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Abstract. Property preserving encryption (PPE) can enable database
systems to process queries over encrypted data. While a lot of research
in this area focusses on doing so with SQL databases, NoSQL (Not only
SQL) cloud databases are good candidates either. On the one hand, they
usually provide enough space to store the typically larger ciphertexts and
special indexes of PPE-schemes. On the other hand in contrast to ap-
proaches for SQL systems, despite PPE the query expressiveness remains
almost unaffected. Thus, in this paper we investigate (i) how PPE can
be used in the popular NoSQL sub-category of so-called wide column
stores in order to protect sensitive data in the threat model of a persis-
tent honest-but-curious database provider, (ii) what PPE schemes are
suited for this task and (iii) what performance levels can be expected.

Keywords: database security, NoSQL databases, property preserving
encryption, wide column stores

1 Introduction

In times of the “Web 2.0” [1] traditional SQL-based database services struggle
with the changing demands arising in distributed cloud environments. They are
not well suited to represent loosely structured data items like they are typical
for the Web 2.0. As NoSQL databases [2,3] were designed for meeting those
new requirements, they attracted more and more attention in the last years,
especially in the sub-category of so-called wide column stores (WCS, see Section
3.1). Popular companies developed their own solutions, e.g. Google developed
“Bigtable” [4] (used in over 60 Google services) and Facebook developed “Cas-
sandra” [5]. Nowadays it is common to use WCSs on a smaller scale, too. Many
cloud database providers offer flexible on-demand services with simple web in-
terfaces for running WCSs remotely in their clusters (e.g. the Google Cloud
Platform, Microsoft Azure or Amazon EC2) to exploit the well known benefits
of outsourcing databases.

However, storing and processing sensitive data on infrastructures provided
by a third party increases the risk of unauthorized disclosure if the infrastruc-
ture is compromised by an adversary. Unfortunately, WCSs usually lack security



features like access control, which an external front end or a firewall is assumed
to take care of. Hence there is a strong need for providing security and privacy
guarantees, because there are several ways how sensitive data can be leaked. An
adversary can exploit software vulnerabilities, curious or malicious administra-
tors at hosting providers can snoop on private data or attackers with physical
access to servers can steal data from disk and memory [6]. Various examples
show, that these threats are not only theoretical [7-10].

The straight-forward solution to reduce the damage caused by server com-
promises is encrypting the data on a trusted client before it gets uploaded to
the cloud servers, then process queries by reading it back from the server to the
client, decrypt it, and process the query on the client machine. Unfortunately
this requires transferring much more data than necessary (typically large frac-
tions of data are read in order to create relatively small data aggregations) and
moves a major part of query computation to the client, which defeats the general
purpose of (remote) databases.

Existing approaches (see Section 2) make use of property-preserving encryp-
tion (PPE, see Section 3.2) to enable query execution over encrypted data, but
the vast majority of existing solutions focusses only on SQL-based technologies
and avoids PPE schemes, that rely on index data structures to improve their
performance. Hence, this paper makes the following contributions:

— It identifies the requirements for utilizing PPE in the context of WCSs.

— It surveys the practical feasibility of various schemes for order-preserving
and searchable encryption with focus on these requirements.

— It shows how PPE can be applied to the data model of WCSs in the honest-
but-curious adversary scenario, meaning the database server carries out its
tasks as expected, but tries to learn about the data it hosts.

— It implements selected schemes and conducts a practical and comprehensive
benchmark using the currently most popular WCSs [11] Cassandra [5] and
HBase [12] as underlying platforms. In order to obtain practically relevant
results these databases remain unmodified. Hence, we match the conditions
that can be found in today’s cloud database provider’s offers for quantifying
the performance loss due to PPE.

2 Related Work

This section surveys related work, limited to approaches that are also designed
for the honest-but-curious adversary model, compute over encrypted data and
rely on encryption to provide data confidentiality.

