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ABSTRACT

In this paper we address the topic of identification of cohorts of
similar patients in a database of electronic health records. We follow
the conjecture that retrieval of similar patients can be supported
by an underlying distributed database design. Hence we propose a
fragmentation based on partitioning the health records and present
a benchmark of two implementation variants in comparison to an
off-the-shelf data distribution approach provided by Apache Ignite.
While our main use case in this paper is cohort identification, our
approach has advantages for taxonomy-based query answering in
other (non-medical) domains.
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1 INTRODUCTION

A typical application scenario that can benefit from a distributed
database system (DDBS) is the management of medical “big data”
collected from different data providers to be used in healthcare
for example for predictions or research [11]. In particular, novel
biomedical technology - for example, next-generation sequencing
[27] - produces vast amounts of data. In this article, our application
scenario is a medical information system that uses a distributed
database system as a storage backend. In our example system, pa-
tients’ personal information as well as the diseases they suffer from
are contained in a distributed database. A cooperation of hospitals
could maintain this database as a joint information system. Access
to the patient data can be provided to doctors and nurses that need
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to work with these data from different locations. The medical infor-
mation system can then act as a Clinical Decision Support System
(CDSS).

Example 1.1. We consider a medical information system that
consists of three database tables (one for the diagnosed illnesses,
one for the examinations done for the anamnesis and one for ad-
ministrative information):

I11 | ID | Diagnosis Anamnesis | ID | Examination
1 Corneal Perf -
1 Seidel test
2 | Corneal Perf -
- 2 Seidel test
2 | Asthenopia
2 Ultrasound
2 Ranula —
- 3 | Eye Examination
3 | Asthenopia 1 [ Bios
4 | Breast Cyst psy
Info | ID | Name Address | Age
1 Miller | Brisbane | 41
2 | Smith | Sydney 48
3 Brown | Canberra | 22
4 | Jones | Perth 53

Our intended medical information system is supposed to support
medical staff in identifying relevant data from these three tables in
an efficient way:.

Our main aim is to provide the advanced functionality of in-
telligent query answering for such a medical information system;
this query answering functionality is defined by a notion of simi-
larity between terms (in our case, diagnoses specified by disease
descriptors) that can be obtained from an underlying taxonomy of
terms. Similarity-based query answering has several purposes in
the medical domain. For example, a notion of patient similarity is
the major precondition to obtain reliable cohorts for clinical stud-
ies. To achieve the goal of similarity-based query answering in an
efficient way, we enhance the basic distributed data management
with two different implementations of database fragmentation. In
our application, a clustering procedure is applied to the disease in-
formation of patients; we assume that the disease terms conform to
the vocabulary provided by the Medical Subject Headings taxonomy
(MeSH) of the U.S. National Library of Medicine [23].

Example 1.2. In our example, the clustering will be executed on
disease terms such that we are able to partition the table Il into
two fragments: one for eye diseases (tuples containing Corneal Per-
foration and Asthenopia) and one for neoplasms (tuples containing
Ranula and Breast Cyst). Similarity-based query answering enables
us to retrieve answers that are similar to a query condition: when
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for example asking for patients having Keratitis, the user will re-
trieve information of patients having eye diseases; however, the
user will not retrieve information of patients having neoplasms.

Our specific contribution in this article is that we comparatively
analyze performance properties of standard out-of-the-box dis-
tributed behavior with two different implementation variants of
intelligent clustering-based query answering in a widely used SQL
database system. The remainder of this article is organized as fol-
lows. Section 2 surveys related work of medical data integration and
flexible query answering. Section 3 provides the necessary theoret-
ical background on DDBSs. Section 4 gives an in-depth description
of our proposed intelligent information system. Section 5 describes
the implementation details while Section 6 comparatively evaluates
the three implementation variants. Section 7 concludes the article.

