Taxonomy-based Fragmentation for
Anti-Instantiation in Distributed Databases

Lena Wiese
Institute of Computer Science
University of Gottingen
Goldschmidtstrasse 7
37077 Gottingen
Germany
Email: lena.wiese @uni-goettingen.de

Abstract—One feature of cloud storage systems is data frag-
mentation (or sharding) so that data can be distributed over
multiple servers and subqueries can be run in parallel on the
fragments. On the other hand, flexible query answering can
enable a database system to find related information for a
user whose original query cannot be answered exactly. Query
generalization is a way to implement flexible query answering
on the syntax level. In this paper we study a taxonomy-based
fragmentation for the generalization operator Anti-Instantiation
with which related information can be found in distributed data.

I. INTRODUCTION

When data are stored in a cloud infrastructure, a distributed
database system can be used to manage the data in a network of
servers. This allows for load balancing (data can be distributed
according to the capacities of servers) and higher availability
(servers can process user requests in parallel). For relational
data, the theory of fragmentation has a long history (see
for example [1]) and several procedure have been analyzed
for splitting tabular data into fragments and subsequently
assigning fragments to servers.

On the other hand, flexible query answering offers mech-
anisms to intelligently answer user queries going beyond
conventional exact query answering. If a database system is
not able to find an exactly matching answer, the query is said
to be a failing query. Conventional database systems usually
return an empty answer to a failing query. In most cases, this is
an undesirable situation for the user, because he has to revise
his query and send the revised query to the database system in
order to get some information from the database. In contrast,
flexible query answering systems internally revise failing user
queries themselves and — by evaluating the revised query —
return answers to the user that are more informative for the
user than just an empty answer. Query generalization is one
way to implement flexible query answering.

In this paper we make the following contributions:

e We study how the values of a single relaxation at-
tribute (that is, table column) can induce a horizontal
fragmentation of the table based on a taxonomy on
these values.

e We show how this taxonomy-based fragmentation can
be used for flexible query answering by a query
generalization operator called Anti-Instantiation.

e We compute the selectivity of fragments to enable load
balancing on distributed database servers.

The paper is organized as follows. Sections II and III
provide background on data fragmentation and query general-
ization (in particular anti-instantiation). Section IV presents the
main contribution on taxonomy-based fragmentation; whereas
Section V talks about how to decompose a query to be
distributed among the servers. Section VI concludes the paper.

II. DATA FRAGMENTATION

We consider the case of data stored in relational tables.

Example 1: As a running example, we consider a hospital
information system that stores illnesses and treatments of
patients as well as their personal information (like address and
age) in the following three database tables:

I11 | PatientID | Diagnosis
8457 Cough
2784 Flu
2784 Asthma
2784 brokenLeg
8765 Asthma
1055 brokenArm
Treat | PatientID | Prescription
8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage
1055 Plaster bandage
Info | PatientID | Name | Address
8457 Pete Main Str 5, Newtown
2784 Mary | New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
1055 Anne | High Str 2, Oldtown

In relational database theory, several alternatives of split-
ting tables into fragments have been discussed (see for example
[1]), for example:

e Vertical fragmentation: Subsets of attributes (that is,
columns) form the fragments. Rows of the fragments
that correspond to each other have to be linked by a
tuple identifier. A vertical fragmentation corresponds
to projection operations on the table.

e Horizontal fragmentation: Subsets of tuples (that is,
rows) form the fragments. A horizontal fragmentation
can be expressed by a selection condition on the table.

e Derived fragmentation: A given horizontal fragmenta-
tion on a primary table (the primary fragmentation)
induces a horizontal fragmentation of another table
based on the semijoin with the primary table. In this
case, the primary and derived fragments with matching
values for the join attributes can be stored on the
same server; this improves efficiency of a join on the
primary and the derived fragments.