Approaches for Relational Databases. One of the first approaches to process-
ing queries over encrypted data is from [13]. Unfortunately in their approach
hardware requirements on client side were similar to the ones on the server side.
The most popular work on performing queries over encrypted data is “CryptDB”
[14] for MySQL and PostgreSQL. It was the first system that could be consid-
ered practical, introducing a variety of innovative features, most importantly:



the onion layer model (OLM), which this work uses as well in an improved
adaptation (see Section 5.1). However, it uses only PPE schemes that are slow
for querying, because the authors avoid (client or server side) indexes. Thus,
CryptDB does not scale well when datasets reach a certain size. However, it still
receives a lot of scientific attention, in favourable [15,16] as well as critic ways
[17]. “Monomi” [18] can be considered being an extension of CryptDB, trying
to support arbitrary SQL queries with the cost of higher requirements for the
client machine. “BlindSeer” [19] addresses efficient sub-linear searches for SQL-
queries that can be represented as a monotone boolean formula, consisting of the
search conditions: keyword match, range and negation. “DBMask” [20] enforces
access control cryptographically, based on attribute based access control and
combining broadcast and hierarchical key management. It also uses PPE, but
not in an OLM-fashion. The authors of “L-EncDB” [21] propose to use so-called
format-preserving encryption to realize fuzzy searches.

Approaches for Non-relational Databases. An approach for executing queries
over encrypted triple patterns using SPARQL is presented by [22]. Unfortunately,
the number of cryptographic keys in their approach is high and every plaintext
triple results in eight ciphertext triples, which leads to much overhead in terms
of processing and storage inefficiency. To build a distributed key-value store
the recent approach of [23] introduces an additional architectural component
called dispatcher, that distributes encrypted data to all the database server nodes
evenly. Another very recent approach is “Arx” [24] on top of MongoDB, which
introduces two proxy servers and needs to know in advance what operations are
to be performed on what fields in order to maintain the required indexes.

Hardware Architectures for Encrypted Databases. “Cipherbase” [25] is an ex-
tension of Microsoft’s SQL Server with two modified parts: the ODBC driver
at the client side and the query processor at the server side, that integrates a
secure coprocessor within a so-called “trusted machine”, realized utilizing field
programmable gate arrays (FPGAs). “TrustedDB” [26] is a similar approach, but
with tamper-proof cryptographic coprocessors (SCPUs) instead of FPGAs. Even
though hardware approaches like these overcome some limitations of CryptDB-
based techniques (in particular regarding the query expressiveness), they rely on
expensive trusted hardware and require the database to have the user’s decryp-
tion keys.

3 Background

3.1 The Data Model of Wide Column Stores

WCSs are inspired by Googles BigTable architecture [4], but there are also pub-
licly available open source databases, that rely on the same or a very similar
data model, e.g. Hypertable [27], Accumulo [28] as well as used for practical
experiments in this work: Cassandra [5] and HBase [12].

WCSs use tables, rows and columns like traditional relational (SQL-based)
databases. However, the fundamental difference is that columns are created for



each row instead of being predefined by the table structure. Every row has at
least one mandatory column containing its identifier'. Except for this column,
two rows of the same table can have completely disjunct sets of columns. The
identifier of a row has to be unique for the whole table and cannot be used by
another row.

Rows are maintained in lexicographic order by their identifier. As WCSs are
distributed systems, ranges of such row identifiers serve as units of distribution.
Hence, similar row identifiers (and thus data items that are likely to be seman-
tically related to each other) are always kept physically close together, so that
reads of ranges require communication to a minimum number of machines. Be-
cause row identifiers are used for coordinating distribution this way, changing
them would result in changing the row’s physical position within the database
(cluster), which is prohibitively expensive and thus not allowed. Thus, a row
identifier cannot be changed after the row was inserted.

3.2 Property-preserving Encryption

The types of PPE relevant for this work are deterministic encryption (DET),
order-preserving encryption (OPE) and searchable encryption (SE). Other types
of PPE would have no value for supporting encrypted queries in WCSs. In partic-
ular, homomorphic encryption is not considered. Apart from its runtime deficits
[18,29], query mechanisms of WCS would benefit either only minimal (e.g. only
SUM() and AVG() in Cassandra’s query language) or not at all (e.g. HBase).

DET. The purpose of DET is enabling the database server to check for equal-
ity by mapping identical plaintexts to identical ciphertexts.

OPE. The purpose of OPE is enabling a server to learn about the relative
order of data elements without gaining information about their exact values.
Therefore it encrypts two elements p;,ps of a domain D in a way that p; <
p2 = Enc(p1) < Enc(pz) for all p € D. Thus, its use cases are sorting and range
queries over encrypted data. A lot of OPE schemes have been proposed with
different strategies to map a plaintext to a ciphertext domain (e.g. [30-36]).

