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Abstract. This article introduces the notion of horizontal fragmenta-
tion to the data outsourcing area. In a horizontal fragmentation, rows
of tables are separated (instead of columns for vertical fragmentation).
We give a formula-based definition of confidentiality constraints and
an implication-based definition of horizontal fragmentation correctness.
Then we apply the chase procedure to decide this correctness property
and present an algorithm that computes a correct horizontal fragmenta-
tion.

1 Introduction

The interest in outsourcing data to a third-party storage (“server”) site has
increased over the last decade with the main advantage being the reduction of
storage requirements at the local (“owner”) site. Yet, because the storage server
usually cannot be fully trusted, several approaches to protect the outsourced
data have emerged. In general, there are the following approaches:

— Encryption only: Before outsourcing, all data tuples are encrypted [1, 2];
query execution on the outsourced data is difficult and inexact.

— Vertical fragmentation and encryption: Some table columns are sep-
arated into different fragments as cleartext while other (partial) tuples are
encrypted [3,4]; query execution is easier on the cleartext part but still de-
cryption has to be executed by the data owner to execute queries on the
encrypted part.

— Vertical fragmentation only: When the data owner is willing to store
some columns at his trusted local site in an owner fragment, other columns
can be outsourced safely in a server fragment [5,6]; the fragmentation can
be optimized with respect to assumptions on query frequencies.

In this article we refrain from using encryption. It has already been argued
in [5] that encryption is not necessary if a fragmentation is identified of which
one fragment is stored at the trusted owner site. We reinforce the point that
encryption is costly as it requires key management and long-term security of the
encryption scheme. Moreover, often querying encrypted data is suboptimal [2]
or only weak encryption is possible [7].



In this article we adopt the client-server setting of [5]. In their approach for
vertical fragmentation, only projection onto columns is supported and thus the
so called “confidentiality constraints” are merely defined as sets of attributes of
the database schema. They do not take into account the content — the actual
data values — in a database instance. Moreover this approach only considers
one (“universal”) relation instead of a full-blown database schema with several
relation symbols (which is usually the case for databases in some normal form).
However, normalized databases are advantageous because they reduce storage
requirements (by removing redundancy) and facilitate data management (e.g.,
by avoiding anomalies). In the same sense, vertical fragmentation also lacks the
notion of database dependencies — that is, constraints that can be specified on
the database relations. Such database dependencies are crucial when it comes
to controlling inferences: with dependencies further information can be derived
from some (partial) database entries.

To extend the “vertical fragmentation only” approach we make the following
contributions:

— We propose to use not only vertical but also horizontal fragmentation. In
particular, we aim to filter out confidential rows to be securely stored at the
owner site. The remaining rows can safely be outsourced to the server.

— We extend expressiveness of the “confidentiality constraints” by using first-
order formulas instead of sets of attribute names. This implies that vertical
fragmentation can be data-dependent in the sense that only some cells of a
column have to be protected.

— We explicitly allow a full database schema with several relations symbols and
a set of database dependencies. With these dependencies we introduce the
possibility of inferences to the fragmentation topic and provide an algorithm
to avoid such inferences.

The paper is organized as follows. Section 2 sets the basic terminology. Sec-
tion 3 introduces logical formulas as syntactical material for confidentiality con-
straints. Section 4 presents a definition for horizontal fragmentation correctness;
it analyzes the problem of fragmentation checking and introduces a new algo-
rithm for the computation of a correct fragmentation. Lastly, we argue that also
vertical and hybrid fragmentation can be data-dependent (in Section 5) and
conclude this article in Section 6.

2 System Description

We view relational databases using the formalism of first-order predicate logic
with equality (and possibly with other built-ins like comparison operators). A
database has a schema DS = (P, D) where P is the set of relation symbols
(that is, table names) and D is the set of dependencies between the relations.
Each relation symbol P comprises a set of attributes (that is, data columns)
and the arity arity(P) is the number of attributes of relation symbol P. Each
such attribute has associated a domain of constant values. A database instance



is a set of ground atomic formulas (representing data tuples or data rows) in
accordance with the database schema; these are formulas without variables and
each formula consists of one relation symbol that is filled with some appropriate
constant values.

As database dependencies D we allow tuple-generating dependencies (tgds)
and equality generating dependencies (egds). Tuple-generating dependencies can
contain both universal and existential quantifiers. Their body as well as their
head consists of a conjunction of atomic formulas.