The following three properties are considered the important
correctness properties of a fragmentation:

e Completeness: No data should be lost during fragmen-
tation. For vertical fragmentation, each column can be
found in some fragment; in horizontal fragmentation
each row can be found in a fragment.

e Reconstructability: Data from the fragments can be
recombined to result in the original data set. For
vertical fragmentation, the join operator is used on the
tuple identifier to link the columns from the fragments;
in horizontal fragmentation, the union operator is used
on the rows coming from the fragments.

e Non-redundancy: To avoid duplicate storage of data,
data should be uniquely assigned to one fragment. In
vertical fragmentation, each column is contained in
only one fragment (except for the tuple identifier that
links the fragments); in horizontal fragmentation, each
row is contained in only one fragment.

In this paper we will compute a primary horizontal frag-
mentation based on a taxonomy of an attribute for which values
should be generalized to allow for flexible query answering.
For other tables (those that can be joined with the primary
table) a derived fragmentation will be computed.

IIT. ANTI-INSTANTIATION

In this paper we focus on flexible query answering for
conjunctive queries expressed as logical formulas. That is, we
assume a logical language .# consisting of a finite set of
predicate symbols (denoting the table names; for example, /I,
Treat or P), a possibly infinite set dom of constant symbols
(denoting the values in table cells; for example, Mary or
a), and an infinite set of variables (z or y). A term is
either a constant or a variable. The capital letter X denotes
a vector of variables; if the order of variables in X does
not matter, we identify X with the set of its variables and
apply set operators — for example we write y € X. We use
the standard logical connectors conjunction A, disjunction V,
negation — and material implication — and universal V as well
as existential 3 quantifiers. An atom is a formula consisting of
a single predicate symbol only; a literal is an atom (a “positive
literal”) or a negation of an atom (a “negative literal”); a clause
is a disjunction of atoms; a ground formula is one that contains
no variables; the existential (universal) closure of a formula ¢
is written as 3¢ (V¢) and denotes the closed formula obtained
by binding all free variables of ¢ with the respective quantifier.

A query formula) is a conjunction of literals with some
variables X occurring freely (that is, not bound by variables);
that is, Q(X) = L;; A ... A L;,. By abuse of notation, we
will also write L;; € Q when L;; is a conjunct in formula
Q. A query Q(X) is sent to a knowledge base ¥ (a set
of logical formulas) and then evaluated in X by a function
ans that returns a set of answers containing instantiations of
the free variables (in other words, a set of formulas that are
logically implied by); as we focus on the generalization of
queries, we assume the ans function and an appropriate notion
of logical truth given. A special case of a knowledge base can
be a relational database with database tables as in Example 1.

Example 2: The example query Q(z1,22,23) =
(a1, Flu) A Ill(x1, Cough) A Info(xy,x2,x3) asks for
all the patient IDs x; as well as names 2 and addresses x3
of patients that suffer from both flu and cough. This query
fails with the given database tables as there is no patient with
both flu and cough. However, the querying user might instead
be interested in the patient called Mary who is ill with both
flu and asthma. Query generalization will enable an intelligent
database system to find this informative answer.

As in [2] we apply a notion of generalization based on a
model operator .

Definition 1 (Deductive generalization [2]): Let ¥ be a
knowledge base, ¢(X) be a formula with a tuple X of free
variables, and ¥(X,Y") be a formula with an additional tuple
Y of free variables disjoint from X. The formula ¢ (X,Y) is
a deductive generalization of ¢(X), if it holds in X that the
less general ¢ implies the more general ¢ where for the free
variables X (the ones that occur in ¢ and possibly in 1) the
universal closure and for free variables Y (the ones that occur
in 1) only) the existential closure is taken:

N EVXTIY (6(X) = 9(X,Y))

The CoopQA system [3] applies three generalization op-
erators to a conjunctive query (which — among others — can
already be found in the seminal paper of Michalski [4]): Drop-
ping Condition (DC) removes one conjunct from a query;
Anti-Instantiation (Al) replaces a constant (or a variable
occurring at least twice) in @ with a new variable y; Goal
Replacement (GR) takes a rule from X, finds a substitution 6
that maps the rule’s body to some conjuncts in the query and
replaces these conjuncts by the head (with 6 applied). In this
paper we focus only on the Al operator.

