
Horizontal Fragmentation and Replication for
Multiple Relaxation Attributes

Lena Wiese

Institute of Computer Science
University of Göttingen

Goldschmidtstraße 7
37077 Göttingen

Germany
lena.wiese@uni-goettingen.de

Abstract. The data replication problem (DRP) describes the task of
distributing copies of data records (that is, database fragments) among
a set of servers in a distributed database system. For the application of
flexible query answering, several fragments can be overlapping (in terms
of tuples in a database table). In this paper, we provide a formulation of
the DRP for horizontal fragmentations with overlapping fragments; sub-
sequently we devise a recovery procedure based on these fragmentations.

Keywords: Bin Packing Problem with Conflicts (BPPC), Data Repli-
cation Problem (DRP), Distributed Database, Fragmentation, Integer
Linear Programming (ILP)

1 Introduction

When storing large-scale data sets in distributed database systems, these data
sets are usually fragmented (that is, partitioned) into smaller subsets and these
subsets are distributed over several database servers. Moreover, to achieve better
availability and failure tolerance, copies of the data sets (the so-called replicas)
are created and stored in a distributed fashion so that different replicas of the
same data set reside on distinct servers.

In addition to technical requirements of data distribution, intelligent query
answering mechanisms are increasingly important to find relevant answers to
user queries. Flexible (or cooperative) query answering systems help users of a
database system find answers related to his original query in case the original
query cannot be answered exactly. Semantic techniques rely on taxonomies (or
ontologies) to replace some values in a query by others that are closely related
according to the taxonomy. This can be achieved by techniques of query relax-
ation – and in particular query generalization: the user query is rewritten into
a weaker, more general version to also allow related answers.

In this paper we make the following contributions:

– instead of fixing a single relaxation attribute we allow multiple relaxation
attributes which lead to several different fragmentations in which fragments
from different fragmentations may share common tuples (they “overlap”);

2

– we devise an m-copy replication scheme for the fragments ensuring the repli-
cation factor m by storing overlapping fragments on distinct servers;

– we state the replication problem as an optimization problem minimizing the
number of occupied servers;

– we describe a recovery procedure for this kind of replication.

1.1 Organisation of the article

Section 2 introduces the main notions used in this article and gives an illustrative
example. Section 3 defines the problem of data replication with overlapping
fragments addressed in this article. Section 4 describes replication and recovery
in a practical system. Related work is presented in Section 5 and Section 6
concludes this article with suggestions for future work.

2 Background and example

We provide background on query generalization, fragmentation and replication.

2.1 Query generalization

Query generalization has long been studied in flexible query answering [8]. Query
generalization at runtime has been implemented in the CoopQA system [5] by ap-
plying three generalization operators to a conjunctive query. Anti-Instantiation
(AI) is one query generalization operator that replaces a constant (or a variable
occurring at least twice) in a query with a new variable y. In this paper we focus
on replacements of constants because this allows for finding answers that are
semantically close to the replaced constant. As the query language we focus on
conjunctive queries expressed as logical formulas. We assume a logical language
L consisting of a finite set of predicate symbols (denoting the table names; for
example, Ill, Treat or P), a possibly infinite set dom of constant symbols (de-
noting the values in table cells; for example, Mary or a), and an infinite set of
variables (x or y). A term is either a constant or a variable. The capital letter
X denotes a vector of variables; if the order of variables in X does not matter,
we identify X with the set of its variables and apply set operators – for example
we write y ∈ X.