Definition 1 (Dependencies). A tuple-generating dependency (tgd) is a closed
formula of the form

Va o(x) — Jyi(x, y)

where ¢(x) and Y(x,y) are conjunctions of atomic formulas. ¢(x) is called the
body and Iy (x,y) is called the head of the tgd.

A tgd is called full if there are no existentially quantified variables y in 1.

An equality-generating dependency (egd) is a closed formula of the form

Ve §(x) — (z = o)

where ¢(x) is a conjunction of atomic formulas and x and &' are contained in
x.

Note that a tgd indeed consists of disjunctions and negations (as the material
implication — is only an abbreviation for disjunction and negation); and tgds
can easily be written in conjunctive normal form when distributing the conjuncts
of the head over the disjunctions in the body.

For formulas that are more general than tgds (for example, arbitrary disjunc-
tions) feasibility of fragmentation problems cannot be ensured. More precisely,
decidability for the “fragmentation checking” and “fragmentation computation”
problems (see Section 4) cannot be established in general and the chase pro-
cedure as well as the search algorithm presented below are not guaranteed to
terminate. For tgds, cyclicity also leads to undecidability; this is why we provide
the additional restriction of weak acyclity in Definition 2. But before doing that
we introduce a running example.

Ezample 1. In our running example, the database comprises some medical records
and the relation symbols are P = {Illness, Treatment}. The relation Iliness
has the two attributes (that is, column names) Name and Disease; the rela-
tion Treatment has the two attributes Name and Medicine. An instance of the
database schema with these relation symbols would be

Iliness| Name| Diagnosis|  Treatment| Name| Medicine
I Mary |Aids Mary [MedA
’ Pete |Flu Mary |MedB
Lisa [Flu Pete |MedA

The set of dependencies D are tgds or egds. It can for example contain a for-
mula that states whenever a patients takes two specific medicines, then he is cer-
tainly ill with the disease aids: V& Treatment(xz, MedA) A Treatment(z, MedB) —



Tliness(x, Aids). This is a full tgd. Or it can contain a tgd that states that if
a patient receives medical treatment there should be an appropriate diagno-
sis: Va,y Treatment(z,y) — Jzlllness(x,z). An egd could be a key dependency
or a functional dependency if for example a patient ID uniquely determines a
patient’s name.

On tgds we now pose the additional requirement of weak acyclicity (see
[8]). This property avoids that there are cyclic dependencies among existentially
quantified variables. Such cyclicity could possibly lead to the case that database
instances satisfying these dependencies are infinite which would make the system
infeasible. Weakly acyclic tgds have nice properties as will be used later on; for
example, the chase on weakly acyclic tgds is ensured to run in polynomial time.

Definition 2 (Weak acyclicity [8]). For a given set S of tgds, its dependency
graph is determined as follows:

— For each relation symbol P occurring in S, create arity(P) many nodes
Py, ..., Pyrity(p); these are the positions of P.

— For every tgd Ve (¢(x) — Jyy(x,y)) in S: if a universally quantified vari-
able x € x occurs in a position P; in ¢ and in a position P]{ m Y, add an
edge from P; to P} (if it does not already exist).

— For every tgd Ve (¢(x) — Jyy(x,y)) in S: if a universally quantified vari-
able x € x occurs in a position P; in ¢ and in a position ijl i Y, and an
existentially quantified variable y € y occurs in a position Pj’; n Y, add a
special edge marked with 3 from P; to P}, (if it does not already exist).

A dependency graph is weakly acyclic, iff it does not contain a cycle going
through a special edge. We call a set of tgds weakly acyclic whenever its de-
pendency graph is weakly acyclic.

In our example, the two tgds are acyclic (and hence also weakly acyclic) because
edges only go from Treatment to Iliness.

For an open formula ¢(x) (with free variables &) we can identify instanti-
ations in an instance I; this corresponds to an evaluation of ¢ in I if ¢ is seen
as a query: we find those constant values a (in accordance with the domains of
the attributes) that can be substituted in for the variables & (written as [a/x])
such that ¢(x)[a/x] holds in the instance I. For example, evaluating the formula
Treatment(z, MedA) A Treatment(x, MedB) would substitute in Mary for & and
result in the answer Treatment(Mary, MedA) A Treatment(Mary, MedB).

Our aim is now to decompose an input instance I into two disjoint sets
of tuples: the “server fragment” Fys and the “owner fragment” F,. The server
fragment has to be such that it satisfies the notion of “fragmentation correctness”
(see Definition 4 below) even though we assume that the server has full (a priori)
knowledge of the database dependencies D. This can be seen as a form of the
“honest but curious” attacker model that is often used in cryptographic settings.



