeded. The last two constraints
(4) and (5) ensure that the variables are binary.

A simple way to handle derived fragmentations
(and hence multiple tables that can be connected by
join operations) is to add the weights of the derived
fragments (that should be stored on the same server as
the primary fragment) to the weight wi of each primary
fragment. In this way when placing the primary
fragment on one server, there will also be enough space
to accommodate the derived fragments.

An extension of the basic BPP, the Bin Packing
with Conflicts (BPPC) problem, considers a conflict
graph G = (V,E) where the node set corresponds to
the set of objects. A binary edge e = (i, j) exists
whenever the two objects i and j must not be placed
into the same bin. In the ILP representation, a further
constraint (Equation 9) is added to avoid conflicts in
the placements, because yk can at most be 1, so that at
least one of xik and xjk must be 0.

minimize

K∑
k=1

yk (6)

s.t.

K∑
k=1

xik = 1 i = 1, . . . , n (7)

n∑
i=1

wixik ≤W · yk k = 1, . . . ,K (8)

xik + xjk ≤ yk k = 1, . . . ,K, (9)

∀(i, j) ∈ E
yk ∈ {0, 1} k = 1, . . . ,K (10)

xik ∈ {0, 1} k = 1, . . . ,K, (11)

i = 1, . . . , n

Equation (9) effectively prohibits a placement of
objects i and j on the same server k because yk is at
most 1 which requires at least one of xik or xjk to be 0.

Several results were obtained regarding hardness and
approximation of bin packing with conflicts. BPPC
can basically be regarded as a combination of a vertex
coloring and the basic BPP [30, 33].

For our application, we will use the BPPC
representation to enforce simple m-copy replication of a
fragmented table (for a single fragmentation) as well as
an advanced replication scheme if a table is fragmented
in r different ways (in multiple fragmentations) and a
replication factor of m has to be ensured.
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2.3. Query generalization

Query generalization has long been studied in flexible
query answering and machine learning (see the seminal
article [44]). Query generalization at runtime has
been implemented in the CoopQA system [45, 46] by
applying three generalization operators to a conjunctive
query; while two of them (Dropping Condition and
Goal Replacement) are purely syntactic operators, the
third called Anti-Instantiation (AI) introduces a new
variable and might be semantically restricted to avoid
overgeneralization; this is what we do in this paper by
obtaining fragmentations based on a clustering of the
active domain of a relaxation attribute. More precisely,
AI replaces a constant (or a variable occurring at least
twice) in a query with a new variable y. In this paper we
focus on replacements of constants because this allows
for finding answers that are semantically close to the
replaced constant.

As the query language we focus on conjunctive
queries expressed as logical formulas. We assume a
logical language L consisting of a finite set of predicate
symbols (denoting the table names; for example, Ill,
Treat or P), a possibly infinite set dom of constant
symbols (denoting the values in table cells; for example,
Mary or a), and an infinite set of variables (x or y). A
term is either a constant or a variable. The capital letter
X denotes a vector of variables; if the order of variables
in X does not matter, we identify X with the set of
its variables and apply set operators – for example we
write y ∈ X. We use the standard logical connectors
conjunction ∧, disjunction ∨, negation ¬ and material
implication → and universal ∀ as well as existential ∃
quantifiers. An atom is a formula consisting of a single
predicate symbol only; a literal is an atom (a “positive
literal”) or a negation of an atom (a “negative literal”);
a clause is a disjunction of atoms; a ground formula is
one that contains no variables.

A query formula Q is a conjunction (denoted ∧) of
literals (consisting of a predicate and terms) with a set
of variables X occurring freely; hence we write a query
as Q(X) = Li1 ∧ . . . ∧ Lin .

As in [47] we apply a notion of generalization based
on a model operator |=.

Definition 2.2 (Deductive generalization [47]). Let
Σ be a knowledge base, φ(X) be a formula with a tuple
X of free variables, and ψ(X,Y ) be a formula with an
additional tuple Y of free variables disjoint from X. The
formula ψ(X,Y ) is a deductive generalization of φ(X),
if it holds in Σ that the less general φ implies the more
general ψ where for the free variables X (the ones that
occur in φ and possibly in ψ) the universal closure and
for free variables Y (the ones that occur in ψ only) the
existential closure is taken:

Σ |= ∀X∃Y (φ(X)→ ψ(X,Y ))

The Anti-Instantiation (AI) operator chooses a
constant a in a queryQ(X), replaces one occurrence of a

by a new variable y and returns the query QAI(X, y) as
the relaxed query. The relaxed query QAI is a deductive
generalization of Q (see [45]).

The query Q(x1, x2, x3) = Ill(x1,Flu) ∧
Ill(x1,Cough) ∧ Info(x1, x2, x3) asks for all the
patient IDs x1 as well as names x2 and addresses x3
of patients that suffer from both flu and cough. This
query fails with the given database tables as there is no
patient with both flu and cough. However, the query-
ing user might instead be interested in the patient
called Mary who is ill with both flu and asthma. We
can find this informative answer by relaxing the query
condition Cough and instead allowing other related
values (like Asthma) in the answers. An example gen-
eralization with AI is QAI(x1, x2, x3, y) = Ill(x1,Flu)∧
Ill(x1, y) ∧ Info(x1, x2, x3) by introducing the new
variable y. It results in an non-empty (and hence in-
formative) answer: Ill(2748,Flu) ∧ Ill(2748,Asthma) ∧
Info(2748,Mary ,‘New Str 3 ,Newtown’). Another an-
swer obtained is the fact that Mary suffers from a
broken leg as: Ill(2748,Flu) ∧ Ill(2748, brokenLeg) ∧
Info(2748,Mary ,‘New Str 3 ,Newtown’) which is how-
ever an overgeneralization: while the first example
answer (with the value asthma) is a valuable informa-
tive answer, the second one (containing broken leg)
might be too far away from the user’s query interest.
Here we need semantic guidance to identify the set of
relevant answers that are close enough to the original
query which we will be achieved by the clustering-based
fragmentation we propose.

Moreover, query generalization at runtime (as for
example implemented in [46]) is highly inefficient. That
is why our clustering-based fragmentation preprocesses
data into fragments of closely related values (with
respect to a relaxation attribute). From an efficiency
point of view, this clustering-based fragmentation has
two main advantages:

• it enables efficient query relaxation at runtime by
returning all values in a matching fragment as
relevant answers

• it reduces the amount of servers contacted during
query answering in a distributed environment
because only one server (containing the matching
fragment) has to process the query while other
servers can process other queries.

2.4. Relaxation Attributes

In previous work [3], a clustering procedure was applied
to partition the original tables into fragments based
on a relaxation attribute chosen for anti-instantiation.
For this we used a notion of similarity between to
constants; this similarity can be deduced with the help
of an ontology or taxonomy in which the values are put
into relation. Finding the fragments is hence achieved
by grouping (that is, clustering) the values of the
respective table column into clusters of closely related
values and then splitting the table into fragments
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according to the clusters found.
For example, clusters on the Diagnosis column can

be made by differentiating between fractures on the one
hand and respiratory diseases on the other hand. These
clusters then lead to two fragments of the table Ill that
could be assigned to two different servers (see Figures
1 and 2).