SE. The purpose of SE is enabling a server to search over encrypted data
without gaining information about the plaintext data. Most SE schemes use in-
dexes (e.g. [37-44]), which are encrypted in a way, that only a trapdoor allows for
comparing the searchword with the ciphertext. However, there are also schemes,
that avoid having an index by embedding the trapdoor in a special format into
the ciphertext itself (e.g. [45]).

4 Selecting Practical PPE Schemes

Having introduced the key characteristics of the WCS data model and the tasks
of the different kinds of PPE, we now move on to identify actually feasible PPE
schemes for our architecture presented in Section 5.

! Commonly referred to as “row key”. However we use “row identifier” to avoid con-
fusions with cryptographic keys.



4.1 Deterministic Encryption

In contrast to OPE and SE (see below), the only relevant criterion for practi-
cability of DET is the determinism itself. There are plenty of well known DET
schemes, that have proven to work well in practice. For this work we use the
Advanced Encryption Standard (AES, [46]).

4.2 Order-preserving Encryption

The criteria for OPE are more complex, due to the working principles of OPE
and the WCS data model as described in Section 3.1. We focus on five aspects:

I Ciphertext (im-)mutability. Ciphertexts produced by an OPE scheme are
either mutable, meaning they may change as more and more input gets en-
crypted (e.g. in [35], causing re-writes to the database), or immutable, meaning
they are final (e.g. [34]). encrypting row identifier columns of WCS tables with
OPE requires immutable ciphertexts, as discussed in Section 3.1. However, other
columns can be encrypted using mutable schemes.

1I. Need for additional data structures. If they are not stateless, OPE schemes
require additional data structures for storing their state. That can be done us-
ing indexes, trees, dictionaries etc., either on client side (or at least a trusted
environment), e.g. [35], or on server side, e.g. [33,47]. In particular maintaining
tree structures is expensive for WCSs.

I1I. Need for additional architectural components. Some OPE schemes require
components running co-located to the database server (e.g. [33]), which cannot
be considered practical due to the architectural overhead, that is usually not
covered by today’s cloud database providers.

1V Input capabilities. Some OPE schemes require detailed knowledge of all
plaintexts before encryption (e.g. [32]), which is hard to realize in practical sce-
narios as databases may grow unpredictably over time. Some schemes even need
to encrypt the whole plaintext space in advance [34, 48], instead of encrypting
only the desired values on demand.

V Security. Nearly every OPE scheme comes with its own or no formal secu-
rity definition (see Table 1). Practical security issues resulting from the database
scenario and the efforts for corresponding counter measures (e.g. plaintext shift-
ing [31] or using fake queries to hide the data distribution [49]) have to be taken
into account too.

Table 1 shows an overview and brief evaluation of the schemes that we have
investigated using the above described criteria. Based on this, we selected to
implement the schemes of [31] (modular OPE = “mOPE?”), [34] (Random Sub-
range Selection = “RSS”) and [35] (Optimal Average-Complexity Ideal-Security
= “OACIS”) for further experiments (see Section 6.2).

To give an idea of why other OPE schemes from Table 1 have been considered
impractical, we point out a few of their characteristics that cannot be read from
this table: The approaches of [51] and [48] require splitting and partitioning of the
plaintext space, causing much metadata overhead. The scheme of [32] requires
detailed knowledge of the plaintext space e.g. the smallest distance between



Table 1. Evaluation of the practical feasibility of popular OPE
schemes based on the criteria introduced in section 4.2, ordered
by date of publication

OPE Scheme I II III IV V!

[30] +——+ = —— (7

[31] (mOPE) + ++ + — + (POPF-CCA)
[32] + =+ —— == (?%)

[33] — —— — ++ + (IND-OCPA)
[34] RSS) + — + + ++ (>IND-OCPAY)
[48] + - + = ——(??)

[35] (OACIS) — — + ++ + (IND-OCPA)
[36] + 4+ + — ++ (> POPF-CCA?)

! IND-OCPA = indistinguishability under ordered chosen-
plaintext attack, POPF-CCA = pseudo random order-
preserving function against chosen-ciphertext attack (for
both, see [50])

2 only informal security analysis provided by the authors

3 no security analysis provided by the authors

4«57 — proved by the authors to be better than...

two plaintext values, a requirement that hardly can be met in unpredictably
growing datasets. As mentioned before the approach of [33] needs an additional
component running co-located to the database server, which often is not possible
or does not fit to the offers of cloud database providers and causes network
communication overhead.