3 An Extended Syntax for Confidentiality Constraints

Usually for vertical fragmentation (see [3-5]) a confidentiality constraint is just
a subset of the attributes of a universal relation. Its meaning is that no combi-
nation of values (a subtuple of the universal relation with all attributes of the
constraint) must be fully disclosed. For example, for the relation Illness the con-
fidentiality constraint { Name, Disease} means that no full tuple of Illness must
be disclosed; but either the Name column or the Disease column may appear in a
secure fragment. The singleton constraint { Name} means that the Name column
must be protected but the Disease column can be published. In other words, a
confidentiality constraint is satisfied, if of all the attributes in the constraint
either one attribute is encrypted in the outsourced relation or the universal re-
lation is decomposed such that each outsourced fragment is missing at least one
of the attributes involved in the confidentiality constraint.

We now introduce the formula-based notation for confidentiality constraints
that will be used throughout this article. Attribute-based confidentiality con-
straints for vertical fragmentation can be expressed by formulas with free vari-
ables: the free variables of a formula are those contained in the confidentiality
constraint. For example, the confidentiality constraint { Name, Disease} as a for-
mula will be written as Illness(x,y). The variable x for the attribute Name as
well as the attribute y for the attribute Disease are free such that either col-
umn can be removed (to yield a secure fragment) or encrypted. Other attributes
not involved in a confidentiality constraint are written as existentially quanti-
fied (hence bound) variables. For example, the singleton constraint { Name} will
be expressed as Jy lllness(x,y): the only free variable is « and hence the Name
column must be protected.

Going beyond the attribute-based confidentiality constraints used in prior
work, we now state how formula-based constraints can greatly improve expres-
siveness of constraints; hence, formulas make it possible to express finer-grained
confidentiality requirements:

1. We can easily express protection of whole relations by existentially quanti-
fying all variables instead of using several singleton constraints. For example
Jzy Illness(x, y) expresses that the whole relation Illness must not be out-
sourced to the server.

2. We can express data-dependent constraints by using constant values. For
example, Jx Iliness(x, Aids) signifies that no row with the value Aids for
the attribute Disease must be outsourced. In contrast, the open formula
Tliness(x, Aids) signifies that no combination of a patient name with the
disease aids must be outsourced; that is, all patient names of those rows
with an aids entry must be protected. This makes a difference when hybrid
fragmentation is used where vertical and horizontal fragmentation can be
combined.

3. We can combine several atomic expressions (expressions with one relation
symbol only) in formulas with logical connectives like conjunction. For exam-
ple, Iliness(x, Aids) A Treatment(x, MedB) means that for patients suffering



from aids and at the same time being treated with a particular medicine
MedB, either the name column from the relation Illness or from the rela-
tion Treatment must be suppressed. For the formula Jy(lliness(x, Aids) A
Treatment(z,y)) the same applies for any medicine whatsoever.

With our semantics, protection of a disjunctive formula (like for example
Jz(Iliness(x, Aids) VIllness(x, Cancer))) can be simulated by splitting the for-
mula into separate constraints (3zlliness(x, Aids) and Jzlliness(x, Cancer)):
a server not allowed to know the whole disjunction is also not allowed to
know any of the single disjuncts. In other words, each single disjunct implies
the whole disjunctions.

We define formula-based confidentiality constraints — that can be used for
horizontal as well as hybrid fragmentation — as formulas that use the syntactic
material (relation symbols and constants) of the database schema; we restrict
the syntax to formulas without negation (“positive formulas”) that use only
conjunction A as a logical connective and have possibly some variables bound
by existential quantifiers in a prefix.

Definition 3 (Formula-based confidentiality constraints). Formula-based
confidentiality constraints are positive conjunctive formulas possibly with existen-
tial prefix that mention only relation symbols and constants from the domains of
the attributes as defined by the database schema.

Free variables will only be used for vertical fragmentation. In the next section
we concentrate on horizontal fragmentation. In this case we restrict confidential-
ity constraints to “closed” formulas; that is, all variables will be existentially
quantified. In sum, a set of formula-based confidentiality constraints for hor-
izontal fragmentation corresponds to a union of conjunctive Boolean queries.
Another result of [8] that we will use is that certain answers for unions of con-
junctive queries can be computed in polynomial time.