More formally, we apply a clustering heuristics on
those attributes on which anti-instantiation should
be applied. We call such an attribute a relaxation
attribute. The domain of an attribute is the set of
values that the attribute may range over; whereas the
active domain is the set of values actually occurring
in a given table. For a given table instance I (a
set of tuples ranging over the same attributes) and
a relaxation attribute A, the active domain can be
obtained by a projection π to A on I: πA(I). In
our example the relaxation attribute is the attribute
Diagnosis in table Ill. From a semantical point of
view, the domain of Diagnosis is the set of strings
that denote a disease; the active domain is the set
of terms {Cough,Flu,Asthma, brokenArm, brokenLeg}.
Different relaxation attributes can be specified on a
table resulting in clusterings of their active domains
that lead to different fragmentations of the same table.

We assume a very general definition of a clustering
as being a set of subsets (the clusters) of a larger set
of values. In general, an arbitrary clustering procedure
can be applied as surveyed in [48]. The clustering of the
active domain of A induces a horizontal fragmentation
of I into fragments fi ⊆ I such that the active domain
of each fragment fi coincides with one cluster; more
formally, ci = πA(fi). For the fragmentation to
be complete, we also require the clustering C to be
complete; that is, if πA(I) is the active domain to be
clustered, then the complete clustering C = c1, . . . , cn
covers the whole active domain and no value is lost: c1∪
. . . ∪ cn = πA(I). These requirements are summarized
in the definition of a clustering-based fragmentation as
follows.

Definition 2.3 (Clustering-based fragmentation).
Let A be a relaxation attribute; let I be a table instance
(a set of tuples); let C = {c1, . . . cn} be a complete
clustering of the active domain πA(I) of A in I; let
head i ∈ ci; then, a set of fragments {f1, . . . , fn}
(defined over the same attributes as I) is a clustering-
based fragmentation if

• Horizontal fragmentation: for every fragment fi,
fi ⊆ I
• Clustering: for every fi there is a cluster ci ∈ C
such that ci = πA(fi) (that is, the active domain of
fi on A is equal to a cluster in C)
• Completeness: For every tuple t in I there is an
fi in which t is contained
• Reconstructability: I = f1 ∪ . . . ∪ fn
• Non-redundancy: for any i 6= j, fi ∩ fj = ∅ (or in
other words ci ∩ cj = ∅)

In our implementation, we rely on the specification
of a similarity value sim(a, b) between any two values a
and b in the active domain of a relaxation attribute.
Based on this similarity specification, we derive a
clustering of the active domain of each relaxation
attribute A in a relation instance I. These similarity
values can for example be calculated by using an
ontology or taxonomy; we use a similarity measure (the
path measure) to derive similarity values in the UMLS
taxonomy in our experimental evaluation below.

We adapted the clustering procedure of [49] that
does not require us to fix the number of fragments
beforehand. Instead, for efficiency reasons (that is,
to reduce the number of similarity calculations) we
rely on a representative element called head (sometimes
also called prototype or centroid) for each cluster. In
order for this simplification to work properly, we assume
that the similarity between any value inside one cluster
and the cluster head should not be larger than a
chosen threshold value α. More formally, we require
the following additional threshold condition for our
clustering: for the head i elements in the clusters ci and
a threshold value α that restricts the minimal similarity
allowed inside a cluster, it holds that head i ∈ ci and for
any other value a ∈ ci (with a 6= head i) it holds that
sim(a, head i) ≥ α.

Now, when executing a selection query with a selec-
tion condition A = a on a relaxation attribute A, we
identify the cluster the head of which is closest to the
term a (that is, we identify ci such that sim(a, head i)
is maximal) and return the matching fragment fi as
the set of related answers. In our example, Server 1
can then be used to answer queries related to respi-
ratory diseases while Server 2 can process queries re-
lated to fractures. The example query Q(x1, x2, x3) =
Ill(x1,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3) will hence
anti-instantiated to QAI(x1, x2, x3, y) = Ill(x1,Flu) ∧
Ill(x1, y) ∧ Info(x1, x2, x3). Next, it will be rewrit-
ten as QResp(x1, x2, x3, y) = Respiratory(x1,Flu) ∧
Respiratory(x1, y) ∧ Info(x1, x2, x3) and redirected to
Server 1 where only the fragment Respiratory is used
to answer the query. In this way only the informative
answer containing asthma is returned – while the one
containing broken leg will not be generated.

3. REPLICATION FOR A SINGLE FRAG-
MENTATION

First we consider only a single fragmentation (for
example, as in [3] obtained for a single relaxation
attribute). When doing m-way replication, m copies
of the fragments obtained for the single fragmentation
are replicated. We consider the following problem:

Definition 3.1 (Data replication problem for m
copies (m-copy-DRP)). Given a fragmentation F =
{f1, . . . , fn} and replication factor m, we obtain m
copies F 1, . . . , Fm; for each fragment fi (for i =
1, . . . , n), there must be m copies f li (for 1 ≤ l ≤ m)
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such that f1i ∈ F 1, . . . , fmi ∈ Fm that are all assigned
to different servers.

This corresponds to solving a BPPC instance where
the conflict graph states that copies of the same
fragment cannot be placed on the same server. More
formally, for every i and every pair of fragment copies
f li and f l

′

i there is an edge in the conflict graph.

Definition 3.2 (Conflict graph for m-copy-DRP).
The conflict graph GmDRP = (V,E) is defined by
V = F 1∪ . . .∪Fm (one vertex for each fragment inside
the m fragmentation copies) and E = {(f li , f l

′

i ) | i =
1, . . . n, l = 1, . . .m, l′ < l} (an undirected edge between
two copies of the same fragment).

The following ILP will find a fragment allocation
to servers such that the number of used servers is
minimized while respecting the m-copy replication.

minimize

K∑
k=1

yk (12)

s.t.

K∑
k=1

xlik = 1 i = 1, . . . , n, (13)

l = 1, . . . ,m
n∑
i=1

m∑
l=1

wix
l
ik ≤W · yk k = 1, . . . ,K (14)

xlik + xl
′

ik ≤ yk k = 1, . . . ,K, (15)

i = 1, . . . , n,

l = 1, . . . ,m,

0 < l′ < l

yk ∈ {0, 1} k = 1, . . . ,K (16)

xlik ∈ {0, 1} k = 1, . . . ,K, (17)

i = 1, . . . , n,

l = 1, . . . ,m

The variable xlik represents the placement of the
lth copy of fragment fi on server k. Equation (13)
demands that each of the m copies of each fragment
is assigned to one server. Equation (14) assigns to
each copy of fragment fi the capacity consumption
wi and ensures that the maximum capacity of each
server is not exceeded. Similar to the basic BPPC
described previously, Equation (15) ensures that copies
of a fragment are placed on different servers because yk
can at most be 1, so that at least one of xlik and xl

′

ik

must be 0.