4.3 Searchable Encryption

An evaluation of practical feasibility of the schemes for SE can be done similarly
based on the following criteria:

I Need for additional data structures. As mentioned in Section 3.2 SE schemes
sometimes use indexes to speed up the search process. These indexes come with
the cost of additional pre-processing steps (e.g. selecting keywords, set up the
index data structure, etc.), require index maintenance and often an extra round
of communication (first for querying the index and then for getting the actual
results). Sometimes the underlying index data structure is hardly manageable
for WCS databases without much effort (e.g. tree structures).

11 Support for Updates. When used in databases, a scheme for performing
SE needs the ability to process updates?, since in most practical cases datasets
tend to grow or change. As it turned out, only a surprisingly small number of
SE schemes is capable of handling this.

11T Algorithm Requirements. Encryption and checking for searchword matches
does not work with native database operations like in DET or OPE. Instead,

2 Mainly meaning adding items to the dataset. SE schemes capable of doing so are
commonly referred to as being “dynamic”.



more complex procedures are necessary, involving e.g. lookups in auxiliary data
structures like bloom filters or traversing trees, using cryptographic primitives
or concatenation of strings. For efficiency reasons this should not become too
complex.

IV Security vs. V Search Efficiency. Security for index-based (hence, search
efficient) schemes and not index-based schemes is hardly comparable due to the
information leakage connected to querying the indexes. It consists of information
about the index itself (e.g. number of words per document, number of documents,
lengths of documents, document-IDs), search pattern information (what was
searched for?) and access pattern information (how much answers do I get from
executing a certain query compared to executing another one?). This leads to
two competitive requirements: avoiding an index leads to more security but is
generally slow for searches. Using an index may slow down encryption and leaks
additional information, but can speed up querying significantly.

Table 2. Evaluation of the practical feasibility of popular SE schemes based on the
criteria introduced in section 4.3, ordered by date of publication

SE Scheme I I It v? \%&
[45] (SWP) ++ ++ — (XOR, PRF) + (IND-CPA) O(n)
[39] —— —— —— (XOR, SC, DED) + (IND-CKA2)  O(m)
[40] — + — (XOR) + (IND-CKA2) O(log(u))
[41] —— 44 —— (XOR, PRF, HSH) + (IND-CKA2) O(log(u))
[42] —— + —— (XOR, PRF, HOM) + (IND-CKA2)  O(m)
[43] (SUISE) — ++ — (SC, PRF) + (IND-CKA2)  O(n/u)
[44] —— —— —— (XOR, SC, DED) + (IND-CKA2)  O(m)

1 XOR = bitwise exclusive OR operations, PRF = pseudo-random functions, SC
= string concatenation, DED = deterministic encryption/decryption, HOM =
homomorphic encryption, HSH = hash functions

2 IND-CPA = indistinguishability under chosen-plaintext attacks, IND-CKA2 =
adaptive indistinguishability under chosen keyword attacks (for both, see [52])

3 searching on a dataset with size of n words (u of which are unique), resulting
in m matches

Table 2 gives an overview and brief evaluation of the SE schemes that we
investigated in regard to the given criteria. Based on it, we selected to imple-
ment the schemes of [45] (“SWP”, an abbreviation of the three author’s names
Song, Wagner and Perrig) and [43] (securely updating index-based searchable
encryption = “SUISE”) for further experiments (see Section 6.2).

Like we previously did for OPE, we point out reasons for why we do not
consider other schemes from Table 2 being practical. [37] proposes to use bloom
filters as indexes per document. Bit-wise bloomfilter operations are hard to han-
dle for a WCS and a bloomfilter limits the number of words per document. [38]
presented a similar approach, but using pre-built dictionaries, which they pro-
pose to store either on clientside (which defeats the purpose of remote searchable



encryption) or on server side (which basically has the same shortcomings as in
[37]). The approach of [39] achieves sub-linear search time, using a complex and
for a database barely manageable index structure. Furthermore, [37-39] do not
support updates. Hence, [42] proposed an extension for [39] with two additional
laborious serverside data structures. [40] proposes a scheme in which not only
searches require multiple rounds of communication between client and server,
but also storage. Realizing this problem, the authors of [41] got rid of the inter-
activity by introducing even more client side computation.