2 RELATED WORK
2.1 Distributed Databases and Query Rewriting

In this article, we assume a classical relational database as the
data model underlying our medical information system: a database
instance consists of a set of relations (or tables) each ranging over
a set of attributes (or columns) and each relation contains a set
of tuples (or rows). Relational database systems are still the most
widely used data model. In particular, our use case (identification
of cohorts of similar patients) lies in the medical domain. In this
area many data models for health records still follow the relational
paradigm - for example, the i2b2 system [15] is built on a relational
database system.

Query decomposition [14] denotes the process of rewriting the
query to a normalized form, followed by a semantical analysis, a
simplification of the query and a rewriting and restructuring to
a relational algebra query. These four steps provide as their re-
sult an algebraic query that can be optimized. These techniques
are dependent on the type of fragmentation, i.e. whether it is a
(primary/derived) horizontal or vertical fragmentation or even hy-
brid fragmentation, and they are applied as rules in order to make
use of the possible simplifications and improvements regarding
the query. Other authors [10, 20] survey methods of distributed
query processing including the requirements of different strategies
that allow for transforming a query stated against the database,
e.g. written in SQL, into an execution plan consisting of relational
algebra instructions for the database which yield the correct re-
sult set for the query in an optimal way. In our system we apply
two rewriting techniques to support the intended similarity-based
query answering,.

2.2 Flexible Query Answering and Similarity
Search

A problem with exact database query answering is that the user
does not always retrieve all the relevant answers that might interest
him or her. Failing queries, that have an empty result set, are only
desirable for a user in the fewest cases as an empty result cannot
provide any information except the information that this query
could not be answered exactly under the current database state. A
failing query forces the user to check whether the query contains
some logical error itself leading to no exact answers, or whether the

current database state does actually not provide any matching data.
Moreover, even if there are some records returned as the database
answer, there might be more information contained in the database
that is highly similar to the query intention. In other words, the
database would probably be able to give an answer that has an
informational content that is similar to an exact answer or - in case
of a failing query - is non-empty. Therefore, the user could already
be satisfied with a similar answer as this similarity can already
enable the user to gain information and draw conclusions based on
this similar answer.

Flexible query answering exists in different data models. For ex-
ample, [6] analyze flexible query answering by rewriting according
to a description logic language. On the other hand, the MSQL sys-
tem [12] addresses similarity search in metric spaces. [22] present
similarity query operators for SQL. [29] address semantic similarity
search in knowledge graphs. As opposed to these approaches, we
combine similarity search based on a taxonomy with an underlying
distributed database design supporting derived fragmentations. An
approach similar to ours is [16] using the SNOMED disease ontol-
ogy, yet their focus is more on data integration in a polystore and
not on data fragmentation.

2.3 Clinical Decision Support

Our aim is to implement an intelligent query answering system
that is backed by a distributed database system — and hence can
improve effectiveness of Clinical Decision Support Systems (CDSSs)
by providing an efficient technology for cohort identification. In
other words, it can be used to identify a cohort of patients [7] that
are similar to a current “target patient”. Historical data of similar
patients in this cohort are valuable information in order to assess
health conditions as well as decide on further treatment of the
target patient. CDSSs have widely been conjectured to identify
optimal treatments when considered by experienced medical staff
as an extra source of information [13] - in addition to their personal
professional expertise. Moreover, another possible usage scenario is
that researchers make use of these patient data when investigating
the co-occurrences of several groups of similar diseases.

For clinical decision making, the deployment flexible query an-
swering that is based on some semantic guidance — which in our use
case corresponds to the clustering based on the similarity defined
for diseases represented by MeSH terms — can be tremendously
helpful; for example, when considering the search for similar pa-
tient profiles for decision making regarding the treatment options
and for predictions for the patient’s future (cf. the oncology use
case in [9]). The data of identified similar patients can be used to
compare the current situation of the patient as well as probabilities
of success or failure of treatments. The higher the similarity is to
other patients, the higher are the chances for an optimal treatment
of the specific disease — especially early detection and methods of
prevention could be enabled. Yet, the specific definition of similar-
ity plays a crucial role: as soon as the similarity decreases beyond
some threshold, the informational content that can be derived will
not be as useful anymore. Moreover, the reliable identification of
similar cases may require more sophisticated similarity measures
in order to identify helpful profiles and information that allows for
ranking similar cases based on the similarity measures [9]. Hence,



the parameters of similarity for clinical decision making must be
adaptable to the setting under investigation. Our system offers this
behavior by providing a configurable threshold for the similarity.