4 Horizontal Fragmentation

For wvertical fragmentation, fragments consist of some cleartext columns and
some encrypted (partial) tuples. In [5], the server and the owner fragment can
simply be represented by two disjoint sets of attribute names. The natural join x
is used for reconstruction of the original relation (or parts of the original relation
after a query; see [3]). In [5], the join of the server and the owner fragment has
to be computed only on the tuple id because of an additional non-redundancy
requirement. Previous work for vertical fragmentation covers the following two
requirements called “fragmentation correctness”: completeness (that is, the
original relation can be reconstructed by the owner from the fragments) and
confidentiality (not all attributes of an attribute-based confidentiality con-
straint are contained in one fragment). In the “fragmentation only” approach
[5] the requirement of non-redundancy (each attribute is contained either in
the server or the owner fragment) is added; this concept has not been analyzed



for approaches involving encryption because encrypted tuples usually contain
redundant information.

In contrast, in our horizontal fragmentation approach fragments are sets of
rows instead of sets of columns. The fragments (the rows in the server and the
owner fragment) have to be combined again by simply taking the union U of
the fragments. We now introduce our notion of fragmentation correctness for
horizontal fragmentation. The completeness requirement easily translates to
horizontal fragmentation by requiring that the union of the fragments (that is,
rows) yields the original database instance. In the same sense, non-redundancy
means that no row is contained in both the server and the owner fragment. The
confidentiality requirement is more complex than in the vertical case because

— it depends on the data in the database instance and not only on the attribute
names

— it involves the database dependencies that are assumed to be known a priori
by the server

— it respects the logical nature of closed formula-based confidentiality con-
straints.

Hence we base confidentiality on the notion of logical implication . A set S
of formulas implies a formula f (written S | f) if and only if every model
(that is, every satisfying interpretation) of S also satisfies f. If the server knows
some dependencies between data — as for example the database dependencies
D — these can be applied as deduction rules on the server fragment to infer
other facts that are presumably protected in the client fragment. In our system
we have a strong attacker model in the sense that we assume the server to be
aware of all dependencies in D and hence the server fragment has to be such
that application of these dependencies do not enable the inference of any of
the confidentiality constraints. We can thus say that a fragmentation ensures
confidentiality if the server fragment (treating each tuple as a ground atomic
formula) and the database dependencies (that can be applied as deduction rules)
do not imply any formula-based confidentiality constraint.

We adapt Definition 2 of [5] to formula-based confidentiality constraints as
follows. Note that our fragments are sets of tuples (that is ground atomic for-
mulas) in contrast to [5] where the fragments are sets of attribute names. Also
note that for horizontal fragmentation we only accept closed confidentiality con-
straints as already mentioned in Section 3.

Definition 4 (Horizontal fragmentation correctness). Let I be an in-
stance of a database schema DS = (P,D), C = {c1,...,cm} be set of closed
formula-based confidentiality constraints, and F = {F,, Fs} be a fragmentation
of I, where F, is stored at the owner and Fy is stored at a storage server. F is
a correct horizontal fragmentation with respect to C, iff: 1) F, U Fs = I (com-
pleteness); 2) for every ¢; € C, Fs UD K ¢; (confidentiality); 8) F, N Fs = 0
(non-redundancy).



Our aim is now twofold: we first analyze how a given fragmentation can be
checked for correctness and then elaborate how a correct fragmentation can be
computed from an input instance.

4.1 Fragmentation Checking
We now analyze the following problem:

Problem 1. Given a database schema DS = (P,D), an instance I of DS, a
set C = {c1,...,¢m} of closed formula-based confidentiality constraints, and a
fragmentation F = {F,, F,}, the fragmentation checking problem is to decide
whether F is a correct horizontal fragmentation of I.

Correctness and non-redundancy requirements of Definition 4 can be checked
easily by the owner. However checking confidentiality again is more complex. We
have to check that F; does not reveal any confidentiality constraint itself; neither
should F imply any confidentiality constraint whenever the server applies the
database dependencies to the server fragment. So in general, it might happen
that the server fragment Fs does not satisfy the database dependencies and the
server uses them to deduce other facts. To ensure that the deduced facts do not
breach confidentiality of the confidentiality constraints, the owner has to apply
the dependencies to the server fragment to check the confidentiality requirement.
We will use results of the “data exchange” area to decide the fragmentation
checking problem.