Example 3: For Q(x1,x2,x3) = 1l(xy, Flu) A
Ill(x1, Cough) A Info(x1,x2,z3) an example generalization
with Al is QA7 (21,29, 73,y) = (21, Flu) A I(z1,y) A
Info(xq1,22,23). It results in an non-empty (and hence
informative) answer: I11(2748, Flu) A 111(2748, Asthma) A
Info (2748, Mary, ‘New Str 3, Newtown'). Another
answer obtained is the fact that Mary suffers from
a broken leg: [ll(2748, Flu) A Ill(2748, brokenLeg) A
Info(2748, Mary, ‘New Str 3, Newtown').

Al applies to constants and to variables and covers these
special cases:

e turning constants into variables: P(a) is converted to
P(x) (see [4])

e breaking joins: P(x) A S(x) is converted to P(z) A
S(y) (introduced in [2])

e naming apart variables inside atoms: P(x,x) is con-
verted to P(x,y)

For each constant a all occurrences can be anti-instantiated one
after the other; the same applies to variables — however, with
the exception that if x only occurs twice, one occurrence of x
need not be anti-instantiated due to equivalence. For logical
queries, anti-instantiation can be implemented as shown in
listing Operator 1.

Operator 1 Anti-instantiation (AI)

Input: Query Q(X) =Ly A...A L, of length n
Output: Generalized query Q9¢"(X,Y) with Y containing
one new variable
1: From Q(X) choose a term ¢ such that ¢ is
e either a variable occurring in Q(X) at least twice
e or a constant
2: Choose one literal L; where ¢ occurs
3: Let L. be the literal with one occurrence of ¢ replaced
with a new variable
4: return L4 /\.../\Lj_l/\L;-/\Lj+1/\.../\L7L

In this paper, we focus on the first application of anti-
instantiation: turning constants into variables. In the following
section, we present an approach that identifies those tuples that
are good candidates for answers to such an anti-instantiated
query; these candidates are put into one fragment for storage
in a distributed database system.

IV. TAXONOMY-BASED FRAGMENTATION

The anti-instantiation operator as stated above is a purely
syntactic operator. For the application of turning constants into
variables, any constant can be inserted in the answer. This
syntactic operator is oblivious of whether the obtained answer
is semantically close to the replaced constant in the original
query or not. For example in Example 3, the two diseases
cough and asthma are semantically closer to each other than the
two diseases cough and broken leg. That is, the generalization
operators can sometimes lead to overgeneralization where the
generalized queries (and hence the obtained answers) are too
far away from the user’s original query intention. To avoid
this overgeneralization and the overabundance of answers,
a semantic guidance has to be added to the process. This
semantic guidance can for example be given by a taxonomy
on constants.

For simplicity of the fragmentation process, we consider
only a single attribute on which anti-instantiation should be
applied. We call this attribute the relaxation attribute; in our
example the relaxation attribute is the attribute Diagnosis in
table Ill. The domain of an attribute is the set of values that
the attribute may range over; whereas the active domain is
the set of values actually occuring in a given table. From a
semantical point of view, the domain of Diagnosis is the set
of strings that denote a disease; the active domain is the set
of strings { Cough, Flu, Asthma, brokenArm, brokenLeg}.

A taxonomy over an attribute is a tree structure where the
leaves are the constants from the domain of the attribute. The

inner nodes are more abstract descriptions of the leave nodes
in the subtree below them. That is, each inner node represents
the set of leave nodes in its subtree. For our purposes is suffices
to have a taxonomy over the active domain of the relaxation
attribute plus the constants that may occur in a query for the
relaxation attribute.