5 Data Management on Server Side

We now have selected feasible PPE schemes, but just storing the PPE-encrypted
values would of course leak information instantly (like equality and relative order
between values) that is not supposed to leak when not querying. Therefore the
authors of [53] proposed a so-called onion layer model (OLM) for their SQL-
based architecture “CryptDB”. The idea is to encrypt every value with a PPE
scheme of each category (DET, OPE and SE) separately that leaks just enough
information to still be able to perform certain operations over the encrypted data
(as described in Section 3.2) and wrap it into another layer of random encryption
(in the following: “RND”) for not leaking any information. Then, the RND layer
is only removed, if a query requires it. In this way the database is still able to
process queries, but it learns only the minimal necessary amount of information.

5.1 An Onion Layer Model for WCSs

We adapt the basic idea of CryptDB’s OLM, but the data model of WCSs
requires some changes. As explained in Section 3.1, a fundamental working prin-
ciple of WCSs is keeping all rows of a table sorted by the content of the row
identifier column. Thus, the database must be able to compare the row identifier
of a new row to be inserted with already existing ones in the table. Therefore
OPE columns of row identifiers are not allowed to have a RND layer. Other-
wise the WCS data model would be broken. That means, row identifier columns
must be treated differently from all other columns regarding the onion layer de-
sign. They must leak the order of values to allow for row sorting independent of
querying.

All data types supported by the databases can be grouped in three categories:
strings (e.g. text, characters), numerical values (e.g. integers, timestamps) or
byte blobs (e.g. byte arrays, raw files). Figure 1 presents this work’s OLM de-
sign for string columns, before (left) and after (right) queries involving equality
checks and order comparisons were executed. The upper row shows the onions
for regular string columns. Note the missing RND layers after a query like Q3
- Q5 (see Section 6.2) was processed and the SE onion not requiring a RND
layer at all, because schemes for SE usually provide the same security guaran-
tees as RND layer encryption. The row below shows the onion in case of the
string column is a row identifier column. Note that in this case the DET onion



Unencrypted: After initial encryption: Encryption after queries involving the
DET and OPE layer:

RND RND
regular
column of DET OPE SE DET OPE SE
type
STRING [ value ] [ value ] { value ] [ value ] [ value J [ value ]
DET onion OPE onion SE onion DET onion OPE onion SE onion
(IND-CPA) (IND-CPA)  (IND-CPA/CKA2) (IND-CPA) (2 IND-OCPA/  (IND-CPA/
POPF) CKA2)
mandatory for
WCS data model
row
identifier DET OPE SE
column of
type Querying does not change
STRING value value value the onions.
DET onion OPE onion SE onion
(IND-CPA) (2 IND-OCPA/ (IND-CPA/
POPF) CKA2)

Fig. 1. Transformation of a plain string column into onion-layered ciphertext columns

comes without a RND layer, because the mandatory OPE column already leaks
equality®, rendering a RND layer wrapped around the DET onion useless. How-
ever, keeping a DET onion still makes sense, because having implemented AES
in hardware on the majority of modern processors, its decryption process works
much faster than the decryption algorithms of other PPE schemes.

While Figure 1 illustrates the situation for string columns as most complex
cases, the OLM for the other two type categories is different, since not all op-
erations make sense for all types of data. For instance, numerical values do not
need the SE onion, because searching for words in numbers is neither somehow
defined nor possible, even in unencrypted databases. Thus, numerical values can
be encrypted faster than strings in the OLM. We investigate the difference in
encryption performance in Section 6.2.

5.2 Querying the Encrypted Data

In our framework, the work flow for executing queries against PPE encrypted
data organized in an OLM as described in Section 5.1 is as follows.

Step 1: A query usually contains one or more conditions that have to be
met by a row to be included in the result set. Such a condition is always of
the form [columnname, compare operation, comparator]. For every condition the
client checks which onion is involved and whether the RND layer of this onion
still exists and has to be removed or not (e.g. if the compare operation is an
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equality check indicated by an “=”, the column representing the DET onion
gets checked).

3 Apart from rare exceptions (e.g. [51]) OPE schemes are deterministic. Hence they
leak not only the relative order between plaintexts, but also equality.
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Step 2: After all necessary RND layers have been removed by the client (step
1) the set of all columns is identified, that have to read from the database. This
set consists of two subsets, that might overlap. The first subset consists of all
onion columns that are involved in query conditions as described above. The
second subset consists of all columns, that were selected by the user’s query.

Step 3: Having collected that information, the client constructs the query
against the encrypted database by doing the following. All plaintext column
names are replaced with their ciphertext counterparts according to the informa-
tion that was collected previously (step 2). Furthermore all plaintext literals in
conditions are replaced by their PPE encrypted counterparts. The query now
contains no plaintext information anymore and can be carried out by the server.