The famous chase procedure was introduced as a method to decide implica-
tion between two sets of dependencies [9]. Later on, it was used in [8] to compute
“universal solutions” in a data exchange setting and in [10] for database repair
checking. From a confidentiality point of view it was used in [11] to extend a
mandatory access control (MAC) system and mentioned in [12] as a method
to decide security of view instances. In particular, the results of [8] show that
for the wide class of weakly acyclic tuple-generating dependencies and equality-
generating dependencies (see Definition 2), the chase computes a universal so-
lution containing some “null values” in time polynomial in the size of the input
instance. It is also shown in [8] that if a conjunctive query is evaluated in a
universal solution, this evaluation can also be done in polynomial time and the
result is the set of “certain answers”: those answers that hold in every possible
data exchange solution of the input instance.

The results of [8] can be used to check confidentiality of constraints in a
server fragment F as follows. If we restrict the database dependencies D to be
weakly acyclic tgds and egds, the chase on the server fragment Fs terminates
in time polynomial in the size of the server fragment. It results in a chased
server fragment containing null values: existentially quantified variables in tgds
are filled in with new null values and egds are applied to equate some values.
More formally, if there is a mapping (a homomorphism) from the variables in the
body of a dependency to the constants const(Fs) and the null values nulls(Fy)
in the server fragment, then a chase step can be executed (“applied”). See also
[8,9,11] for details.



Definition 5 (Application of dependencies). A tgd Va ¢(x) — Jyy(x,y)
can be applied to the server fragment Fy if

— there is a homomorphism h : @ — const(Fs) U nulls(Fs) such that for every
atom P(x1,...,xk) (where the free variables are x; € © fori=1...k) in
o(x), the atom P(h(x1),...,h(zk)) is contained in Fy

— but h cannot be extended to map the existentially quantified variables y
in the head Jyy(x,y) to const(Fs) U nulls(Fs) such that for every atom
Q(z1,...,x1,Y1,...,yr) (where the free variables are x; € x fori =1...1
andyj €y forj=1...1)in(x,y), the atom

Q(h(z1), ..., h@i), h(yr), - - h(yr))
is contained in F.

The result of applying a tgd to Fs is the union of Fys and all those atoms that can
be generated from all atoms Q(z1, ..., %1, Y1, ..., yr) of w(x,y) with the variables
x mapped according to h and the variables y each mapped to a new null value.
An egd YV p(x) — (x = ') can be applied to the server fragment F if

— there is a homomorphism h : @ — const(Fs) U nulls(Fs) such that for every
atom P(xy,...,x5) in ¢(x), the atom P(h(x1),...,h(xy)) is contained in
F

— but h(z) # h(a').

The result of applying an egd to Fs is obtained by

— replacing all occurences of the null value in Fy with the constant if one of
h(zx) and h(z') is a null value and the other is a constant or

— replacing all occurences of one null value in Fs with the other if both h(x)
and h(z') are null values.

Note that because we assume that the server fragment Fy is a subset of the input
instance I and I is assumed to satisfy the dependencies, chasing with an egd
cannot “fail” (that is, lead to an inconsistency).

On the chased fragment the notion of “certain answers” can also be defined: a
certain answer to a query is one that holds in any possible fragment that contains
F, as a subset and that satisfies the database constraints D; and we can find
the certain answers by posing a query to the chased server fragment. Because
we defined confidentiality constraints to be positive, existential, conjunctive and
closed formulas, when we pose a constraint as a query to the chased server
fragment, the certain answers can be computed in polynomial time as shown in
[8]. We can be sure that confidentiality of a constraint is preserved if the certain
answer of this constraint in the chased server fragment is false. We give a small
example to illustrate the procedure.

Example 2. Assume that we have given the server fragment



Treatment| Name|Medicine
F IlIness| Name|Diagnosis Mary |MedB
5 Lisa |Flu Mary |MedA
Pete |[MedC

The set of dependencies contains two tgds that link treatments with diseases:

D = {Vx Treatment(x, MedC) — 3zlliness(z, z),
Va Treatment(x, MedA) A Treatment(z, MedB) — Iliness(x, Aids)}

Chasing Fs with D results in the following instance where 7 is a null value:

Iliness| Name| Diagnosis|  Treatment| Name|Medicine
r ) Lisa |Flu Mary |MedB
chase: Pete |7 Mary [MedA
Mary |Aids Pete |MedC

Assume the confidentiality constraints stating that it should not be outsourced
that there is a patient with aids and that there is a disease from which patient
Pete suffers:

C = {3z Iliness(zx, Aids),
Ty Iliness(Pete, y)}

We see that the certain answers of the two confidentiality constraints in Fpgse
are both true and hence the server fragment does not comply with the confiden-
tiality requirements. In this case the server fragment should not be outsourced.