Example 4: A simple taxonomy for the active do-
main of the Diagnosis attribute could be the following:

Disease
/ \
respiratory disease fracture
e N brok A/ b;kenLe
Cough Asthma Flu roxenArm g

The inner node respiratory disease is the common ancestor of
the leave nodes cough, asthma and flu and hence represents
this set of constants.

Usually taxonomies are constructed manually by a domain
expert. However, automatic construction of taxonomies has
already been discussed in [5] and is still a hot topic of research
(see for example [6]). Here we assume that a good taxonomy
is provided which the fragmentation process can rely on.

We now discuss how clusters of constants can be found
in the taxonomy; these clusters later induce the horizontal
fragmentation. A cluster of constants is a subset of the leaves
which are semantically close; a cluster can be represented by
the lowest common ancestor of all constants in the cluster. To
define semantic closeness, we use the following notion of a
distance between two leaves in the taxonomy.

Definition 2 (Path-based distance): Let 1y and l5 be two
leaves in a taxonomy, let anc be their lowest common ancestor
node, let root be the root node of the taxonomy. Let pl
denote the length of the shortest path between two nodes in
the taxonomy (that is, the number of edges between the two
nodes). Then the path-based distance between the two leaves
is defined as the fraction of the shortest path between the
two nodes (via their common ancestor) and the longest path
between the two (via the root node):

. pl(l1, anc) + pl(la, anc)
= 1
dist(l, 1) pl(l1, root) + pl(l2, root) M
_ pl(l1,12) @

pl(ly, root) + pl(la, Toot)

This distance measure ranges between O (for identical nodes)
and 1 (for nodes whose shortest path is via the root node).

Example 5: The distance between cough and asthma is
given by the length of the shortest path between the two via
their common ancestor respiratory disease (which is 2) divided
by the sum of the lengths of the paths to the root node (which
is 2 for each path): dist(cough, asthma) = 525 = §. The dis-
tance between cough and brokenLeg is 1 (because their shortest
pith goes via the root node): dist(cough, brokenLeg) =

72 = L.

Other distance measures or similarity measures have been

studied (for example, [7], [8]) and could equally well be
applied here.

For an inner node we can obtain the maximum of the
differences between any two leave nodes below the inner node

and obtain an intra-cluster distance:

Definition 3 (Intra-cluster distance): Let v be an inner
node and let [; and [, be two arbitrary leaves in the subtree
starting at v. Then the intra-cluster distance for v is defined
as the maximum distance between any two [; and [s:

cdist(v) = maxy, 1, dist(l1,12) 3)

Now we can annotate each node in the taxonomy with its
intra-cluster distance. Let us assume that the user specifies a
threshold (denoted o) for the distances he is willing to tolerate
when answering his query. The database system then identifies
those inner nodes v — representing disjoint clusters — for which
the intra-cluster distance does not exceed the threshold, that
is cdist(v) < «; these inner nodes represent the clusters. A
taxonomy-based fragmentation is then one that is induced by
these clusters:

Definition 4 (Taxonomy-based fragmentation): Let A be
the relaxation attribute; let 7' be a tree-shaped taxonomy for
A annotated with intra-cluster distances; for any node v in 7',
let cluster(v) be the set of constants in the leave nodes of the
subtree starting from v; let a be the threshold for the intra-
cluster distance; let F' be a table instance (a set of tuples);
then, a set of fragments {F},..., F,,} (defined over the same
attributes as F') is a taxonomy-based fragmentation if

e Vertical fragmentation: for every set of tuples F;, F; C
F

e Clustering: for every F; there is a node v; in 1" such
that cluster(v;) = mwa(F;) (that is, the projection of
F; on A contains all values in cluster v;)

e Threshold: for each such v;, cdist(v;) < «

e Completeness: For every tuple ¢ in F' there is an F;
in which ¢ is contained

e Reconstructability: F = FyU...UF,

e Non-redundancy: for any ,j, F; N F; = () (or in other
words cluster(v;) N cluster(vj) = () due to the tree
properties of T')

One could take the maximum clusters for which the thresh-
old « is not exceeded; but also smaller disjoint clusters with
lower intra-cluster distance are allowed.