A query formula Q is a conjunction (denoted ∧) of literals (consisting of a
predicate and terms) with a set of variables X occurring freely; hence we write
a query as Q(X) = Li1 ∧ . . .∧Lin . The Anti-Instantiation (AI) operator chooses
a constant a in a query Q(X), replaces one occurrence of a by a new variable y
and returns the query QAI(X, y) as the relaxed query. The relaxed query QAI

is a deductive generalization of Q (see [5]).
As a running example, we consider a hospital information system that stores

illnesses and treatments of patients as well as their personal information (like
address and age) in the following three database tables:

3

Ill PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
2784 brokenLeg
8765 Asthma
1055 brokenArm

Info PatientID Name Address

8457 Pete Main Str 5, Newtown
2784 Mary New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
1055 Anne High Str 2, Oldtown

The query Q(x1, x2, x3) = Ill(x1,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3) asks
for all the patient IDs x1 as well as names x2 and addresses x3 of patients that
suffer from both flu and cough. This query fails with the given database ta-
bles as there is no patient with both flu and cough. However, the querying user
might instead be interested in the patient called Mary who is ill with both flu
and asthma. We can find this informative answer by relaxing the query condi-
tion Cough and instead allowing other related values (like Asthma) in the an-
swers. An example generalization with AI is QAI(x1, x2, x3, y) = Ill(x1,Flu) ∧
Ill(x1, y) ∧ Info(x1, x2, x3) by introducing the new variable y. It results in an
non-empty (and hence informative) answer: Ill(2748,Flu)∧ Ill(2748,Asthma)∧
Info(2748,Mary ,‘New Str 3 ,Newtown’). Another answer obtained is the fact
that Mary suffers from a broken leg as: Ill(2748,Flu) ∧ Ill(2748, brokenLeg) ∧
Info(2748,Mary ,‘New Str 3 ,Newtown’) which is however an overgeneralization.

2.2 Clustering-based fragmentation

Query generalization at runtime is highly inefficient. That is why we propose a
clustering-based fragmentation that preprocesses data into fragments of closely
related values (with respect to a relaxation attribute). This clustering-based
fragmentation has two main advantages:

– it enables efficient query relaxation at runtime by returning all values in a
matching fragment as relevant answers

– it reduces the amount of servers contacted during query answering in a dis-
tributed environment because only one server (containing the matching frag-
ment) has to process the query while other servers can process other queries.

Here we need semantic guidance to identify the set of relevant answers that
are close enough to the original query. In previous work [12], a clustering proce-
dure was applied to partition the original tables into fragments based on a single
relaxation attribute chosen for anti-instantiation. For this we used a notion of
similarity between to constants; this similarity can be deduced with the help of
an ontology or taxonomy in which the values are put into relation. Finding the
fragments is hence achieved by grouping (that is, clustering) the values of the
respective table column into clusters of closely related values and then splitting
the table into fragments according to the clusters found. For example, clusters
on the Diagnosis column can be made by differentiating between fractures on
the one hand and respiratory diseases on the other hand. These clusters then
lead to two fragments of the table Ill that could be assigned to two different
servers:

4

Server 1:

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Server 2:

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

Server 1 can then be used to answer queries related to respiratory diseases
while Server 2 can process queries related to fractures. The example query
Q(x1, x2, x3) = Ill(x1,Flu)∧Ill(x1,Cough)∧Info(x1, x2, x3) will then be rewrit-
ten as QResp(x1, x2, x3, y) = Respiratory(x1,Flu) ∧ Respiratory(x1,Cough) ∧
Info(x1, x2, x3) and redirected to Server 1 where only the fragment Respiratory
is used to answer the query. In this way only the informative answer containing
asthma is returned – while the one containing broken leg will not be generated.

2.3 Data distribution as a Bin Packing Problem

In a distributed database system data records have to be assigned to different
servers. The data distribution problem – however not considering replication
yet – is basically a Bin Packing Problem (BPP) in the following sense:

– K servers correspond to K bins
– bins have a maximum capacity W
– n data records correspond to n objects
– each object has a weight (a capacity consumption) wi ≤W
– objects have to be placed into a minimum number of bins without exceeding

the maximum capacity W

This BPP can be written as an integer linear program (ILP) as follows – where
xik is a binary variable that denotes whether fragment/object i is placed in
server/bin k; and yk denotes that server/bin k is used (that is, is non-empty).
Moreover, each server/bin has a maximum capacity W and each fragment/object
i has a weight wi that denotes how much capacity the item consumes. As a simple
example, W can express how many rows (tuples) a server can store and wi is
the row count of fragment i.

minimize

K∑
k=1

yk (minimize number of bins) (1)

s.t.