In addition to fragmentation correctness, the server fragment should be max-
imal and the owner fragment minimal in some sense; for example, the storage
requirements at the owner site should be minimized. Beyond storage analysis, the
metrics in [5] also analyze query frequencies. In the context of database repairs,
[10] survey and analyze other optimization criteria that can also be adopted for
fragmentation approaches.

4.2 Fragmentation Computation

We now propose an algorithm for a set of database dependencies D containing
weakly acyclic tgds and egds and a set of closed confidentiality constraints C.
The main idea is the following: starting with the original input instance I we
identify tuples that must be moved from I to the owner fragment F, or to the
server fragment Fs by evaluating the confidentiality constraints and database
dependencies as queries in I. The algorithm will decide for each affected tuple,
whether it is possible to move it to the server fragment or not. The remaining
tuples (not affected by the constraints and dependencies) can simply be moved
to the server fragment.

The decision can be accompanied by several optimization criteria (like the
ones mentioned previously in Section 4.1). In contrast to these, we propose here



to minimize the number cells(F,) of table cells that are moved to the owner
fragment. That is, we take into account the size of the tuples where size is
measured as the number of attributes. This indeed has an impact when several
relations are contained in the database schema (in contrast to the approaches
considering only a universal relation).

SEARCH:
— Input: instance I, confidentiality constraints C, dependencies D
— Output: correct horizontal fragmentation F = {F,, F,}
Inst =0
for each 3z ¢(x) € C: remove Iz
Inst = Inst U {¢(x)[a/x] | I U F; = ¢(x)[a/z]}
for each Vx ¢(x) — Jyy(x,y) € D
Inst = Inst U{¢p(x)[a/x] | I[UFs = ¢(x)[a/x] AND IUF, £ Jyy(z,y)la/z]}
if Inst = 0: Fy = Fs UI; return F = {F,, Fs}
else choose I1 A ... Al € Inst
if {l1,...,l} C Fs: conflict
else choose l; € {l1,...,lx} such that I; € I
F,=F,Ul; I =1I\1l;; SEARCH

i I e e

—

Fig. 1. Horizontal fragmentation algorithm

We now describe our algorithm in detail and provide a pseudocode listing in
Figure 1. We start with the input instance I and F,, = Fy = (). We then take the
confidentiality constraints C = {¢1,..., ¢y} and execute the following steps.

1. Remove all existential prefixes from constraints ¢; = 3x ¢(x) such that they
are now open formulas ¢(x) with free variables .

2. Evaluate the constraints in I U Fy. That is, find those tuples of constants a
such that the instantiation ¢(x)[a/x| of variables  with constants a holds
in the input instance and the server fragment: I U Fs |= ¢(x)[a/x].

3. Add each such instantiation to the set of “candidate instantiations” Inst.

Similarly, we treat the database dependencies D = {di,...,d;,} — with the
difference that we have to find those instantiations for which the body of the
dependency is satisfied but the head is not. Note that this will only apply to
tgds: all egds are satisfied in I; they will never be violated in F which is a subset
of I. Hence let d; be a tgd: d; = Va ¢(x) — Jyip(x,y) where ¢(x) is the body,
Jyip(x,y) is the head and both are conjunctions of atomic formulas.

1. Evaluate each tgd in I U F and find those instantiations such that the body
is satisfied but the head is not. That is, find those tuples of constants a such
that
(a) the instantiation of the body ¢(x)[a/x] of variables & with constants a

holds in the input instance and the server fragment: I UF; = ¢(x)[a/z].



(b) but the instantiated head Jyiy(x,y)[a/x] is false in I U Fy; that is,
T U Fs £ Jyi(x, y)[a/x]. Note that this is a closed formula.
2. Add the instantiated body ¢(x)[a/x] to the set of candidate instantiations
Inst.

The candidate set Inst contains only positive conjunctive ground formulas of the
form I3 A ... Alg. In order to achieve consistency of the server fragment Fy with
the database dependencies D without violating the confidentiality constraints C,
at least one of the conjuncts [; has to be moved to the owner fragment F;,. Hence,
if there is a formula in Inst for which all ground atoms Iy,...,[; are contained
in the server fragment, a conflict with the dependencies and constraints has
occurred. The search then continues with a distinct subproblem by backtracking.
Otherwise, choose one formula from Inst and one ground atom I; of that formula
that is contained in I (and hence neither contained in F, nor Fy). Create two
new subproblems: one by moving the ground atom I; to F, and the other one
by moving l; to Fs and recursively executing the search procedure on it. The
candidate set Inst is emptied in every recursion. Repeat these steps until the
evaluations of constraints and dependencies do not result in further candidate
formulas; that is, until the candidate set Inst remains empty. Move all atoms
remaining in I to the server fragment. The search indeed is a depth-first search
along a binary tree as pictured in Figure 2.