4. OVERLAPS AND MULTIPLE FRAG-
MENTATIONS

We generalize the replication procedure to multiple
fragmentations. This has the following advantages:

• The intelligent replication procedure reduces

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

TABLE 3. Fragmentation on Diagnosis attribute

IDlow PatientID Diagnosis

2784 Flu
2784 brokenLeg
2784 Asthma
1055 brokenArm

IDhigh PatientID Diagnosis

8765 Asthma
8457 Cough

TABLE 4. Fragmentation on PatientID attribute

storage consumption and hence the amount of
servers that are needed for replication.

• The system can handle several fragmentations
that each cater different user information needs.
For example, for the application of flexible query
answering, the system can answer queries for
several relaxation attributes.

More formally, we obtain r fragmentations
(F 1, . . . , F r) of the same table (for example, if r
relaxation attributes are chosen and clustered); each
fragmentation F l (1 ≤ l ≤ r) contains fragments
f l1, . . . , f

l
nl

where index nl depends on the number of
clusters found.

For example, clusters on the Diagnosis column can
be made by differentiating between fractures on the
one hand and respiratory diseases on the other hand
as before (see Table 3). And additionally, a different
fragmentation on the patient ID can be obtained by
dividing into rows with ID smaller than 5000 and those
with ID larger than 5000 (see Table 4).

We assume that each of the fragmentations is
complete: every tuple is assigned to one fragment: for
any tuple j, if r relaxation attributes are chosen and
clustered, then in any fragmentation F l (for 1 ≤ l ≤ r)
there is a fragment f ls such that tuple j ∈ f ls.

We also assume that each clustering and each
fragmentation are non-redundant : every value is
assigned to exactly one cluster and every tuple belongs
to exactly one fragment (for one clustering); in other
words, the fragments inside one fragmentation do
not overlap. However, fragments from two different
fragmentations (for two different clusterings) may
overlap. For example, both the Respiratory as well as
the IDhigh fragments contain the tuple 〈8457, Cough〉.
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4.1. Data replication for overlapping fragments

As opposed to m-copy replication, we now analyze
an intelligent data replication scheme with multiple
fragmentations while at the same time minimizing the
amount of data copies – and hence reducing overall
storage consumption.

While in the standard BPP and BPPC representa-
tions usually disjoint fragments and exactly m copies
are considered, we extend the basic BPPC as follows:
With our intelligent replication procedure, less data
copies (only m copies of each tuple) have to be repli-
cated hence reducing the amount of storage needed for
replication as opposed to conventional replication ap-
proaches that replicate m copies for each of the r frag-
mentations F l (which would result in r · m copies of
each tuple).

We argue that m copies of a tuple suffice with an
advanced recovery procedure: that is, for every tuple
j we require that it is stored at m different servers for
backup purposes but these copies of j may be contained
in different fragments: one fragmentation F l can be
recovered from fragments in any other fragmentation
F l

′
(where l 6= l′). First we assume that there are

exactly m relaxation attributes (that is, r = m).
In case there are less than m relaxation attributes
(that is, r < m), some of the existing fragmentations
are duplicated to reach m fragmentations. The more
involved case that there are more than m relaxation
attributes (that is, r > m), is treated below in an
upcoming section.

For multiple relaxation attributes, we hence consider
the following data replication problem:

Definition 4.1 (Data replication problem with over-
lapping fragments (overlap-DRP)). Given m fragmen-
tations F l = {f l1, . . . , f lnl

} and replication factor m,

for every tuple j there must be fragments f lil (where
1 ≤ l ≤ m and 1 ≤ il ≤ nl) such that j ∈ f1i1 ∩ . . .∩ f

m
im

and these fragments are all assigned to different servers.

We illustrate this with our example. Assume that
5 rows is the maximum capacity W of each server
and assume a replication factor 2. In a conventional
replication approach, overlaps in the fragments would
be ignored. Hence, the conventional approach would
replicate all fragments (Respiratory, Fracture, IDhigh,
IDlow) to two servers each:

• First, assign the Respiratory fragment (with 4
rows) to one server S1 and a copy of it to another
server S2.

• Now the Fracture fragment (with 2 rows) will not
fit on any of the two servers; its two replicas will
be stored on two new servers S3 and S4.

• For storing the IDlow fragment (with 4 rows),
the conventional approach would need two more
servers S5 and S6.

• The IDhigh fragment (with 2 rows) could then be
mapped to servers S3 and S4.

Conventional replication would hence require at least
six servers to achieve replication factor 2.

In contrast, our intelligent replication approach takes
advantage of the overlapping fragments so that three
servers suffice to fulfill the replication factor 2; that is,
the amount of servers can be substantially reduced if a
more intelligent replication and recovery scheme is used
that respects the fact that several fragments overlap and
that can handle fragments of differing size to optimally
fill remaining server capacities. This allows for better
self-configuration capacities of the distributed database
system. First we observe how one fragment can be
recovered from the other fragments:

• Fragment Respiratory can be recovered from frag-
ments IDlow and IDhigh (because Respiratory=
(IDlow ∩ Respiratory) ∪ (IDhigh ∩ Respiratory)).

• Fragment Fracture can be recovered from fragment
IDlow (because Fracture= (IDlow ∩ Fracture)).

• Fragment IDlow can be recovered from fragments
Respiratory and Fracture (because IDlow= (IDlow
∩ Respiratory) ∪ (IDlow ∩ Fracture)).

• Fragment IDhigh can be recovered from fragment
Respiratory (because IDhigh= (IDhigh ∩ Respira-
tory)).

Hence, we can store fragment Respiratory on server S1,
fragment IDlow on server S2, and fragments Fracture
and IDhigh on server S3 and still have replication factor
2 for individual tuples.

We now show that our replication problem (with
its extensions to overlapping fragments and counting
replication based on tuples) can be expressed as an
advanced BPPC problem. Let J be the amount
of tuples in the input table, m be the number of
fragmentations, K the total number of available servers
and n be the overall number of fragments obtained in
all fragmentations.

minimize

K∑
k=1

yk (18)

s.t.