K∑
k=1

xik = 1, i = 1, . . . , n (each object assigned to one bin) (2)

n∑
i=1

wixik ≤Wyk, k = 1, . . . ,K (capacity not exceeded) (3)

yk ∈ {0, 1} k = 1, . . . ,K (4)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (5)

5

An extension of the basic BPP, the Bin Packing with Conflicts (BPPC)
problem, considers a conflict graphG = (V,E) where the node set V = {1, . . . , n}
corresponds to the set of objects. A binary edge e = (i, j) exists whenever the two
objects i and j must not be placed into the same bin. In the ILP representation,
a further constraint (Equation 9) is added to avoid conflicts in the placements.

minimize

K∑
k=1

yk (minimize number of bins) (6)

s.t.

K∑
k=1

xik = 1, i = 1, . . . , n (each object assigned to one bin) (7)

n∑
i=1

wixik ≤Wyk, k = 1, . . . ,K (capacity not exceeded) (8)

xik + xjk ≤ yk k = 1, . . . ,K, ∀(i, j) ∈ E (no conflicts) (9)

yk ∈ {0, 1} k = 1, . . . ,K (10)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (11)

Several results were obtained regarding hardness and approximation of bin
packing with conflicts. BPPC can basically be regarded as a combination of a
vertex coloring and the basic BPP: first of all, compute a coloring of the conflict
graph such that items of different color cannot be placed in the same bin, then
solve one classical BPP instance for each color.

3 Overlaps and multiple relaxation attributes

So far, for the taxonomy-based clustering approach only a single relaxation at-
tribute has been considered in [12]. There it is proposed that, when doing m-way
replication, simply m copies of the fragments obtained for the single relaxation
attribute are replicated; this corresponds to solving a BPPC instance where
the conflict graph states that copies of the same fragment cannot be placed on
the same server. In this paper we want to generalize this procedure to multiple
relaxation attributes. This has the following advantages:

– The system can answer queries for several relaxation attributes.
– The intelligent replication procedure reduces storage consumption and hence

the amount of servers that are needed for replication.

In order to support flexible query answering on multiple columns, one table
can be fragmented multiple times (by clustering different columns); that is, we
can choose more than one relaxation attribute. In this case, several fragmenta-
tions will be obtained. More formally, if α relaxation attributes are chosen and
clustered, then we obtain α fragmentations Fl (l = 1 . . . α) of the same table;
each fragmentation contains fragments fl,s where index s depends on the number
of clusters found: if nl clusters are found, then Fl = {fl,1, . . . , fl,nl

}.

6

For example, clusters on the Diagnosis column can be made by differenti-
ating between fractures on the one hand and respiratory diseases on the other
hand. And additionally, clusters on the patient ID can be obtained by dividing
into rows with ID smaller than 5000 and those with ID larger than 5000.

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

IDlow PatientID Diagnosis

2784 Flu
2784 brokenLeg
2784 Asthma
1055 brokenArm

IDhigh PatientID Diagnosis

8765 Asthma
8457 Cough

We assume that each of the clusterings (and hence the corresponding frag-
mentation) is complete: every value in the column is assigned to one cluster and
hence every tuple is assigned to one fragment. We also assume that each cluster-
ing and each fragmentation are non-redundant : every value is assigned to exactly
one cluster and every tuple belongs to exactly one fragment (for one clustering);
in other words, the fragments inside one fragmentation do not overlap.

However, fragments from two different fragmentations (for two different clus-
terings) may overlap. For example, both the Respiratory as well as the IDhigh
fragments contain the tuple 〈8457, Cough〉. Due to completeness, every tuple
is contained in exactly one of the fragments of each of the α fragmentations:
for any tuple j, if α relaxation attributes are chosen and clustered, then in any
fragmentation Fl (l = 1 . . . α) there is a fragment fl,s such that tuple j ∈ fl,s.

