Syntactic Similarity for Ranking Database Answers obtained by Anti-Instantiation

Lena Wiese

Institute of Computer Science University of Göttingen Goldschmidtstrasse 7 37077 Göttingen Germany lena.wiese@uni-goettingen.de

Abstract. Flexible query answering can be implemented in an intelligent database system by query generalization to obtain answers close to a user's intention although not answering his query exactly. In this paper, we focus on the generalization operator "Anti-Instantiation" and investigate how syntactic similarity measures can be used to rank generalized queries with regard to their closeness to the original query.

1 Introduction

Searching for data in a conventional database is a tedious task because a correct and exact formulation of the query conditions matching a user's query intention is often difficult to achieve. This is why users need the support of intelligent and flexible query answering mechanisms. *Cooperative* (or *flexible*) query answering systems internally revise failing user queries and return answers to the user that are more informative for the user than just an empty answer. In this paper, we devise a ranking based on similarity of conjunctive queries that are generated by a generalization procedure. With this ranking the database system has the option to only answer the queries most similar to the original query.

In this paper we focus on flexible query answering for conjunctive queries. Throughout this article we assume a logical language \mathscr{L} consisting of a finite set of predicate symbols (for example denoted *Ill*, *Treat* or *P*), a possibly infinite set *dom* of constant symbols (for example denoted **Mary** or *a*), and an infinite set of variables (for example denoted *x* or *y*). A query formula *Q* is a conjunction of atoms with some variables *X* occurring freely (that is, not bound by variables); that is, $Q(X) = L_{i_1} \wedge \ldots \wedge L_{i_n}$. The CoopQA system [1] applies three generalization operators to a conjunctive query (which – among others – can already be found in the seminal paper of Michalski [2]). In this paper we focus only on the **Anti-Instantiation** (*AI*) operator that replaces a constant (or a variable occurring at least twice) in *Q* with a new variable *y*.

Example 1. As a running example, we consider a hospital information system that stores illnesses and treatments of patients as well as their personal information (like address and age) in the following three database tables:

<i>I11</i>	PatientID	Diagnoses		Tros	-+	PationtID	Prescription
	8457				_	8457	Inhalation
	2784				L	2784	Inhalation
	2784	Bronch			L	8765	Inhalation
	8765	Asthma					
Inf	o PatientIl						
8457			Main Street 5, Newtown				
	2784	*		Street 3, Newtown			
	8765	Lisa	Mai	n Street	20_{2}	, Oldtown	

The example query $Q(x_1, x_2, x_3) = Ill(x_1, Flu) \wedge Ill(x_1, Cough) \wedge Info(x_1, x_2, x_3)$ asks for all the patient IDs x_1 as well as names x_2 and addresses x_3 of patients that suffer from both flu and cough. This query fails with the given database tables as there is no patient with both flu and cough. However, the querying user might instead be interested in the patient called Mary who is ill with both flu and bronchitis. For $Q(x_1, x_2, x_3) = Ill(x_1, Flu) \wedge Ill(x_1, Cough) \wedge Info(x_1, x_2, x_3)$ an example generalization with AI is $Q^{AI}(x_1, x_2, x_3, y) = Ill(x_1, Flu) \wedge Ill(x_1, y) \wedge$ $Info(x_1, x_2, x_3)$. It results in an non-empty (and hence informative) answer: $Ill(2748, Flu) \wedge Ill(2748, Bronchitis) \wedge Info(2748, Mary, 'New Street 3, Newtown')$.

2 Similarity Measures

Based on feature sets of two objects a and b, similarity between these two objects can be calculated by means of different similarity measures. That is, if A is a feature set of a and B is the corresponding feature set of b, then $A \cap B$ is the set of their common features, $A \setminus B$ is the set of features that are only attributed to A, and $B \setminus A$ is the set of features that are only attributed to B. We obtain the cardinalities of each set: $l = |A \cap B|$, $m = |A \setminus B|$, and $n = |B \setminus A|$ and use them as input to specific similarity measures. In this paper, we focus on the ratio model [3] (in particular, one of its special cases called Jaccard index).