K∑
k=1

xik = 1 i = 1, . . . , n (19)

n∑
i=1

wixik ≤W · yk k = 1, . . . ,K (20)

zjk ≥ xik for all j : j ∈ fi (21)

zjk ≤
∑

(i:j∈fi)

xik k = 1, . . . ,K, j = 1, . . . , J (22)

K∑
k=1

zjk ≥ m j = 1, . . . , J (23)

yk ∈ {0, 1} k = 1, . . . ,K (24)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (25)

zjk ∈ {0, 1} k = 1, . . . ,K, j = 1, . . . , J (26)

In this ILP representation we keep the variables yk
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for the bins and xik for fragments – to simplify notation
we assume that i = 1, . . . , n where n = |F 1| + . . . +
|Fm| = n1 + . . . + nm: all fragments are numbered
consecutively from 1 to n even when they come from
different fragmentations. That is, F 1 = {f1, . . . , fn1

},
F 2 = {fn1+1, . . . , fn1+n2}, and so on. We introduce K
additional variables zjk for each tuple j: zjk = 1 if tuple
j is placed on server k.

We maintain a mapping between fragments and
tuples such that if fragment fi is assigned to bin k, and
tuple j is contained in fi, then tuple j is also assigned
to k (see Equation (21)); the other way round, if there
is no fragment fi containing j and being assigned to bin
k, then tuple j neither is assigned to k (see Equation
(22)); and we modify the conflict constraint to support
the replication factor: we require that for each tuple
j the amount of bins/servers used is at least m (see
Equation (23)) to ensure the replication factor.

4.2. Reducing the amount of variables

The ILP representation in the previous section is highly
inefficient and does not scale to large amounts of tuples:
due to the excessive use of z-variables, for large J
finding a solution will take prohibitively long. Indeed,
in the given representation, we have K y-variables,
n · K x-variables, and J · K z-variables where usually
J � n. That is why we want to show now that it is
possible to focus on the x-variables to achieve another
ILP representation for overlap-DRP: for any tuple j
such that j is contained in two fragments fi and fi′ (we
assume that i < i′ to avoid isomorphic statements in the
proof), it is sufficient to ensure that the two fragments
are stored on two different servers. We analyze how
many conflict conditions are necessary to ensure the
replication factor per tuple.

Theorem 4.1. If there hold (m ·(m−1))/2 equations
of the form xik +xi′k = 1 for any two fragments fi and
fi′ such that fi ∩ fi′ 6= ∅ where i < i′, i = 1, . . . , n− 1,
i′ = 2, . . . , n and k = 1, . . . ,K, then it holds for any
tuple j that

∑K
k=1 zjk ≥ m.

Proof. Due to Equation (19), for every fi there must
be exactly one bin k such that xik = 1; If we make the
(m · (m − 1))/2 pairs of overlapping fragments fi and
fi′ mutually exclusive in the ILP representation, m bins
are needed to accommodate all these fragments. Due
to Equation (21), we assure that when xik = 1 then
also zjk = 1 for the given tuple j and any fi such that

j ∈ fi. Hence
∑K
k=1 zjk ≥ m (Equation 23) holds.

Instead of considering all individual tuples j, we can
now move on to considering only overlapping fragments
(with non-empty intersections) and requiring the (m ·
(m−1))/2 equations to hold for each pair of overlapping
fragments.

We transform the previous ILP representation into
the one that enforces a conflict condition for any

two overlapping fragments. This coincides with the
conventional BPPC representation, where the conflict
graph is built over the set of fragments (as the vertex
set) by drawing an edge between any two fragments that
overlap.

Definition 4.2 (Conflict graph for overlap-DRP).
The conflict graph GDRP = (V,E) is defined by V =
F1∪ . . .∪Fm (one vertex for each fragment inside the m
fragmentations) and E = {(fi, fi′) | fi, fi′ ∈ V and fi∩
fi′ 6= ∅} (an undirected edge between fragments that
overlap).

Continuing our example, we have a conflict graph
over the fragments Respiratory, Fracture, IDlow and
IDhigh with an edge between Respiratory and IDlow,
and an edge between Respiratory and IDhigh, and
an edge between Fracture and IDhigh. The ILP
representation for overlap-DRP looks now as follows:

minimize

K∑
k=1

yk (27)

s.t.

K∑
k=1

xik = 1 i = 1, . . . , n (28)

n∑
i=1

wixik ≤W · yk k = 1, . . . ,K (29)

xik + xi′k ≤ yk k = 1, . . . ,K, fi ∩ fi′ 6= ∅ (30)

yk ∈ {0, 1} k = 1, . . . ,K (31)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (32)

The objective function (27) still requires that the
number of used servers is minimized and we enforce the
constraint (28) to assign each fragment fi to one server
k such that the capacity is not exceeded (29). The
conflict constraints (30) represent edges of the conflict
graph: whenever two fragments overlap, they should
not be placed on the same server k such that xik = 0 or
xi′k = 0; in this way, the sum of xik and xi′k does not
exceed yk (which is at most 1).

5. OPTIONAL CONFLICTS

We now look at a special case of the replication
procedure where the replication factor m is smaller
than the number r of fragmentations of a table. In
this case (m < r), in order to ensure m-way replication
for each tuple, only m out of the r fragments must be
placed on different servers whereas the other r−m can
be placed on the already occupied servers (even when
overlapping with some fragments on these servers) –
hence reducing the overall amount of needed servers.
It is required that for each tuple the replication factor
is obeyed. Hence, with r fragmentations, there are r
fragments that contain the tuple (still assuming that all
fragments in single fragmentation are disjoint). Hence
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f1 tupleID PatientID Diagnosis

1 2784 brokenLeg
2 2784 Flu
3 8765 Asthma
4 8457 Cough

TABLE 5. Fragmentation on tupleID attribute

f ′
1 tupleID PatientID Diagnosis

1 2784 brokenLeg
2 2784 Flu

f ′
2 tupleID PatientID Diagnosis

3 8765 Asthma
4 8457 Cough

TABLE 6. Fragmentation on PatientID attribute

at leastm of these fragments must be placed on different
servers.

Let us illustrate this case with a small example.
Assume we have fragmentation F containing fragment
f1, fragmentation F ′ with fragments f ′1 and f ′2, as well
as fragmentation F ′′ with fragments f ′′1 and f ′′2 .

Assume that f1 has an overlap with four other
fragments f ′1, f ′2, f ′′1 and f ′′2 : f1 ∩ f ′1 6= ∅, f1 ∩ f ′2 6= ∅,
f1∩f ′′1 6= ∅ and f1∩f ′′2 6= ∅; we illustrate this case with a
slightly modified example of our medical record (with an
additional tupleID attribute) shown in Tables 5, 6 and
7. Hence, for f1 we have in total four conflict conditions.
It is not obvious which of these conditions should be
satisfied to achieve a 2-way replication (for each tuple
in f2) while still minimizing the amount of used servers
– thus, we elaborate the example a bit further: Assume
that the maximum capacity for each server is W = 6
the size of f1 is w1 = 4, whereas the size of f ′1 is w′

1 = 2,
the size of f ′2 is w′

2 = 2, the size of f ′′1 is w′′
1 = 1, and

the size of f ′′2 is w′′
2 = 3.