3.1 Data replication for overlapping fragments

The main contribution of this paper is to analyze intelligent data replication
schemes with multiple relaxation attributes while at the same time minimizing
the amount of data copies – and hence reducing overall storage consumption of
the underlying flexible query answering system. The approach is as follows:

– Apply the above clustering heuristics to any of the α relaxation attributes.
– Based on each clustering obtain a complete fragmentation of the given table.
– Fragments of different fragmentations (for different clusterings) overlap.
– Ensure replication factorm for tuples by considering these overlaps in BPPC.

While in the standard BPP and BPPC representations usually disjoint frag-
ments and exactly m copies are considered, we extend the basic BPPC as follows:

Conjecture 1. With our intelligent replication procedure, less data copies (only
m copies of each tuple) have to be replicated hence reducing the amount of
storage needed for replication as opposed to conventional replication approaches
that replicate m copies for each of the α fragmentations Fl (which results in αm
copies of each tuple).

7

We argue that m copies of a tuple suffice with an advanced recovery pro-
cedure: that is, for every tuple j we require that it is stored at m different
servers for backup purposes but these copies of j may be contained in different
fragments: one fragmentation Fl can be recovered from fragments in any other
fragmentation F ′l (where l 6= l′). From here on we assume that there are exactly
m relaxation attributes (that is, α = m); in case there are less than m relax-
ation attributes, some of the existing fragmentations are simply duplicated; in
case there are more than m relaxation attributes, the remaining fragmentations
can be stored on arbitrary servers. We hence consider the following problem:

Definition 1 (Data replication problem with overlapping fragments
(overlap-DRP)). Given m fragmentations Fl = {fl,1, . . . , fl,nl

} and replica-
tion factor m, for every tuple j there must be fragments fl,il (where 1 ≤ l ≤ m
and 1 ≤ il ≤ nl) such that j ∈ f1,i1 ∩ . . . ∩ fα,im and these fragments are all
assigned to different servers.

We illustrate this with our example. Assume that 5 rows is the maximum
capacity W of each server and assume a replication factor 2. In a conventional
replication approach, all fragments are of approximately the same size and do not
overlap. Hence, the conventional approach would replicate all fragments (Respi-
ratory, Fracture, IDhigh, IDlow) to two servers each. then assign the Respiratory
fragment (with 4 rows) to one server S1 and a copy of it to another server S2.
Now the Fracture fragment (with 2 rows) will not fit on any of the two servers;
its two replicas will be stored on two new servers S3 and S4. For storing the
IDlow fragment (with 4 rows), the conventional approach would need two more
servers S5 and S6. The IDhigh fragment (with 2 rows) could then be mapped to
servers S3 and S4. The conventional replication approach would hence require
at least six servers to achieve a replication factor 2.
In contrast, our intelligent replication approach takes advantage of the overlap-
ping fragments so that three servers suffice to fulfill the replication factor 2;
that is, the amount of servers can be substantially reduced if a more intelli-
gent replication and recovery scheme is used that respects the fact that several
fragments overlap and that can handle fragments of differing size to optimally
fill remaining server capacities. This allows for better self-configuration capac-
ities of the distributed database system. First we observe how one fragment
can be recovered from the other fragments: Fragment Respiratory can be recov-
ered from fragments IDlow and IDhigh (because Respiratory= (IDlow ∩ Res-
piratory) ∪ (IDhigh ∩ Respiratory)); Fragment Fracture can be recovered from
fragment IDlow (because Fracture= (IDlow ∩ Fracture)); Fragment IDlow can
be recovered from fragments Respiratory and Fracture (because IDlow= (IDlow
∩ Respiratory) ∪ (IDlow ∩ Fracture)); Fragment IDhigh can be recovered from
fragment Respiratory (because IDhigh= (IDhigh ∩ Respiratory)). Hence, we can
store fragment Respiratory on server S1, fragment IDlow on server S2, and frag-
ments Fracture and IDhigh on server S3 and still have replication factor 2 for
individual tuples.