Two additional operations can speed up the search process significantly: unit
propagation and branch-and-bound pruning. Unit propagation means that a
candidate formula consisting of a single ground atom can be moved to the owner
fragment without trying to move it to the server fragment; moving it to the server
fragment would immediately result in a conflict. The same applies to formulas in
the candidate set Inst for which exactly one ground atom [; is contained in I and
all other ground atoms were already moved to the server fragment. Branch-and-
bound pruning is helpful when an optimization requirement has to be fulfilled.
In this case, not the first solution is output; instead, the search continues and
tries to find a better one. We propose to count the number of table cells cells(Fy,)
that are contained in the owner fragment F, and try to minimize this amount.
Whenever a fragmentation solution with a better count has been found, we can
immediately stop exploration of the current branch of the search tree as soon
as the number of cells in the owner fragment exceeds the number of cells of
the previously found solution. For sake of simplicity, we leave the details of
these two operations out of the pseudocode listing. Unit propagation is however
incorporated in Figure 2 and also the cell count is annotated in each node of the
search tree. Note that the algorithm in Figure 1 would return the first solution
with cell count 8, while a branch-and-bound algorithm involving optimization
would return the first minimal solution with cell count 6.

Figure 2 shows the search tree for the following example.

Ezxample 3. The set of dependencies contains two tgds that link treatments with
diseases:

D = {Vx Treatment(x, MedC) — Jzlliness(z, z),



YV Treatment(x, MedA) A Treatment(z, MedB) — Iliness(z, Aids) }

The set of confidentiality constraints states that the disease aids is confidential
for any patient and that for patients Pete and Lisa it should not be outsourced
that both suffer from the same disease:

C = {3xIliness(x, Aids),
Jy(Iliness(Pete, y) A Illness(Lisa, y))}

Finally the input instance [ is as follows:

Iliness| Name| Diagnosis|  Treatment| Name| Medicine
I Mary |Aids Mary [MedA
' Pete |Flu Mary |MedB
Lisa [Flu Pete |MedC

The input instance I satisfies all database dependencies. The first candidate
set Inst finds the following instantiations of confidentiality constraints:

Inst = {Iliness(Mary, Aids),
Illness(Pete, Flu) A Illness(Lisa, Flu)}

The unit formula Illness(Mary, Aids) can be added immediately to the owner
fragment. For Iliness(Pete, Flu) we can try both moving it to the owner and the
server fragment and hence have two branches in the search tree.

The first fragmentation found with cell count 8 is the following:

Illness| Name| Diagnosis|  Treatment| Name|Medicine
F,: Mary |Aids Mary |MedA
Pete |Flu Pete |MedC

Iliness| Name|Diagnosis|  Treatment| Name|Medicine

% Lisa |Flu Mary |MedB

The first optimal fragmentation with cell count 6 is the following:
Iliness| Name| Diagnosis
F,: Mary |Aids
Lisa |Flu

Treatment| Name| Medicine

Mary [MedA

Treatment| Name|Medicine
Mary |MedB
Pete |MedC

Iliness| Name| Diagnosis
Pete |Flu

We now briefly analyze the algorithm in terms of correctness and runtime
complexity of the proposed algorithm. First of all, the output fragmentation
satisfies Definition 4 of horizontal fragmentation correctness:

— Completeness is ensured because when all tuples that have to be moved to
the owner fragment have been identified, the remaining tuples of I are moved
to the server fragment.



Iliness(Mary, Aids) to

F, cells(F,) : 2

—

Iliness(Pete, Flu) to
F, cells(Fy) : 4
|
Treatment(Pete, MedC)
to F, cells(Fy) : 6
S
Treatment(Mary, MedA)
to F, cells(Fy) : 8

Treatment(Mary, MedA)

to Fy cells(Fy) : 6
|

Treatment(Mary, MedB)

to Fy cells(F,) : 8

.