Example 6: The taxonomy for the relaxation attribute Di-
agnosis annotated with the intra-cluster distances is as follows:
Disease
P ~
respiratory disease

Ve I N /)

Cough Asthma Flu
‘ cdist: 0 ‘ ’ cdist: 0 ‘ ‘ cdist: 0 ‘

fracture

brokenArmbrokenLeg
ledist: 0] [cdist: 0]

For a distance threshold a = 0.5, we obtain two clusters:
one for respiratory diseases and one for fractures. These
two clusters induce two fragments on the relation ///. These
two fragments can be defined as materialized views with the
following SQL statements.

CREATE VIEW Respiratory AS
SELECT % FROM Illness WHERE Diagnosis
IN (’/Cough’, ’'Flu’, ’'Asthma’)

CREATE VIEW Fracture AS
SELECT % FROM Illness WHERE Diagnosis
IN ("brokenlLeg’, ’"brokenArm’)

Given a taxonomy-based fragmentation, the database sys-
tem can now start to allocate fragments to different servers
in the distributed database system (or the cloud storage infras-
tructure). In order to make load balancing possible, we have to
measure the size of each fragment. Here we choose the notion
of selectivity of a fragment:

Definition 5 (Selectivity): The selectivity of a fragment Fj
is the number of tuples contained in F; (that is, its cardinality).

Again, other size measures can be chosen; for example,
considering the exact storage size for each tuple. Based on
the size annotations for each cluster, load balancing can now
be executed to distribute the fragments among the servers in
the network; the allocation should be such that each server
stores data according to its storage capacities.

Example 7: The selectivity of each cluster can be
annotated on the nodes in the taxonomy as follows:
Disease

~

respiratory disease

e | AN
Asthma Flu

size: 2 ‘ ’size: 1

fracture
size: 2
/ \
broken ArmbrokenLeg

Cough ‘ size: 1 ‘

‘ size: 1 ‘

‘size: 1‘

Selectivity annotations for leaves in the taxonomy can be
obtained by SQL statements similar to the following:

SELECT count (ID) FROM Illness
WHERE Diagnosis = ’Cough’

Selectivity annotations for inner nodes in taxonomy can either
be obtained by summing the selectivity annotations of the
direct child nodes; or — if only the selectivity of the inner
node has to be obtained without computing the one of the
child nodes — with SQL statements similar to the following:

SELECT count (ID)
WHERE Diagnosis
IN ('Cough’, 'Flu’,

FROM Illness

"Asthma’)

Apart from load balancing, another important issue for
cloud storage is data locality: Data that are often accessed
together should be stored on the same server in order to
avoid excessive network traffic and delays. That is why we
propose to compute a derived fragmentation for each table
that shares join attributes with the primary table (for which the
taxonomy-based fragmentation was computed). Each derived
fragment should then be assigned to same database server on
which the primary fragment with the matching join attribute
values resides. The sizes of the derived fragments can also
be computed and taken into account for the load balancing
procedure.

Example 8: In our example, joins between the tables I,
Treat and Info are possible based on the join attribute Patien-

tID. Based on each primary fragment of /ll, derived fragments
can be obtained with SQL statements similar to the following
(which computes a derived fragment on the Info table for the
primary fragment containing respiratory diseases).