We now show that our replication problem (with its extensions to overlapping
fragments and counting replication based on tuples) can be expressed as an

8

advanced BPPC problem. Let J be the amount of tuples in the input table, m
be the number of fragmentations, K the total number of available servers and
n be the overall number of fragments obtained in all fragmentations. In the ILP
representation we keep the variables yk for the bins and xik for fragments – to
simplify notation we assume that i = 1 . . . n where n = |F1|+ . . .+ |Fm| = n1 +
. . .+ nm: all fragments are numbered consecutively from 1 to n even when they
come from different fragmentations. In addition, we introduce K new variables
zjk for each the tuple j such that zjk = 1 if the tuple j is placed on server k;
we maintain a mapping between fragments and tuples such that if fragment i
is assigned to bin k, and j is contained in i, then tuple j is also assigned to k
(see Equation (15)); the other way round, if there is no fragment i containing j
and being assigned to bin k, then tuple j neither is assigned to k (see Equation
(16)); and we modify the conflict constraint to support the replication factor:
we require that for each tuple j the amount of bins/servers used is at least m
(see Equation (17)) to ensure the replication factor.

minimize

K∑
k=1

yk (minimize number of bins) (12)

s.t.

K∑
k=1

xik = 1, i = 1, . . . , n (each fragment i assigned to one bin) (13)

n∑
i=1

wixik ≤Wyk, k = 1, . . . ,K (capacity not exceeded) (14)

zjk ≥ xik for all j : j ∈ i (tuple j in bin when fragment i is) (15)

zjk ≤
∑

(i:j∈i)

xik for all j (tuple not in bin when no fragment is)(16)

K∑
k=1

zjk ≥ m for all j (replication factor m on tuples) (17)

yk ∈ {0, 1} k = 1, . . . ,K (18)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (19)

zjk ∈ {0, 1} k = 1, . . . ,K, j = 1, . . . , J (20)

This ILP will find a valid solution to overlap-DRP.

3.2 Reducing the amount of variables

The ILP representation in the previous section is highly inefficient and does
not scale to large amounts of tuples: due to the excessive use of z-variables,
for large J finding a solution will take prohibitively long. Indeed, in the given
representation, we have K y-variables, n ·K x-variables, and J ·K z-variables
where usually J � n. That is why we want to show now that it is possible to
focus on the x-variables to achieve another ILP representation for overlap-DRP:

9

for any tuple j such that j is contained in two fragments i and i′ (we assume
that i < i′ to avoid isomorphic statements in the proof), it is sufficient to ensure
that the two fragments are stored on two different servers. In other words, for
the (m · (m − 1))/2 pairs of overlapping fragments i and i′, we can make them
mutually exclusive in the ILP representation; that is, in the ILP representation
we have to satisfy (m · (m− 1))/2 equalities of the form xik + xi′k = 1 to make
them pairwise conflicting.

Theorem 1. If for any two fragments i and i′ such that i ∩ i′ 6= ∅ there hold
(m ·(m−1))/2 equations of the form xik+xi′k = 1 where i < i′, i = 1, . . . , n−1,

i′ = 2, . . . , n and k = 1, . . . ,K, then it holds for any tuple j that
∑K
k=1 zjk ≥ m.

Proof. First of all, for every tuple j there are m fragments i such that j ∈ i due
to completeness of the m fragmentations. Now we let I be the set of these m
fragments. Then for any two i, i′ ∈ I we have j ∈ i ∩ i′ by construction. Due to
Equation (13), for every i ∈ I there must be exactly one bin k such that xik = 1
and for all other i∗ it holds that either xik+xi∗k = 1 (if i < i∗) or xi∗k+xik = 1
(if i∗ < i) so that none of these fragments is assigned to bin k. Hence, m bins
are needed to accommodate all fragments in I. Due to Equation (15), we assure
that when xik = 1 then also zjk = 1 for the given j and any i ∈ I. Hence∑K
k=1 zjk ≥ m (Equation 17) holds.

Instead of considering all individual tuples j, we can now move on to considering
only overlapping fragments (with non-empty intersections) and requiring the (m·
(m−1))/2 equations to hold for each pair of overlapping fragments. We transform
the previous ILP representation into the one that enforces a conflict condition
for any two overlapping fragments. This coincides with the conventional BPPC
representation, where the conflict graph is built over the set of fragments (as the
vertex set) by drawing an edge between any two fragments that overlap.