Step 4: The client receives and decrypts the results. Note that the removed
RND layers stay off, because the database saw the underlying values anyway.

6 Evaluation

6.1 Implementation

All experiments in this section were run on an Intel Core i7-4600U CPU @
2.10GHz, 8GB RAM, a Samsung PM851 256GB SSD using Ubuntu 16.04. The
PPE schemes were implemented in Java 8, using cryptographic primitives of the
Java Cryptography Extension and The Legion of the Bouncy Castle Java Cryp-
tography API*. In order to avoid measuring network effects local installations of
the databases were used, as only the computation time of the schemes in combi-
nation with the speed of the databases was to be measured. Cassandra was used
in version 3.9, Apache was used in version 1.3.

6.2 Performance

While AES is a performant option for encryption and decryption in the RND and
DET layer, we evaluated the performance as well as strengths and weaknesses
in previous work for the OPE [54] and SE [55] layer schemes. Depending on
the application the user might want to exploit these strengths and minimize
the impact of these weaknesses. That is why we group the schemes that we
have selected in Section 4 in three profiles, each of which determines what PPE
schemes are actually used in the OPE and SE layer during data insertion:

— OPTIMIZED READING: This profile prioritizes schemes that have advantages
for read queries (e.g. like selections). Thus, it is the best choice for “write-
once” databases. The OPE schemes best suited for fast reading are RSS and
OACIS. They have the same type of index, which results in equal reading
performance. However, RSS is the preferred choice for this profile, because
it has some minor advantages in the encryption process. For the SE layer
the SUISE scheme is used. It is faster than SWP in the process of searching,
in particular for repeated queries.

% available at https://www.bouncycastle.org/
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— OPTIMIZED WRITING: This profile prioritizes schemes with fast encryption
algorithms for scenarios, in which data insertion occurs more often than
reading. The OPE scheme best suited for fast writing is OACIS. For the SE
layer the SWP scheme is used. Since it does not have to maintain indexes,
it can insert data faster than SUISE.

— STORAGE-EFFICIENT: This profile prioritizes storage needs over computation
time and hence PPE schemes, that require the least amount of storage for
data and indexes on client and server side. Hence, it uses mOPE for the OPE
layer and SWP for the SE layer, both working without indexes.

Not affected by these profiles is only the OPE layer of row identifier columns,
that must always be encrypted using RSS. The other schemes are not suited
for row identifiers for the following reasons. OACIS cannot be used, because it
produces mutable ciphertexts, but row identifiers are supposed to be final (see
Section 3.1). mOPE cannot be used, because it adds a secret modular offset to
the ciphertexts, that the database must not know about, but that has to be
taken into account, when inserting values.

PPE scheme indexes (if existing) are maintained per column. This allows
involving only the index data of columns actually required for answering a query.

For our tests we used a subset of the Enron email dataset®, which reflects
the practical scenario of using PPE for protecting sensitive mailbox data. We
assume an average mailbox to have a size from 1,000 up to 10,000 emails. Hence,
the measurements are started with 1,000 randomly chosen emails of the corpus,
which we increase up to 10,000 emails (that contain 1.03 - 107 words in 180.000
fields of data) in order to estimate how the schemes and databases scale.

Encryption. We measure the time for encrypting and inserting up to 10,000
mails (1.03 - 107 words) using the table profiles and OLM as introduced above
and presented the results in Table 3. Since the complexity of encrypting different
types of data in the OLM is different, we distinguish between the encryption of
text and numerical data. Hence, in a first series of measurements we investigate
the performance of text data, using the data fields of the Enron email dataset
“as they are”, meaning as strings, that are encrypted as shown in Figure 1. Note
that this is the worst case scenario for the proposed architecture, because OPE
for strings and SE layer computations are the most expensive operations in the
OLM. These measurements are indicated in Table 3 as “text data”. In a second
series of measurements we extract an equal amount of numerical values from the
Enron emails, like their size, date, priority etc. Their OLM encryption is less
complex, because OPE-encryption can be computed faster (since the necessary
numerical format is already given) and the SE layer is not involved at all. ©

As could be expected, the profile for OPTIMIZED WRITING performs best,
increasing the average insertion time for text data by a factor of 5.92 using Cas-
sandra and 5.62 using HBase. When inserting numerical data, the performance