We discuss some options how to distribute these
fragments:

• Assume, we put f1 on one server S1. When obeying
all conflict conditions, we have to put f ′1 and f ′2 on
a second server S2, and we have to put f ′′1 and
f ′′2 on a third server S3. Hence we achieve 3-way
replication for all tuples.

• Assume that we only require 2-way replication.
Hence we can try to put some overlapping
fragments on the same server as long as the 2-way
replication is satisfied.
If we put f1 and f ′′1 on one server S1, we can put

f ′′
1 tupleID PatientID Diagnosis

1 2784 brokenLeg

f ′′
2 tupleID PatientID Diagnosis

2 8457 Cough
3 2784 Flu
4 8765 Asthma

TABLE 7. Fragmentation on Diagnosis attribute

f ′1 and f ′′2 on a second server S2. We have to put
f ′2 on a third server S3. Hence we achieve 2-way
replication for all tuples but still need three servers.

• Indeed we can actually reduce the used servers to
two while still achieving 2-way replication. We put
f1 and f ′1 on one server S1. We put f ′′1 , f ′2 and f ′′2
on a second server S2.

What we see from the example is that it is however
impossible to identify which conditions should be
satisfied and which are optional only by looking
at the individual pair-wise conflicts. The question
we answer in the following is how to appropriately
express optionality of conflict conditions in our data
distribution ILP.

In general, we have r fragmentations of the form
F l = {f l1, . . . , f lnl

} and for every tuple j there must

be fragments f lil (where 1 ≤ l ≤ r and 1 ≤ il ≤ nl)
such that j ∈ f1i1 ∩ . . . ∩ f

r
ir

. First of all, we identify
common subfragments between fragments in the given
r fragmentations by computing an r-way intersection.
That is we compute f1i1 ∩ . . . ∩ f

r
ir

.
In our example, we have the following intersections

f1 ∩ f ′1 ∩ f ′′1 = {t1}
f1 ∩ f ′1 ∩ f ′′2 = {t2}
f1 ∩ f ′2 ∩ f ′′2 = {t3, t4}

Whenever this intersection is non-empty, we obtain
pair-wise conflict conditions of the form xilk+xil′k ≤ yk
for 1 ≤ l ≤ r and 0 < l′ < l. Continuing the example,
for the first intersection (containing tuple t1), we obtain
the pairwise conflicts

x1k + x′1k ≤ 1

x1k + x′′1k ≤ 1

x′1k + x′′1k ≤ 1

As discussed before, only one of these conditions
must be enforced to achieve 2-way replication. We
express this “one-out-of-three” condition as follows. We
transform the conflict conditions into conditions with
new c variables (we need three new variables for each
value of k):

x1k + x′1k ≤ 1 + c1k

x1k + x′′1k ≤ 1 + c2k

x′1k + x′′1k ≤ 1 + c3k

The meaning of the new variables is as follows: if the
c-variables are 0, the conflict condition is satisfied (only
one fragment is on server k or none of these fragments);
if the c-variables are 1, the conflict condition is not
satisfied (two fragments are on the same server). Hence
we require the c-variables to be binary: cik ∈ {0, 1}.
Next, in order to enforce m-way replication, we require
that the sum of the c-variables is at most r −m which
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effectively means that r−m conditions can be violated
at most. In our case r −m = 3− 2 = 1, we obtain the
condition c1k + c2k + c3k ≤ 1.

Now we generalize these conditions to arbitrary r and
m values as follows.

minimize

K∑
k=1

yk (33)

s.t.

K∑
k=1

xlik = 1 i = 1, . . . , nl, (34)

l = 1, . . . , r
n∑
i=1

r∑
l=1

wlix
l
ik ≤W · yk k = 1, . . . ,K (35)

xli1k + xl
′

i2k ≤ 1 + csll′k k = 1, . . . ,K, (36)

l = 1, . . . , r,

0 < l′ < l,

f li1k ∩ gs 6= ∅,

f l
′

i2k ∩ gs 6= ∅,
s = 1, . . . , S

r∑
l=1

0<l′<l

csll′k ≤ r −m k = 1, . . . ,K, (37)

s = 1, . . . , S

yk ∈ {0, 1} k = 1, . . . ,K (38)

xlik ∈ {0, 1} k = 1, . . . ,K, (39)

i = 1, . . . , nl,

l = 1, . . . , r

csll′k ∈ {0, 1} k = 1, . . . ,K, (40)

i = 1, . . . , nl,

l = 1, . . . , r,

0 < l′ < l

Recall that we have r fragmentations of the form
F l = {f l1, . . . , f lnl

} where l = 1, . . . , r; we represent the
placement of each such fragment on a certain server
k by a variable xlik. Now, fragments f li all have
different weights that are expressed as wli. We denote
by gs the common non-empty subfragments between r
fragments (as in the example above); we denote by S
the overall number of such non-empty subfragments.
Jointly Conditions (36) and (37) ensure the optionality
of the placement for at most r −m fragments for each
common subfragment gs.

6. DATA LOCALITY

Data locality is a feature to reduce latency of query
answering by allocating some data fragments to the
same server (because they are often accessed together
in one query). An established notion for vertical table

fragmentation is attribute affinity (two attributes are
accessed together in the same query; see for example
[4]). We transfer this notion to our application and
define fragment affinity.

6.1. Affinity of Fragments

As a first step to derive data locality constraints for
fragments, we define the notion of affinity of two
fragments fi and fj . As already mentioned, this affinity
notion stems from the definition of affinity between two
attributes for vertical fragmentation. There, an affinity
measure is derived from a typical workload – that is, a
set of queries – and looking at occurrences of attributes
in queries. For our definition we have to look at the
query terms occurring in the query and identify the
fragments in which this term semantically belongs.

Let Q be a query containing a selection condition
A = t on a relaxation attribute A for term t; let fi be
the fragment identified to be the fragment matching t
according to the given similarity values; in other words,
in the fragment fi, the values in attribute A are the ones
of the cluster in which t belongs in terms of maximal
similarity to the cluster head (we still assume that there
is a unique matching cluster for each term; otherwise
we choose one out of the matching clusters at random).
Then we can obtain a binary usage value for query Q
and fragment fi.

use(Q, fi) =

{
1 if sim(t, head(fi)) maximal,
0 otherwise

We assume a given workload Q =
{Q1, Q2, Q3, . . . , Qq}. We define affinity of two
fragments based on their usage pattern in workload Q

Definition 6.1. Fragment Affinity. Two frag-
ments fi and fj are affine if there is a query Qk ∈ Q
such that use(Qk, fi) = use(Qk, fj) = 1.

In addition, some queries might be executed more
often than others in the workload. We denote acc(Qk)
the access frequency of query Qk in the workload.

We can calculate the access frequency for each
fragment fi by summing over the individual usage
values giving more weight to queries with higher access
frequency:

acc(fi) =
∑
Qk∈Q

use(Qk, fi) · acc(Qk)

Based on this access frequency we can exclude some
fragments from consideration for data locality: if the
access frequency is below a threshold, we do not
consider it in the upcoming ILP.