Definition 2 (Conflict graph for overlap-DRP). The conflict graph GDRP =
(V,E) is defined by V = F1 ∪ . . . ∪ Fm (one vertex for each fragment inside the
m fragmentations) and E = {(i, i′) | i, i′ ∈ V and i∩ i′ 6= ∅} (an undirected edge
between fragments that overlap).

Continuing our example, we have a conflict graph over the fragments Respiratory,
Fracture, IDlow and IDhigh with an edge between Respiratory and IDlow, and
an edge between Respiratory and IDhigh, and an edge between Fracture and
IDhigh. The ILP representation for overlap-DRP looks now as follows:

minimize

K∑
k=1

yk (minimize number of bins) (21)

s.t.

K∑
k=1

xik = 1, i = 1, . . . , n (each fragment i assigned to one bin) (22)

n∑
i=1

wixik ≤Wyk, k = 1, . . . ,K (capacity not exceeded) (23)

10

xik + xi′k ≤ yk k = 1, . . . ,K, i ∩ i′ 6= ∅ (overlapping fragments i, i′) (24)

yk ∈ {0, 1} k = 1, . . . ,K (25)

xik ∈ {0, 1} k = 1, . . . ,K, i = 1, . . . , n (26)

4 Experimental Study

Our prototype implementation – the OntQA-Replica system – runs on a dis-
tributed SAP HANA installation which is an in-memory database system and
hence needs a good replication strategy that also reduces the amount of servers
needed. The example data set consists of a table that resembles a medical health
record and is based on the set of Medical Subject Headings (MeSH [11]). The
table contains as columns an artificial, sequential tuple ID, a random patient ID,
and a disease chosen from the MeSH data set as well as the concept identifier
of the MeSH entry. We varied the table sizes during our test runs. The small-
est table consists 56,341 rows, a medium-sized table of 1,802,912 rows and the
largest of 14,423,296 rows. A clustering is executed on the MeSH data based on
the concept identifier (which orders the MeSH terms in a tree); in other words,
entries from the same subconcept belong to the same cluster. One fragmentation
(the “clustered” fragmentation) was obtained from this clustering and consists
of 117 fragments; these fragments have a column called clusterid. Another frag-
mentation (the “range-based” fragmentation) is based on ranges of the patient
ID and consists of 6 fragments for the small table, 19 for the medium-sized table
and 145 for the large table; these fragments have a column called rangeid.

For the replication procedure, first the overlapping fragments (the “con-
flicts”) are identified by using SELECT DISTINCT clusterid, rangeid FROM ci
JOIN ci ON (rj.tupleid=rj.tupleid) for each clustered fragment ci and each
range-based fragment rj .

Afterwards from the conflicts the overlap-DRP ILP is generated and solved.
For the small table, the input had 1820 constraints on 1240 variables; for the
medium-sized table, the input had 5720 constraints on 1370 variables; for the
large table, the input had 43520 constraints on 2630 variables. Based on the ILP
solution, the fragments are moved to different servers by using ALTER TABLE ci
MOVE TO ’severname’ PHYSICAL.

To enable recovery, a lookup table is maintained that stores for each clusterid
the tupleids of those tuples that constitute the clustered fragment. The recov-
ery procedure was executed on the range-based fragmentation to recover the
clustered fragmentation by running INSERT INTO ci SELECT * FROM r1, . . . , rm
JOIN lookup on (lookup.tupleid = ci.tupleid) WHERE lookup.clusterid=i
for each cluster i. The runtimes obtained are shown in Figure 1.

5 Related Work

There is a long history of fragmentation approaches for the relational data model.
Most approaches consider workload-aware fragmentation (see for example, [1, 4,

11

1000

21000

41000

61000

81000

101000

121000

56341 1802912 14423296

C
o

n
fl

ic
t

co
m

p
u

ta
ti

o
n

 a
n

d
 I

LP
 (

m
s)

Number of records

ILP solving

conflict comp.