5 available at https://www.cs.cmu.edu/~./enron/

5 We do not perform test for byte blob data, since in the proposed OLM this would
only result in performing in AES encryption.
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is much less affected by encryption: 35% with Cassandra and even only 10%
with HBase. The profile for OPTIMIZED READING performs well for numerical
data, roughly doubling the insertion times, whereas the performance loss factors
are 26.1 and 22.9 for text data. The STORAGE EFFICIENT-profile suffers from the
slow mOPE scheme in the OPE layer, which results in overall performance loss
factors of 40.4/34.5 and 10.4/8.3. In real-world scenarios the performance will be
somewhere in between the extremes for text and numerical data, that are shown
in Table 3, depending on the composition of the dataset. In summary, it can
be said that the OPTIMIZED WRITING-profile is a a justifiable option in relation
to the security that can be gained. Since in most scenarios query performance
is much more crucial than writing performance, even the profile for OPTIMIZED
READING should be sufficient for the majority of use cases. However, the STORAGE
EFFICIENT-profile might not be feasible in practice due to its computationally
expensive PPE schemes.

Concerning the databases it can be observed, that there are only non-significant
differences. HBase is always a little faster than Cassandra. The smallest differ-
ence (5.3%) between both occurs when using the profile for OPTIMIZED WRITING
for text data, the biggest difference (25.3%) when using STORAGE EFFICIENT-
profile for numerical data.

Table 3. Time needed for onion layer encryption of 180.000 fields of text data and
180.000 fields of numerical data in seconds (OR = Optimized Reading, OW = Opti-
mized Writing, S = Storage-efficient, PL. = performance loss).

Database [ [ text data [ numerical data
unencrypted 9.71 8.91

Cassandra profile OR OW S OR ow S
encrypted 253.2 57.48 393.0 22.2 12.1 93.1
factor of PL 26.1 5.92 40.4 2.49 1.35 10.4
unencrypted 10.5 10.1

HBase profile OR OW S OR OW S
encrypted 241.0 59.01 362.2 20.6 11.1 83.8
factor of PL 22.9 5.62 34.5 2.04 1.1 8.3

Querying. Querying is more complicated than encrypting. The runtime of a
query depends on many aspects, for example the query type, the state of the
onion layers and the PPE schemes used. These aspects are considered during
the benchmarks in the following ways. First of all, five queries (Q1l - Q5) are
tested, that involve dealing with different combinations of PPE schemes and are
based on real world use cases. Q1 asks for all emails of a certain sender. Thus,
it requires one check for equality and involves the DET layer once (see Section
3.2). Q2 asks for all emails larger than a certain size. Hence it requires OPE
once, because the order relation between two values has to be determined (also,
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see Secction 3.2). Q3 asks for all emails with a certain word in their body. That
means a word has to be searched for in encrypted text. That involves the SE layer
once (again, see Section 3.2). Q4 combines all filter criteria from Q1 - Q3 and
Qb is a more complex query, that asks for all mails from a certain sender (DET)
in a certain period of time (2x OPE for the start and end point of this period)
with certain words in the subject and body fields (2x SE). When performing
one of them, it makes a significant difference in terms of runtime whether the
same or a similar query was performed before or not, which the following two
reasons are responsible for. Firstly, columns being involved in an equality check
or order comparison before already lost their RND layer. The effort of removing
it is not necessary again. Secondly, when the SUISE scheme is involved in SE
more than once, it might already have the results in a second index it maintains,
which also improves the query runtime significantly. For these two reasons every
query is executed twice with Qx.1 indicating the first execution of the query Qx
after encryption and Qx.x indicating the runtime, that can be expected from all
future executions of Qx.

20
18

16 .
storage efficient,

OLM overhead
mstorage efficient, DB

communication

optimized writing

14

12

OLM overhead
moptimized writing
DB communication

optimized reading,
OLM overhead

moptimized reading,

4 DB communication
0

QL1 QLx Q21 Q2x Q31 Q3x Q41 Q4x Q51 Q5x
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time [s]

Fig. 2. Query runtime with Cassandra

The results are presented in Figure 2 for Cassandra and Figure 3 for HBase.
In these figures “DB communication” denotes the pure runtime of the databases’
communication mechanisms (which is the execution time of driver calls in case
of Cassandra and the execution time of HBase’s native API calls) and “OLM
overhead” denotes everything that is a direct or indirect consequence of the
onion layer model, for example query rewriting, RND layer removal or the SE
processing as described in Section 5. Decryption time of the resultset (as obtained
in step 4 of Section 6.2) is not explicitly shown, since it is insignificant (under
5ms for all queries). All queries have been conducted with the largest dataset
that has been used in the previous encryption benchmark, having a volume of
1.03 - 107 words in 10,000 emails.