Definition 1 (Tversky's Ratio Model [3], Jaccard Index). A similarity measure sim between two objects a and b can be represented by the ratio of features common to both a and b and the joint features of a and b using a non-negative scale f and two non-negative scalars α and β . The Jaccard index is a special form of the ratio model where $\alpha = \beta = 1$ and f is the cardinality $|\cdot|$:

$$sim_{jacc}(a,b) = \frac{|A \cap B|}{|A \cap B| + |A \setminus B| + |B \setminus A|} = \frac{|A \cap B|}{|A \cup B|} = \frac{l}{l+m+n}$$

Ferilli et al [4] introduce a novel similarity measure that is able to also differentiate formulas even if l = 0; this measure is parameterized by a non-negative scalar α . We call this similarity measure α -similarity and let $\alpha = 0.5$ by default.

Definition 2 (α -Similarity [4]). The α -similarity between two objects a and b consists of the weighted sum (weighted by a non-negative scalar α , and adding

1 to the numerators and 2 to the denominators) of the ratios of shared features divided by the features of a alone and the features of b alone whenever $a \neq b$:

$$sim_{\alpha}(a,b) = \alpha \cdot \frac{|A \cap B| + 1}{|B| + 2} + (1 - \alpha) \cdot \frac{|A \cap B| + 1}{|A| + 2} = \alpha \cdot \frac{l+1}{l+n+2} + (1 - \alpha) \cdot \frac{l+1}{l+m+2}$$

In case a = b the similarity is 1: $sim_{\alpha}(a, a) = 1$.

3 Similarity for Anti-Instantiation

We calculate the similarity between the original query Q and a query Q^{AI^*} obtained by the AI operator. We concentrate on the following sets of features:

Predicates in the query: The predicates of Q and Q^{AI^*} are identical: $Pred(Q) = Pred(Q^{AI^*})$ leading to similarity 1 on the predicate feature. **Constants in the query:** The set of constants in Q^{AI^*} might be reduced compared to Q: $Const(Q^{AI^*}) \subseteq Const(Q)$; we have $l \leq 0, m \leq 0$ and n = 0. **Variables in the query:** Because each AI step introduces a new variable, we have $Vars(Q) \subseteq Vars(Q^{AI^*})$ and hence $l \leq 0, m = 0$ and $n \leq 1$.

Star of a literal: For each literal L_i of Q the amount of connections to other literals is always greater or equal to the amount of connections in Q^{AI^*} . We borrow the definition of a star of a literal [4] that contains all predicate symbols of other literals that share a term with the chosen literal. We denote $Terms(L_i, Q)$ the set of terms of literal L_i in Q.

Definition 3 (Star of a literal [4])). For a literal L_i in a given query Q we define the star of L_i to be a set of predicate symbols as follows

 $Star(L_i, Q) = \{P \mid \text{ there is } L_j \in Q, i \neq j, \text{ such that } L_j = P(t_1, \dots, t_k) \text{ and} \\ Terms(L_i, Q) \cap Terms(L_i, Q) \neq \emptyset \} \subseteq Pred(Q)$

Hence, $Star(L_i, Q^{AI^*}) \subseteq Star(L_i, Q)$ and $l \leq 0, m \leq 0$ and n = 0. **Relational positions of a term:** Lastly, we borrow the notion of relational features from [4]. Such a relational feature of a term is the position of the term inside a literal $L_j = P(t_1, \ldots t_k)$: If a term t appears as the h-th attribute in literal L_i (that is, $t_h = t$ for $1 \leq h \leq k$), then P.h is a relational feature of t. Let then Rel(t, Q) denote the multiset of all relational features of a term t in query Q. For a term t in Q some its positions might be lost in Q^{AI^*} . Hence, $Rel(t, Q^{AI^*}) \subseteq Rel(t, Q)$ and $l \leq 0, m \leq 0$ and n = 0.