Iliness(Pete, Flu) to
Fy cells(Fy) : 2

|
Iliness(Lisa, Flu) to F,
cells(Fy) : 4

/

Treatment(Mary, MedA)
to F, cells(F,) : 6

Treatment(Mary, MedA
to Fy cells(F,) : 4

|
Treatment(Mary, MedB
to F, cells(F,) : 6

Fig. 2. Example search

— Confidentiality is ensured because on the one hand, all instantiations of
confidentiality constraints are handled such that they are not implied by
the server fragment. On the other hand the algorithm proceeds such that
the server fragment satisfies all database dependencies because no body of a
tgd can be fully instantiated whenever the instantiated head does not hold
in the server fragment. Hence no deduction of other facts is possible. In
terms of fragmentation checking (see Section 4.1), the chase cannot apply

any dependencies to Fj.

— Non-redundancy is ensured because ground atoms are contained in I (and
hence neither in F, nor in Fy) before moving them to one of the fragments.

The runtime complexity depends on the number of tuples in the input in-
stance I as follows. Confidentiality constraints (without existential prefix) as
well as bodies of tgds are positive conjunctive formulas. Hence their number of
instantiations in I U Fy is always finite (even with theoretically infinite domains
of attribute values) and must indeed be contained in I U Fy. Consequently, in
the worst case every tuple in the input instance I has to be tested whether it
has to be moved to the owner or the server fragment. Due to this binary nature,
the worst case complexity is exponential in the number of tuples in /. However,
average complexity might be a lot better when unit propagation and pruning

are applied.



5 Vertical Fragmentation can be Data-Dependent

We now briefly elaborate how vertical fragmentation can be achieved with formula-
based confidentiality constraints. In particular, vertical fragmentation can be
made data-dependent in the sense that not whole columns are stored in the
owner fragment but only sensitive parts of columns. For example, confidentiality
of the constraint Illness(Pete,y) can be achieved by removing only those cells
of the Name column for which Name equals Pete. The remainder of the Name
column and the Disease column can then still be outsourced to the server frag-
ment. Hence, our cell count metrics leads to a better solution in the case that
only a part of a column is stored in the owner fragment.

Indeed, this approach yields a form of “hybrid fragmentation”: A combination
of vertical and horizontal fragmentation can maximize the amount of outsourced
data better than each of the techniques alone: If only some values in a column (for
example, only some entries in the Disease column) must be protected, vertical
fragmentation would remove the whole column while horizontal fragmentation
only suppresses the rows containing sensitive values. On the other hand, if all
values of one column have to be protected (for example, all patient names),
vertical fragmentation just removes this column while horizontal fragmentation
would have to suppress the whole relation.

The notion of fragmentation checking can also be applied to this hybrid
approach: we can handle suppressed cells in the server fragment as null values
and apply the chase to the server fragment as in Definition 5; the certain answers
can also be computed for open confidentiality constraints and confidentiality
is preserved if the answer set is empty. Fragmentation computation has to be
modified accordingly such that not the whole row but only some cells of a row
are suppressed in the server fragment.

Yet there is a problem if we assume a well-informed and suspicious server.
For example, if the server knows the definition of the confidentiality constraint
Iliness(Pete, y) then he could suspect that those tuples in the server fragment
for which the name is missing actually belong to the patient Pete. This effect is
known as “meta-inferences” (see [13]) because although the fragmentation sat-
isfies the formal correctness definition still inference of confidential information
is possible on a meta-level. In this case, appropriate countermeasures have to
be taken. For example, by moving more name entries to the owner fragment
as strictly necessary (and informing the server about it). Or ensuring that the
confidentiality constraints lead to a server fragment that satisfies the properties
of k-anonymity (see [14]).

6 Related Work and Conclusion

With the introduction of horizontal fragmentation correctness and formula-based
confidentiality constraints, we extended the notion of secure fragmentation for
data outsourcing (as analyzed in [5,6] for vertical fragmentation) significantly.
On the one hand we showed that horizontal fragmentation gives rise to a new



application of the chase for the fragmentation checking problem (as used in [8,
10,12, 11] for similar purposes). On the other hand we presented an algorithm
that computes a correct horizontal fragmentation and at the same time can be
used to optimize the fragmentation with respect to some criteria like for example
our cell count criterion; other such criteria can also be used with the algorithm.

Open questions remain: other fragments of first-order logic can be studied
for database dependencies and confidentiality constraints; further research could
investigate the behavior and performance of horizontal fragmentation when the
user queries or updates his outsourced data; some query strategies are already
analyzed for vertical fragmentation in [3, 6]. Moreover the area of hybrid fragmen-
tation can be advanced and the problem of meta-inferences can be investigated
further. An in-depth analysis of applications of k-anonymity techniques [14] to
data outsourcing is also desirable.
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