
Syntactic Similarity for Ranking Database
Answers obtained by Anti-Instantiation

Lena Wiese

Institute of Computer Science
University of Göttingen
Goldschmidtstrasse 7

37077 Göttingen
Germany

lena.wiese@uni-goettingen.de

Abstract. Flexible query answering can be implemented in an intelli-
gent database system by query generalization to obtain answers close to
a user’s intention although not answering his query exactly. In this paper,
we focus on the generalization operator “Anti-Instantiation” and inves-
tigate how syntactic similarity measures can be used to rank generalized
queries with regard to their closeness to the original query.

1 Introduction

Searching for data in a conventional database is a tedious task because a correct
and exact formulation of the query conditions matching a user’s query intention
is often difficult to achieve. This is why users need the support of intelligent and
flexible query answering mechanisms. Cooperative (or flexible) query answering
systems internally revise failing user queries and return answers to the user that
are more informative for the user than just an empty answer. In this paper, we
devise a ranking based on similarity of conjunctive queries that are generated
by a generalization procedure. With this ranking the database system has the
option to only answer the queries most similar to the original query.

In this paper we focus on flexible query answering for conjunctive queries.
Throughout this article we assume a logical language L consisting of a finite set
of predicate symbols (for example denoted Ill, Treat or P), a possibly infinite set
dom of constant symbols (for example denoted Mary or a), and an infinite set of
variables (for example denoted x or y). A query formula Q is a conjunction of
atoms with some variables X occurring freely (that is, not bound by variables);
that is, Q(X) = Li1 ∧ . . . ∧ Lin . The CoopQA system [1] applies three general-
ization operators to a conjunctive query (which – among others – can already
be found in the seminal paper of Michalski [2]). In this paper we focus only on
the Anti-Instantiation (AI) operator that replaces a constant (or a variable
occurring at least twice) in Q with a new variable y.

Example 1. As a running example, we consider a hospital information system
that stores illnesses and treatments of patients as well as their personal infor-
mation (like address and age) in the following three database tables:

Ill PatientID Diagnoses

8457 Cough
2784 Flu
2784 Bronchitis
8765 Asthma

Treat PatientID Prescription

8457 Inhalation
2784 Inhalation
8765 Inhalation

Info PatientID Name Address

8457 Pete Main Street 5, Newtown
2784 Mary New Street 3, Newtown
8765 Lisa Main Street 20, Oldtown

The example query Q(x1, x2, x3) = Ill(x1,Flu)∧Ill(x1,Cough)∧Info(x1, x2, x3)
asks for all the patient IDs x1 as well as names x2 and addresses x3 of patients
that suffer from both flu and cough. This query fails with the given database
tables as there is no patient with both flu and cough. However, the querying user
might instead be interested in the patient called Mary who is ill with both flu and
bronchitis. For Q(x1, x2, x3) = Ill(x1,Flu) ∧ Ill(x1,Cough) ∧ Info(x1, x2, x3) an
example generalization with AI is QAI(x1, x2, x3, y) = Ill(x1,Flu) ∧ Ill(x1, y) ∧
Info(x1, x2, x3). It results in an non-empty (and hence informative) answer:
Ill(2748,Flu)∧Ill(2748,Bronchitis)∧Info(2748,Mary , ‘New Street 3 ,Newtown‘).

2 Similarity Measures

Based on feature sets of two objects a and b, similarity between these two objects
can be calculated by means of different similarity measures. That is, if A is a
feature set of a and B is the corresponding feature set of b, then A∩B is the set
of their common features, A \ B is the set of features that are only attributed
to A, and B \ A is the set of features that are only attributed to B. We obtain
the cardinalities of each set: l = |A ∩ B|, m = |A \ B|, and n = |B \ A| and
use them as input to specific similarity measures. In this paper, we focus on the
ratio model [3] (in particular, one of its special cases called Jaccard index).

Definition 1 (Tversky’s Ratio Model [3], Jaccard Index). A similarity
measure sim between two objects a and b can be represented by the ratio of
features common to both a and b and the joint features of a and b using a non-
negative scale f and two non-negative scalars α and β. The Jaccard index is a
special form of the ratio model where α = β = 1 and f is the cardinality | · |:

simjacc(a, b) =
|A ∩B|

|A ∩B|+ |A \B|+ |B \A|
=
|A ∩B|
|A ∪B|

=
l

l +m+ n

Ferilli et al [4] introduce a novel similarity measure that is able to also differ-
entiate formulas even if l = 0; this measure is parameterized by a non-negative
scalar α. We call this similarity measure α-similarity and let α = 0.5 by default.

Definition 2 (α-Similarity [4]). The α-similarity between two objects a and
b consists of the weighted sum (weighted by a non-negative scalar α, and adding

1 to the numerators and 2 to the denominators) of the ratios of shared features
divided by the features of a alone and the features of b alone whenever a 6= b:

simα(a, b) = α· |A ∩B|+ 1

|B|+ 2
+(1−α)· |A ∩B|+ 1

|A|+ 2
= α· l + 1

l + n+ 2
+(1−α)· l + 1

l +m+ 2

In case a = b the similarity is 1: simα(a, a) = 1.

3 Similarity for Anti-Instantiation

We calculate the similarity between the original query Q and a query QAI
∗

obtained by the AI operator. We concentrate on the following sets of features:

Predicates in the query: The predicates of Q and QAI
∗

are identical:
Pred(Q) = Pred(QAI

∗
) leading to similarity 1 on the predicate feature.