0

10000

20000

30000

40000

50000

60000

70000

80000

56341 1802912 14423296

R
e

co
v

e
ry

 T
im

e
 (

m
s)

Number of Records

Fig. 1. Runtimes of replication computation and recovery

9]) that optimize distribution of data for a given workload of queries. However
none of these approaches consider semantical similarity of values inside a frag-
ment as is needed for our approach of query relaxation.

Bin packing is one of the classical NP-complete problems and it has been
shown to be APX-hard (it is not approximable with a ratio less than 1.5; see
[6]). As BPP is a special case of the more general BPPC, these properties carry
over to BPPC as well. Some variants of classical bin packing have been surveyed
in [2]. One of the primary sources of BPPC is [6]. However, as the number of
fragments we consider in our overlap-DRP is comparably low, these complexity
theoretic considerations usually do not affect the practical implementation and
any off-the-shelf ILP solver will find an optimal solution.

There is also related work on specifying resource management problems as
optimization problems. An adaptive solution for data replication using a genetic
algorithm is presented in [7]; they also consider transfer cost of replicas between
servers. Virtual machine placement is a very recent topic in cloud computing
[10, 3]. However, these specifications do not address the problem of overlapping
resources as we need for the query relaxation approach in this article.

6 Conclusion and Future Work

We presented and analyzed a data replication problem for a flexible query an-
swering system. It provides related answers by relaxing the original query and
obtaining a set of semantically close answers. The proposed replication scheme
allows for fast response times due to materializing the fragmentations. By solving
an ILP representation of the data replication problem, we minimize the overall
number of servers used for replication. In this paper the focus lies on support-
ing multiple relaxation attributes that lead to multiple fragmentations of the
same table. A minimization of the number of servers is due to the fact that one
fragmentation can be recovered from other fragmentations based on overlapping
fragments. The experimental evaluation shows sensible performance results.

12

Future work has to mainly address dynamic changes in the replication scheme.
Deletions and insertions of data lead to changing fragmentations sizes and hence
an adaptation of the server allocations might become necessary (similar to [7]).
The use of adaptive methods will be studied where (a large part of) a previous
solution might be reused to obtain a new solution. Another approach is to com-
pute the common subfragments (intersections) of overlapping fragments and use
these subfragments as a unit of replication. Copies of these subfragments will
hence be distributed among the servers.

6.1 Acknowledgements

The author gratefully acknowledges that the infrastructure and SAP HANA
installation for the test runs was provided by the Future SOC Lab of Hasso
Plattner Institute (HPI), Potsdam.

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-
ing into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. pp. 359–370. ACM
(2004)

2. Coffman Jr, E.G., Csirik, J., Leung, J.Y.T.: Variants of classical one-dimensional
bin packing. Handbook of Approximation Algorithms and Meta-Heuristics, Francis
and Taylor Books (CRC Press), London (2007)

3. Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and place-
ment in a cloud computing system. In: IEEE 5th International Conference on Cloud
Computing (CLOUD). pp. 750–757. IEEE (2012)

4. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.:
Hyrise: a main memory hybrid storage engine. Proceedings of the VLDB Endow-
ment 4(2), 105–116 (2010)

5. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Flexible Query Answering Systems. pp. 1–12. Springer (2011)

6. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling.
Information and Computation 132(2), 85–108 (1997)

7. Loukopoulos, T., Ahmad, I.: Static and adaptive distributed data replication using
genetic algorithms. Journal of Parallel and Distributed Computing 64(11), 1270–
1285 (2004)

8. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intel-
ligence 20(2), 111–161 (1983)

9. Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer
Science & Business Media (2011)

10. Shi, W., Hong, B.: Towards profitable virtual machine placement in the data center.
In: Fourth IEEE International Conference on Utility and Cloud Computing (UCC).
pp. 138–145. IEEE (2011)

11. U.S. National Library of Medicine: Medical subject headings,
http://www.nlm.nih.gov/mesh/

12. Wiese, L.: Clustering-based fragmentation and data replication for flexible query
answering in distributed databases. Journal of Cloud Computing 3(1), 1–15 (2014)