Next we have to derive an affinity measure for two
fragments fi and fj because data locality constraints
will be defined for pairs of fragments. The affinity value
of a pair of fragments depends on the usage values and
the access frequencies of the queries.
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Definition 6.2. Affinity Measure. For two
fragments fi and fj, we define their affinity value in
a workload Q as

aff (fi, fj) =
∑
Qk∈Q

use(Qk, fi) · use(Qk, fj) · acc(Qk)

Due to symmetry of the affinity measure, in the
following we always assume – without loss of generality
– that i < j. Moreover, we only present the case where
r = m (as in Section 5); a generalization to the case
r > m (as in Section 4) can be done analogously.

6.2. Locality constraints

We add data locality constraints to the integer linear
program. These data locality requirements are soft
constraints in the sense that they should only be
satisfied as long as other constraints are not violated.
Hence, as opposed to the replication constraints (which
are treated as hard constraints which all have to be
satisfied), not all of the data locality constraints must
be satisfied but we want to satisfy as much of them
as possible. We can express this by introducing new
variables aijk and bijk (for each pair of affine fragments
and for each server k) which we require to be binary:
aijk ∈ {0, 1} and bijk ∈ {0, 1}. More precisely, if fi and
fj are affine fragments (to be put on the same server),
we add constraints:

xik − xjk ≤ aijk (i, j) : aff (fi, fj) > 0

xjk − xik ≤ bijk (i, j) : aff (fi, fj) > 0

The a and b variables can both be 0 whenever the
two fragments are both on the same server k (because
xik = xjk = 1) – or if neither of them is on k (because
xik = xjk = 0); otherwise one of them must be at least
1 (because either xik = 1 and xjk = 0 or vice versa)
leading to a higher penalty in the sum.

Lastly, we modify the objective function to also
minimize the sum of a and b values

minimize

K∑
k=1

yk +

K∑
k=1

(aijk + bijk)

This means, we minimize the number of used
bins/servers (denoted by yk) and number of affine
fragments fi, fj placed on different servers.

More generally, we add such a new summand for
every pair of fragments fi, fj for which we obtained
an affinity value aff (fi, fj) larger than 0 – recall that
we implicitly assume that i < j. This results in an
objective function of the form:

minimize

K∑
k=1

yk +
∑
(i,j):

aff (fi,fj)>0

K∑
k=1

(aijk + bijk)

However, not all of these summands should be given
the same influence: the higher the affinity of two

fragments fi and fj , the more we want to penalize
a violation of their data locality constraint. Hence,
we factor in the affinity value aff (fi, fj) as a weight
αij for each data locality constraint: αij = aff (fi, fj).
A violation of the constraint incurs an extra cost of
2 · αij = 2 · aff (fi, fj); this is due to the fact that – in
case of a violation – there are two different servers k
and k′ such that aijk = 1 and bijk′ = 1. This results in
an objective function of the form:

min.

K∑
k=1

yk +
∑
(i,j):

αij>0

αij ·
K∑
k=1

(aijk + bijk)

Lastly, we might want to give the minimization of
the number of used servers more weight than the data
locality constraint. Hence we need a weight γ for the yk
variables that exceeds the affinity values; by defining γ
to be higher than twice the sum of all affinity values, we
achieve exactly that: we prefer to reduce the number
of used servers at the cost of violating data locality
constraints. More formally,

γ = 1 + 2 ·
∑
i,j

aff (fi, fj)

Our final objective function is hence of the form:

min. γ ·
K∑
k=1

yk +
∑
(i,j):

αij>0

αij ·
K∑
k=1

(aijk + bijk)

The entire ILP with data locality constraints is the
following.

min. γ ·
K∑
k=1

yk+
∑
(i,j):

αij>0

αij ·
K∑
k=1

(aijk + bijk) (41)

s.t.

K∑
k=1

xik = 1 i = 1, . . . , n (42)

n∑
i=1

wixik ≤W · yk k = 1, . . . ,K (43)

xik + xi′k ≤ yk k = 1, . . . ,K, fi ∩ fi′ 6= ∅ (44)

xik − xjk ≤ aijk (i, j) : aff (fi, fj) > 0 (45)

xjk − xik ≤ bijk (i, j) : aff (fi, fj) > 0 (46)

yk ∈ {0, 1} k = 1, . . . ,K (47)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (48)

aijk ∈ {0, 1} (i, j) : aff (fi, fj) > 0 (49)

bijk ∈ {0, 1} (i, j) : aff (fi, fj) > 0 (50)

Note that we need both Condition (45) and Condition
(46) as we cannot express absolte values in an ILP.

7. HEAD REELECTION

The ontology-driven query answering process relies on
comparisons with the head values of all fragments based
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on [49]. That is why the deletion of a tuple containing
a head value from a fragment or the modification of
the underlying ontology raises the need to find a new
head element for an existing fragment. Moreover, if one
fragment grows too large (resulting in an overwhelming
amount of related answers), it must be split into
subfragments each with a new head element. The other
way round, too small fragments might result into too
few related answers; hence, similar fragments can be
merged and a new head element has to be elected. We
discuss heuristics for these three cases in the following
subsections.

7.1. New head for existing cluster

We can simply choose an element in the existing cluster
that is most similar to the old head. That is, for cluster
ci we compute all elements closest to head i:

{a | a ∈ ci, sim(a, head i) is maximal}

When there is more than one such element, in order to
maximize similarity to all other elements in the cluster,
we can choose the one for which the sum of similarities
to all other elements is largest:

{a | a ∈ ci,
∑
b∈ci

sim(a, b) is maximal}

7.2. Cluster Splitting

Following the idea of [49], splitting a large cluster ci into
subclusters requires identifying the elements farthest
away from the old head head i and defining them as the
new heads for the subclusters. That is we compute the
new heads as the set:

H = {head ji | head ji ∈ ci, sim(head ji , head i) is minimal}

Next, we define the subclusters c1i , c
2
i , . . . , c

|H|
i by

assigning to the those elements in ci closest to the new
head head ji :

cji ={head ji} ∪ {a | a ∈ ci;

sim(a, head ji ) ≤ sim(c, head j
′

i ); j 6= j′}

7.3. Cluster Merging

Assume we a set C of small clusters. We group them
together whenever the similarity of their heads is below
a threshold α. That is, heuristically, we choose one
ci ∈ C and compute the merged cluster cnew as

cnew = ci ∪
⋃
cj

for cj such that sim(headj, head i) ≤ α. We define the
set of previous heads as

H ′ = {head i} ∪
⋃
{head j}

For finding a new head headnew several heuristic options
arise:

• in the simplest case, keep head i as headnew
• from head i and the heads head j from the merged

clusters, choose as headnew the one that has
maximal similarity to the others:

headnew ∈{a | a ∈ H ′,∑
headk∈H′

sim(a, headk) is maximal}

• choose an arbitrary element from cnew that is most
similar to the previous heads:

headnew ∈{a | a ∈ cnew,∑
headk∈H′

sim(a, headk) is maximal}

8. EXPERIMENTAL STUDY IN A LARGER
CLUSTER

Our prototype implementation – the OntQA-Replica
system – runs on a distributed SAP HANA installation
with 10 database server nodes provided by the Future
SOC Lab of Hasso Plattner Institute. This is an
extension to previous work that only used a 3-node
cluster [1, 2]; as a result we were able to extend
the experiments to larger data sets. All runtime
measurements are taken as the median of several (at
least 5) runs per experiment.