Example 2. The example query $Q(x_1, x_2, x_3) = Ill(x_1, Flu) \wedge Ill(x_1, Cough) \wedge Info(x_1, x_2, x_3)$ can be generalized (by anti-instantiating cough with a new variable y) to be $Q_1^{AI}(x_1, x_2, x_3, y) = Ill(x_1, Flu) \wedge Ill(x_1, y) \wedge Info(x_1, x_2, x_3)$. Another possibility (by anti-instantiating one occurrence of x_1 with a new variable y) is the query $Q_2^{AI}(x_1, x_2, x_3, y) = Ill(y, Flu) \wedge Ill(x_1, Cough) \wedge Info(x_1, x_2, x_3)$. Summing all features (predicates, constants, variables, stars and relational) and dividing by 5 gives us the overall average for each similarity measure and for each

formula: The first query Q_1^{AI} (with an average Jaccard index of 0.81 and an average α -similarity of 0.84) is ranked very close to the second query Q_2^{AI} (with an average Jaccard index of 0.80 and an average α -similarity of 0.84) because while more constants are lost in Q_1^{AI} more joins are broken in Q_2^{AI} .

Next, we analyze the effect of multiple applications of the AI operator on the similarity values. We have the following monotonicity property: if A is a feature set of the original Q, B is the corresponding feature set of Q^{AI^*} , and C is the corresponding feature set of a query Q^{AI^+} such that Q^{AI^+} can be obtained from Q^{AI^*} by applying more AI steps, then we have that either a) more variables are added in Q^{AI^+} (that is, $B \setminus A \subseteq C \setminus A$) or b) (in case of all other feature sets) more features lost (that is, $A \setminus B \subseteq A \setminus C$). If one of these inclusions is proper, then the similarity of Q^{AI^*} to Q is higher than the similarity of Q^{AI^+} . More formally, for $n = |B \setminus A|$ and $n' = |C \setminus A|$ as well as $m = |A \setminus B|$ and $m' = |A \setminus C|$ and postulating that n < n' or m < m' for any feature, we have that $sim(Q, Q^{AI^*}) > sim(Q, Q^{AI^+})$. Due to this monotonicity property, queries with more anti-instantiations are ranked lower as shown in the following example.

Example 3. We consider two steps of Anti-Instantiations on our example query $Q(x_1, x_2, x_3) = Ill(x_1Flu) \land Ill(x_1, Cough) \land Info(x_1, x_2, x_3)$. One such generalized query can be $Q^{AI,AI}(x_1, x_2, x_3, y, z) = Ill(y, Flu) \land Ill(x_1, z) \land Info(x_1, x_2, x_3)$ with two new variables y and z (which is a combination of the two AI steps of Q_1^{AI} and Q_2^{AI}). The query with two anti-instantiations is ranked below the queries with one anti-instantiation: 0.63 for the Jaccard index and 0.73 for α -similarity. Queries with one anti-instantiations would hence preferably answered.

4 Discussion and Conclusion

We applied two similarity measures (Jaccard index and α -similarity) to evaluate the syntactic changes that are executed on conjunctive queries during antiinstantiation and can hence support the database system to intelligently find relevant information for a user. A comprehensive similarity framework that respects all possible combinations of the operators DC, GR and AI (as introduced and analyzed in [1]) is the topic of future work as well as a comparison to related approaches and the consideration of semantic (term-based) similarity.

References

- 1. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In: Flexible Query Answering Systems, Springer (2011) 1–12
- Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20(2) (1983) 111–161
- 3. Tversky, A.: Features of similarity. Psychological review 84(4) (1977) 327–352
- Ferilli, S., Basile, T.M.A., Biba, M., Mauro, N.D., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticae 90(1-2) (2009) 43–66