CREATE VIEW Info_resp AS

SELECT % FROM Info WHERE PatientID

IN (SELECT ID FROM Respiratory)

AND Respiratory.PatientID=Info.PatientID

The entire fragmentation assigned to two servers then looks as
follows:

Server 1:
Respiratory | PatientID | Diagnosis
8457 Cough
2784 Flu
2784 Asthma
8765 Asthma
Treat_
resp PatientID | Prescription
8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage
Info_
resp | PatientID | Name | Address
8457 Pete Main Str 5, Newtown
2784 Mary | New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
Server 2:
Fracture | PatientID | Diagnosis
2784 brokenlLeg
1055 brokenArm
Treat_
frac PatientID | Prescription
2784 Inhalation
2784 Plaster bandage
1055 Plaster bandage
Info_
frac | PatientID | Name | Address
2784 Mary | New Str 3, Newtown
1055 Anne | High Str 2, Oldtown

Note that non-redundancy of derived fragments is difficult
to achieve (this is also discussed in [1]). We opt for having
some redundancy in the derived fragments for sake of better
data locality and hence better performance of query answering.
That is why the information for patient Mary occurs in both
derived fragments; the same applies to the treatment fragments.

V. QUERY DECOMPOSITION

At last, the flexible query answering can be executed on
the obtained taxonomy-based fragmentation as follows:

1) The user sends a query to the database system with a
constant for the relaxation attribute which should be
anti-instantiated.

2) The database system identifies the cluster in the
taxonomy in which the query constant lies.

3) The database system may split the query into sub-
queries and assign them to different servers.

4) The database system redirects the subquery which
was anti-instantiated to the server that hosts the
identified cluster.

5) The server can return the entire fragment for the
subquery with the assertion that the distance threshold
a is not exceed and hence the answers are relevant
for the user.

6) The server may process other subqueries (for example
joining the primary and the derived fragments).

Example 9: In the example query Q(z1,z2,z3) =
Il(xy1, Flu) A Ill(x1, Cough) A Info(xy,z2,x3) the constant
Cough is anti-instantiated. The fragment matching the Cough
constant is the one containing respiratory diseases. The
anti-instantiated query Q41 (xy,z9,23,9) = Il(zy, Flu) A
Ill(x1,y) A Info(xy,za,23) is sent to the server hosting
the Respiratory fragment. It executes the query on the pri-
mary Respiratory fragment and on the derived Info_resp
fragment and returns the results to the user with the
guarantee that the distances of the values in the relax-
ation variable are at most 0.5. That is, in this case
only the first informative answer (see Example 3) with
the disease asthma I11(2748, Flu) A I11(2748, Asthma) A
Info(2748, Mary, ‘New Str 3, Newtown‘) is returned. In
contrast, the answer for the disease brokenlLeg is suppressed
because it resides in the Fracture fragment.

In the above example, the generalized query was entirely
sent to the appropriate server. However, usually the query has
to be split into subqueries which have to be sent to distinct
servers and later on be combined by the union operator.

Example 10: In the example query Q(x1,x9,%3) =
Ill(xy, brokenLeg) A Ill(xz1, Cough) A Info(xy,z2,x3) the
query has to be split into two subqueries Q1(z1,x2,23) =
Ill(xy, brokenLeg) A Info(x1,x2,z3) (which has to be
answered by the Fracture fragment on Server 2) and
Q2(x1, 2, x3) = Ill(x1, Cough) ANInfo(xy, x4, 23) (Which has
to be answered by the Respiratory fragment on Server 1).

To sum up, query decomposition for queries that cover more
than one fragment is still a topic that requires further studies.
Moreover, selection conditions on attributes other than the
relaxation attribute lead to a search on all fragments, and
hence the query has to be redirected to all servers that host
such a fragment — however, this search can be improved with
appropriate indexes.

Nevertheless, the proposed taxonomy-based fragmentation
works well in the following cases:

e the query uses a selection condition over the relaxation
attribute such that subqueries can be sent to the
appropriate servers and can be anti-instantiated.

e the query computes a join between primary and de-
rived fragment based based on the join attribute with
which the derived fragmentation was obtained.

VI. DISCUSSION AND CONCLUSION

In this paper we proposed an Anti-instantiation approach
for a distributed database system; with this approach, cloud

storage can be enhanced with an intelligent flexible query
answering mechanism. The approach combines fragmentation
based on a taxonomy with load balancing. For the user,
this approach is totally invisible: he can send queries to the
database system unchanged. The distributed database system
autonomously computes the fragmentation (where the only
additional information needed is the taxonomy) and can use
an automatic load balancer that relies on the size information
of each fragment. When receiving a user query, the database
system can automatically decompose the query and redirect
subqueries to the appropriate servers.