The example data set consists of a table (called ill)
that resembles a medical health record and is based
on the set of Medical Subject Headings (MeSH [50]).
The table contains as columns an artificial, sequential
tupleid, a random patientid, and a disease chosen from
the MeSH data set as well as the concept identifier of the
MeSH entry. We varied the table sizes during our test
runs. The smallest table consists of 56,341 rows (one
row for each MeSH term). We increased that table size
by duplicating the original data up to 12 times, resulting
in 230,772,736 rows.

A clustering is executed on the MeSH data based
on the concept identifier (which orders the MeSH
terms in a tree); in other words, entries from
the same subconcept belong to the same cluster.
One fragmentation (the clustered fragmentation) was
obtained from this clustering and consists of 117
fragments which are each stored in a smaller table
called ill-i where i is the cluster ID. To allow for a
comparison, another fragmentation of the table was
done using round robin resulting in a table called ill-rr ;
this distributes the data among the database servers in
chunks of equal size without considering their semantic
relationship; these fragments have an extra column
called clusterid.

In order to manage the fragmentation, several
metadata tables are maintained:

• A root table stores an ID for each cluster (column
clusterid) as well as the cluster head (column head)
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and the name of the server that hosts the cluster
(column serverid).

• A lookup table stores for each cluster ID (column
clusterid) the tuple IDs (column tupleid) of those
tuples that constitute the clustered fragment.

• A similarities table stores for each head term
(column head) and each other term (column
term) that occurs in the active domain of the
corresponding relaxation attribute a similarity
value between 0 and 1 (column sim) There are
different metrics for calculating this similarity
value. An overview is given in [3]. We used the
path length scheme.

8.1. Identifying the matching cluster

All query rewriting strategies require the identification
of the matching cluster previously. That is, the ID of
the cluster the head of which has the highest similarity
to the query term. We do this by consulting the
similarities table and the root table. The relaxation
term t is extracted from the query and then the top-1
entry of the similarities table is obtained when ordering
the similarities in descending order:
SELECT TOP 1 root.clusterid

FROM root, similarities

WHERE similarities.term=’t’
AND similarities.head = root.head

ORDER BY similarities.sim DESC

The similarities table has 6,591,897 rows (56341 rows
of the basic data set times 117 cluster heads). The
runtime measurements for this query show a decent
performance of at most 24 ms. Note that the size of
the similarities table is constant for all test runs, since
the data set duplication does not create any new mesh
terms.

8.2. Query Rewriting Strategies

After having obtained the ID of the matching cluster,
the original query has to be rewritten in order to
consider all the related terms as valid answers. We
tested and compared three query rewriting procedures:

• lookup table: the first rewriting approach uses
the lookup table to retrieve the tuple IDs of the
corresponding rows and executes a JOIN on table
ill.

• extra clusterid column: the next approach relies
on the round robin table and retrieves all relevant
tuples based on a selection predicate on the
clusterid column.

• clustered fragmentation: the last rewriting ap-
proach replaces the occurrences of the ill table by
the corresponding ill-i table for clusterid i.

8.3. Query Answering without Derived Frag-
ments

Assume the user sends a query

SELECT mesh,concept,patientid,tupleid

FROM ill WHERE mesh =’cough’.
and 101 is the ID of the cluster containing cough. In
the first strategy (lookup table) the rewritten query is
SELECT mesh,concept,patientid,tupleid

FROM ill JOIN lookup

ON (lookup.tupleid = ill.tupleid

AND lookup.clusterid=101).
In the second strategy (extra clusterid column) the
rewritten query is
SELECT mesh,concept,patientid,tupleid

FROM ill-rr WHERE clusterid=101

In the third strategy (clustered fragmentation), the
rewritten query is
SELECT mesh,concept,patientid,tupleid

FROM ill-101

FIGURE 3. Time for executing queries without derived
partitioning

The runtime measurements in Figure 3 in particular
show that the lookup table approach does not scale
with increasing data set size. The extra cluster-id
column performs better, but does not scale either,
when the data set becomes very large. The approach
using clustered partitioning outperforms both by having
nearly identical runtimes for all sizes of the test data set.
Note, that after duplicating the data set 12 times it is
4096 times as large as the basic data set.

8.4. Query Answering with Derived Fragments

We tested a JOIN on the patient ID with a secondary
table called info having a column address. The original
query is
SELECT a.mesh,a.concept,a.patientid,

a.tupleid,b.address

FROM ill AS a,info AS b

WHERE mesh=’cough’

AND b.patientid= a.patientid

In the first strategy (lookup table) the rewritten
query is
SELECT a.mesh,a.concept,a.patientid,

a.tupleid,b.address,lookup.clusterid
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FROM ill AS a,info AS b,lookup

WHERE lookup.tupleid=a.tupleid

AND lookup.clusterid=101

AND b.patientid= a.patientid.
In the second strategy (extra clusterid column) the
rewritten query is
SELECT a.mesh,a.concept,a.patientid,

a.tupleid,b.address

FROM ill AS a,info AS b

WHERE a.clusterid=101

AND b.patientid=a.patientid.
In the third strategy (clustered fragmentation), the
rewritten query is
SELECT a.mesh,a.concept,a.patientid,

a.tupleid,b.address

FROM ill-101 AS a

JOIN info-101 AS b

ON (a.patientid=b.patientid).

We devised two test runs: test run one uses a small
secondary table (each patient ID occurs only once) and
test run two uses a large secondary table (each patient
ID occurs 256 times). For the first rewriting strategy
(lookup table) the secondary table is a non-fragmented
table. For the second strategy, the secondary table is
distributed in round robin fashion, too. For the last
rewriting strategy, the secondary table is fragmented
into a derived fragmentation: whenever a patient ID
occurs in some fragment in the ill-i table, then the
corresponding tuples in the secondary table are stored
in a fragment info-i on the same server as the primary
fragment.

Figure 4 presents the runtime measurements for
queries with derived fragments with the small secondary
table (one matching tuple in the secondary table
for each tuple in the primary table). It can be
observed that the necessary join operation causes all
three approaches to perform significantly worse. The
clustered partitioning strategy still shows the best
performance with being roughly twice as fast as the
other ones. While the lookup table approach performed
worst without derived fragments, it performed better
than the extra cluster-id column strategy when tested
with derived fragments using small secondary tables.