Constants in the query: The set of constants in QAI
∗

might be reduced
compared to Q: Const(QAI

∗
) ⊆ Const(Q); we have l ≤ 0, m ≤ 0 and n = 0.

Variables in the query: Because each AI step introduces a new variable,
we have Vars(Q) ⊆ Vars(QAI

∗
) and hence l ≤ 0, m = 0 and n ≤ 1.

Star of a literal: For each literal Li of Q the amount of connections to
other literals is always greater or equal to the amount of connections in
QAI

∗
. We borrow the definition of a star of a literal [4] that contains all

predicate symbols of other literals that share a term with the chosen literal.
We denote Terms(Li ,Q) the set of terms of literal Li in Q.

Definition 3 (Star of a literal [4])). For a literal Li in a given query Q
we define the star of Li to be a set of predicate symbols as follows

Star(Li ,Q) = {P | there is Lj ∈ Q, i 6= j, such that Lj = P (t1, . . . tk) and

Terms(Lj ,Q) ∩ Terms(Li ,Q) 6= ∅} ⊆ Pred(Q)

Hence, Star(Li ,Q
AI∗

) ⊆ Star(Li ,Q) and l ≤ 0, m ≤ 0 and n = 0.
Relational positions of a term: Lastly, we borrow the notion of relational
features from [4]. Such a relational feature of a term is the position of the term
inside a literal Lj = P (t1, . . . tk): If a term t appears as the h-th attribute in
literal Li (that is, th = t for 1 ≤ h ≤ k), then P.h is a relational feature of
t. Let then Rel(t, Q) denote the multiset of all relational features of a term
t in query Q. For a term t in Q some its positions might be lost in QAI

∗
.

Hence, Rel(t, QAI
∗
) ⊆ Rel(t, Q) and l ≤ 0, m ≤ 0 and n = 0.

Example 2. The example query Q(x1, x2, x3) = Ill(x1,Flu) ∧ Ill(x1,Cough) ∧
Info(x1, x2, x3) can be generalized (by anti-instantiating cough with a new vari-
able y) to be QAI1 (x1, x2, x3, y) = Ill(x1,Flu) ∧ Ill(x1, y) ∧ Info(x1, x2, x3). An-
other possibility (by anti-instantiating one occurrence of x1 with a new variable
y) is the query QAI2 (x1, x2, x3, y) = Ill(y,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3).
Summing all features (predicates, constants, variables, stars and relational) and
dividing by 5 gives us the overall average for each similarity measure and for each

formula: The first query QAI1 (with an average Jaccard index of 0.81 and an av-
erage α-similarity of 0.84) is ranked very close to the second query QAI2 (with
an average Jaccard index of 0.80 and an average α-similarity of 0.84) because
while more constants are lost in QAI1 more joins are broken in QAI2 .

Next, we analyze the effect of multiple applications of the AI operator on the
similarity values. We have the following monotonicity property: if A is a feature
set of the original Q, B is the corresponding feature set of QAI

∗
, and C is the

corresponding feature set of a query QAI
+

such that QAI
+

can be obtained from
QAI

∗
by applying more AI steps, then we have that either a) more variables

are added in QAI
+

(that is, B \ A ⊆ C \ A) or b) (in case of all other feature
sets) more features lost (that is, A \ B ⊆ A \ C). If one of these inclusions is

proper, then the similarity of QAI
∗

to Q is higher than the similarity of QAI
+

.
More formally, for n = |B \ A| and n′ = |C \ A| as well as m = |A \ B| and
m′ = |A\C| and postulating that n < n′ or m < m′ for any feature, we have that

sim(Q,QAI
∗
) > sim(Q,QAI

+

). Due to this monotonicity property, queries with
more anti-instantiations are ranked lower as shown in the following example.

Example 3. We consider two steps of Anti-Instantiations on our example query
Q(x1, x2, x3) = Ill(x1Flu)∧Ill(x1,Cough)∧Info(x1, x2, x3). One such generalized
query can be QAI,AI(x1, x2, x3, y, z) = Ill(y,Flu) ∧ Ill(x1, z) ∧ Info(x1, x2, x3)
with two new variables y and z (which is a combination of the two AI steps
of QAI1 and QAI2). The query with two anti-instantiations is ranked below the
queries with one anti-instantiation: 0.63 for the Jaccard index and 0.73 for α-
similarity. Queries with one anti-instantiations would hence preferably answered.

4 Discussion and Conclusion

We applied two similarity measures (Jaccard index and α-similarity) to evalu-
ate the syntactic changes that are executed on conjunctive queries during anti-
instantiation and can hence support the database system to intelligently find
relevant information for a user. A comprehensive similarity framework that re-
spects all possible combinations of the operators DC, GR and AI (as introduced
and analyzed in [1]) is the topic of future work as well as a comparison to related
approaches and the consideration of semantic (term-based) similarity.

References

1. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Flexible Query Answering Systems, Springer (2011) 1–12

2. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelli-
gence 20(2) (1983) 111–161

3. Tversky, A.: Features of similarity. Psychological review 84(4) (1977) 327–352
4. Ferilli, S., Basile, T.M.A., Biba, M., Mauro, N.D., Esposito, F.: A general similarity

framework for horn clause logic. Fundamenta Informaticae 90(1-2) (2009) 43–66