The area of flexible query answering (sometimes also
called cooperative query answering) has been studied exten-
sively for single server systems. Some approaches have used
taxonomies or ontologies for flexible query answering but
did not consider the their application for distributed storage
of data: CoBase [S] used a type abstraction hierarchy to
generalize values; Shin et al [8] use some specific notion of
metric distance in a knowledge abstraction hierarchy to identify
semantically related answers; Halder and Cortesi [9] define
a partial order between cooperative answers based on their
abstract interpretation framework; Muslea [10] discusses the
relaxation of queries in disjunctive normal form. Ontology-
based query relaxation has also been studied for non-relational
data (like XML data in [11]).

The work presented in this paper can be extended in various
research directions. We give a brief discussion of possible
extensions.

e So far, the fragmentation process is only centered
around a single relaxation attribute. It must be investi-
gated how a more flexible choice of the relaxation at-
tribute or the support for multiple relaxation attributes
can be achieved.

e In order to have a full-blown distributed flexible query
answering system, the interaction of the proposed
fragmentation with other generalization operators (like
dropping condition and goal replacement) must be
elaborated.

e To achieve a more adaptive load balancing, the inter-
play of distance and selectivity must be formalized;
for example, a threshold 3 for the selectivity can be
defined and fragments can be chosen such that none
of the two thresholds is exceeded.

e A practical study on a large-scale distributed database
system must be devised.

e Conditions for the non-redundancy of derived frag-
ments must be established; for example, dependencies
between data (like dependencies between diagnoses
and treatments) can be considered.

e When multiple fragments are assigned to one server,
data locality can be improved by assigning fragments
that are semantically close to each other to the same
server.

e The effect of updates on data in the fragments must
be studied in detail.

(1]

(2]

(31

(4]

(5]

(6]

(71

[91

[10]

(1]

REFERENCES

M. T. Ozsu and P. Valduriez, Principles of Distributed Database
Systems, Third Edition. Springer, 2011.

T. Gaasterland, P. Godfrey, and J. Minker, “Relaxation as a platform
for cooperative answering,” JIIS, vol. 1, no. 3/4, pp. 293-321, 1992.

K. Inoue and L. Wiese, “Generalizing conjunctive queries for informa-
tive answers,” in Flexible Query Answering Systems. Springer, 2011,
pp. 1-12.

R. S. Michalski, “A theory and methodology of inductive learning,”
Artificial Intelligence, vol. 20, no. 2, pp. 111-161, 1983.

W. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C. Larson,
“CoBase: A scalable and extensible cooperative information system,”
JIIS, vol. 6, no. 2/3, pp. 223-259, 1996.

M. B. Blaschko and A. Gretton, “Learning taxonomies by dependence
maximization,” in Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2008, pp. 153-160.

P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” Journal of Artificial Intelligence Research (JAIR), vol. 11, pp.
95-130, 1999.

M. K. Shin, S.-Y. Huh, and W. Lee, “Providing ranked cooperative
query answers using the metricized knowledge abstraction hierarchy,”
Expert Systems with Applications, vol. 32, no. 2, pp. 469—484, 2007.

R. Halder and A. Cortesi, “Cooperative query answering by abstract
interpretation,” in SOFSEM201 1, ser. LNCS, vol. 6543. Springer, 2011,
pp. 284-296.

1. Muslea, “Machine learning for online query relaxation,” in Knowledge
discovery and data mining (KDD). ACM, 2004, pp. 246-255.

J. Hill, J. Torson, B. Guo, and Z. Chen, “Toward ontology-guided
knowledge-driven xml query relaxation,” in Computational Intelligence,
Modelling and Simulation (CIMSiM), 2010, pp. 448-453.