However, as can be seen in Figure 5 both approaches
are clearly outperformed by the clustered partitioning
strategy when the secondary table is large (256
matching tuples in the secondary table for each tuple
in the primary table). It delivers feasible performance
up to 6-7 data set duplications, while the lookup table
and extra cluster-id column approaches fail in doing so
after only 2-3 data set duplications.

8.5. Insertions and Deletions

We tested the update behavior for all three rewriting
strategies by inserting 117 new rows (one for each
cluster). After the insertions we made a similar test

FIGURE 4. Time for executing queries with derived
partitioning (small secondary tables)

FIGURE 5. Time for executing queries with derived
partitioning (large secondary tables)

by deleting the newly added tuples.
Any insertion requires identifying the matching

cluster i as described previously. Then each insertion
query looks like this for mesh term m, concept c,
patientid 1 and tupleid 1:
INSERT INTO ill

VALUES (’m’,’c’,1,1).
In the first rewriting strategy, the lookup table has to be
updated, too, so that two insertion queries are executed:
INSERT INTO ill

VALUES (’m’,’c’,1,1).
INSERT INTO lookup

VALUES (i,1).
For the second rewriting strategy, the extra clusterid
column contains the identified cluster i:
INSERT INTO ill-rr

VALUES (’m’,’c’,1,1,i).
For the third rewriting strategy, the matching clustered
fragment is updated:
INSERT INTO ill-i
VALUES (’m’,’c’,1,1).

As shown in Figure 6, the runtime for insertions
appears to be constant for all approaches. Interestingly
only the round robin approach performs worse by factor
2.5; this might be due to the fact that it takes longer
to identify the fragment into which the insertion has to
be written.
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FIGURE 6. Insertion

Deletions require queries of the basic form
DELETE FROM ill WHERE mesh=’m’.

In the first rewriting strategy, the corresponding row in
the lookup table has to be deleted, too, so that now
first the corresponding tuple id of the to-be-deleted row
has to be obtained and then two deletion queries are
executed:
DELETE FROM lookup

WHERE lookup.tupleid

IN (SELECT ill.tupleid FROM ill

WHERE mesh=’m’).
DELETE FROM ill WHERE mesh=’m’

For the second rewriting strategy, no modification is
necessary apart from replacing the table name and no
clusterid is needed:
DELETE FROM ill-rr WHERE mesh=’m’

For the third rewriting strategy, the matching clustered
fragment i is accessed which has to be identified first:
DELETE FROM ill-i WHERE mesh=’m’

FIGURE 7. Deletion

Figure 7 presents the measurements for deletions.
Here the runtimes for the extra cluster-id column and
clustered partitioning approach is constant and on a
similar level, while the lookup table strategy performs
roughly 4 times worse due to its higher complexity.
Starting from a certain data set size the deletion time of
this approach even begins to grow significantly further.

8.6. Recovery

The recovery procedure recovers the clustered fragmen-
tation. In particular, we show that one fragmentation
(the clustered fragmentation) can be recovered from an-
other one (the round-robin fragmentation). For the
lookup table approach this is done using the following
query on the original table and the lookup table by run-
ning for each cluster i:
INSERT INTO ci SELECT mesh, concept,

patientid, ill.tupleid FROM ill

JOIN lookup

ON (lookup.tupleid=ill.tupleid)

WHERE lookup.clusterid=i

For the round robin fragmented table with the extra
clusterid column the query for each cluster i is as
follows:
INSERT INTO ci
SELECT mesh, concept, patientid, tupleid

FROM ill-rr

WHERE clusterid=i

In both cases this results in one ci table per cluster.

FIGURE 8. Recovery

As can be seen in Figure 8 both recovery procedures
become unfeasible very quickly with the approach for
the extra cluster-id column strategy being able to
handle 2-3 data set duplications more in an acceptable
timeframe.

8.7. Inserting a new head term

When inserting a new head term into the data set
similarities to all other existing terms have to be
computed and written in the similarities table. In
addition the root table has to be updated. That means
for our example data set 56341 similarity values must be
calculated and inserted into the similarities table. Note
that this number is constant for all data set sizes, since
duplicating the data set does not create new terms.
In our tests this took 250 seconds, mainly due to the
similarity value computing.
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8.8. Two Relaxation Attributes

Lastly we tested queries with two relaxation attributes.
Note that requires finding the matching cluster twice.

FIGURE 9. Time required for queries with 2 relaxation
attributes

Figure 9 presets the results. It can be observed that
queries with two relaxation attributes can be done in
an acceptable runtime up to a certain data set size.
After that point the runtime increases dramatically.
While the lookup table approach starts to perform
worse after 6 data set duplications, the extra cluster-id
column strategy and the clustered partitioning strategy
are feasible up to 10 data set duplications. This
degradations might be due to the needed intermediate
joins for which the system runs out of memory after a
certain data set size.

9. CONCLUSION AND FUTURE WORK

We presented and analyzed a data replication problem
for a flexible query answering system. It provides
related answers by relaxing the original query and
obtaining a set of semantically close answers. The
proposed replication scheme allows for fast response
times due to materializing the fragmentations. By
solving an ILP representation of the data replication
problem, we minimize the overall number of servers
used for replication. In this paper the focus lies
on supporting multiple relaxation attributes that lead
to multiple fragmentations of the same table. A
minimization of the number of servers is due to the
fact that one fragmentation can be recovered from other
fragmentations based on overlapping fragments. The
experimental evaluation shows sensible performance
results.

Future work has to mainly address dynamic changes
in the replication scheme. Deletions and insertions of
data lead to changing fragmentations sizes and hence
an adaptation of the server allocations might become
necessary (similar to [34]). The use of adaptive methods
will be studied where (a large part of) a previous
solution might be reused to obtain a new solution. As
further fields of study, partial index maintenance for the

fragments as well as the application of the approach to
other data formats (like XML or RDF data [41, 42, 43]).
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[4] Özsu, M. T. and Valduriez, P. (2011) Principles of
Distributed Database Systems, Third Edition. Springer.

[5] Ke, Q., Prabhakaran, V., Xie, Y., Yu, Y., Wu, J., and
Yang, J. (2011) Optimizing data partitioning for data-
parallel computing. 13th Workshop on Hot Topics in
Operating Systems, HotOS XIII, pp. 13–13. USENIX
Association.

[6] Stonebraker, M., Pavlo, A., Taft, R., and Brodie, M. L.
(2014) Enterprise database applications and the cloud:
A difficult road ahead. IEEE International Conference
on Cloud Engineering (IC2E), pp. 1–6. IEEE.

[7] Jindal, A., Palatinus, E., Pavlov, V., and Dittrich,
J. (2013) A comparison of knives for bread slicing.
Proceedings of the VLDB Endowment, 6, 361–372.
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