The following observations can be made. If encryption was done using the
profile for OPTIMIZED READING, all Qx.x queries perform well under one sec-
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Fig. 3. Query runtime with HBase

ond, except for Q3.x in combination with Cassandra. This can be considered
practically feasible performance [15]. Qx.x queries are always faster than Qx.1
queries. That means the performance always improves, if similar queries are ex-
ecuted. Performing SE is very expensive compared to requiring DET or OPE
functionality only. However, performing SE on small fields of data has barely a
performance impact (compare Q4 and Q5; Q4 searches in bodies, Q5 adds SE
only in the small subject field), but can slow down querying significantly, if done
on a large subset of the data (compare Q1 and Q2 against Q3). HBase seems
to have a slight overall performance advantage. A possible explanation for this
might be the RND layer removal, which HBase is doing almost twice as fast
compared to Cassandra. This can be seen in Q1 and Q2, in which most of the
time is need for the RND layer removal.

7 Security

A formal security analysis of the PPE schemes that we used can be found in
their originating publications. In this section we briefly discuss security aspects
arising from putting the schemes into practice.

For AES, the only scheme used and needed in the DET layer, there are neither
known attacks of practical relevance, nor any leakage besides the intentional
determinism.

In SE schemes mainly three kinds of information can leak unintentionally:
index information (e.g. number of words per document, number of documents,
lengths of documents, document-IDs), search pattern information (what word
was searched for?) and access pattern information (how much answers do I get
from executing a certain query compared to executing another one?). The leak-
age of the used SE schemes can be described as follows. SWP [45] does not
need an index and thus does not leak any index information and also hides the
true length of plaintext words, because it uses fixed length trapdoors. However it
leaks search patterns, since it passes pre-encrypted search words to the database,
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that are deterministically encrypted, which allows linking them to actual plain
words. SWP also leaks access patterns, which is unavoidable in the client server
scenario, in which a request (pre-encrypted searchword) can always be linked
to the corresponding answer (the result set). The SUISE scheme [43] leaks the
number of unique words per document. Since search tokens are generated de-
terministically, the search pattern leaks like in SWP. Trapdoors have a constant
length, which also hides the length of the plaintext words.

Concerning the OPE layer neither of the schemes can leak any index infor-
mation, because the index (if exists) resides on clientside. Search patterns can
leak, because the used OPE schemes produce deterministic ciphertexts that can
be tracked. Access patterns leak for the same reasons explained earlier for SE.
Another security risk for OPE is to encrypt either very few or very much values
of a domain: on the one hand, if only two values of a domain p; and ps are en-
crypted, they can easily be mapped to their corresponding ciphertexts ¢; and cs.
Obviously the smaller p value is encrypted in the smaller ¢ value and the larger
p value is encrypted in the larger ¢ value. On the other hand, it is equally severe
if all values of a specific domain have been encrypted. The ordered ciphertexts
can simply be mapped to the ordered plaintexts (note that both problems also
occur in non-deterministic OPE schemes). That means e.g. it makes sense to
store a date in form of a unix timestamp, not split in individual characteristics
like day (domain size only 31), month (domain size 12), etc.

8 Extensions and Future Work

The topic of this work leaves a lot of room for additional work. An evaluation
in a real world cloud environment is needed. Fragmentation over independent
databases (which we already implemented, but not presented for reasons of com-
plexity) can be of further use to impede statistical attacks based on PPE leakage.
We also plan to support other databases and data models. WCS tables can easily
be transformed to fit e.g. in key value or document stores. An additional onion
for homomorphic encryption can be used for data aggregations like sums and
averages. Schemes for fuzzy /similarity search are of interest for the SE layer.

9 Conclusion

We analysed the requirements that PPE schemes have to meet in order to be
feasible for NoSQL WCSs and evaluated various available schemes for OPE and
SE regarding these requirements. Based on our findings we identified feasible
PPE schemes, proposed an OLM to handle PPE encrypted data on serverside
and implemented both for a practical evaluation using the two popular WCSs
Cassandra and HBase. We quantified the performance impact of PPE encryp-
tion and characterized practical security issues. We showed that choosing PPE
schemes corresponding to the read/write needs of the scenario leads to still prac-
tically feasible performance.
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