Identifying a cohort of patients is an important task for secondary
usage of Electronic Health Records (EHR) data for personalized
medicine, clinical research or result quality improvement [4, 17,
19]. For example, in [28] a similarity-based modeling on patient
data that matches individuals to subjects with similar conditions
was proposed and implemented for the diagnosis and prognosis of
Alzheimer’s disease.

3 BACKGROUND

The relations (that is, tables) of a DDBS can be partitioned into
fragments - in other words, the data from the tables are split into
subsets. These fragments are then assigned (“allocated”) to one or
more of the database instances belonging to the DDBS. We will
use the terms partitioning and fragmentation interchangably: while
on the theoretical level commonly the term fragmentation is used,
at the level of database system implementations often the term
partitioning is preferred (like the Apache Ignite system that we use
in our implementation).

Horizontal fragmentation divides a relation in a row-wise man-
ner into smaller subsets of tuples (i.e. table rows) — in contrast to
vertical fragmentation that splits a relation into subsets of table
columns. Horizontal fragmentation splits a relation R into frag-
ments Fy, Fa, . . ., Fp by assigning each tuple y of the relation R to
at least one fragment F;, i € {1,...,n}. The result of this is that
foralli € {1,...,n}, the subset relation F; C R holds. Additionally,
in order to avoid redundancy of data, we can require that each
tuple is only assigned to exactly one fragment; more formally, the
fragments are pairwise disjoint: Yy € F; it holds that y ¢ Fj,i # j
for i,j € {1,...,n}. In relational algebra such a primary horizon-
tal fragmentation can be described by a selection operation ¢ on
the relation R, where the selection condition defines the desired
mapping of tuples to fragments. Based on this primary horizontal
fragmentation, a further fragmentation of another relation S can be
derived by computing the semi-join (denoted as i) of the relation S
with fragments Fj, i € {1,...,n} of the primary relation R, i.e. the
derived fragments G; of the relation S are computed as G; = S < F;
fori € {1,...,n}. The derived horizontal fragmentation depends on
the underlying primary horizontal fragmentation, and, to prevent
tuples in S from getting lost during the semi-join with fragments of
R, it is necessary to have for each tuple y € S matching tuples in R
in order to let the tuples from S “survive” the semi-join. An integrity
constraint in form of a foreign key reference of the relation S to
the relation R can be used to enforce this condition for the sake
of completeness of the derived fragmentation. Inherently with the
definition of the derived horizontal fragmentation on a semi-join,
redundancy of tuples of S in the derived fragments may occur if
tuples in S match multiple tuples that belong to different fragments
of R. This causes the fragments G; of S to be non-disjoint in general.
However we will make use of this property to ensure data locality
of primary and derived fragments: while we require the primary
fragmentation to be disjoint (and hence non-redundant) the derived
fragmentation might contain fragments that have some tuples in

common. These derived fragments are however stored on different
sites together with their matching primary fragment.

4 SYSTEM DESIGN AND ARCHITECTURE

This section presents the methods underlying the intelligent infor-
mation system in terms of data storage and fragmentation.

4.1 Data Storage

Our setting is based on several in-memory Apache Ignite instances
that are spread across a set of interconnected servers that form a
so-called cluster. Each database instance (that is, database “node”)
is run in a Java Virtual Machine (JVM) hosted by a different server.
Yet, technically there can be multiple database nodes hosted on
the same server, too; even multiple nodes running in the same
virtual machine are possible. With the underlying Client-Server
architecture, a node can be either a server node, which is responsible
for storing and processing data, or a client node that is able to
connect remotely to the cluster of server nodes and process a query
from the client side. Servers can be accessed remotely from clients
by connecting to them via a native programming language API
(e.g. Java), via a JDBC or ODBC connection or via a REST APL
We used the advanced functionality of the native API for setting
up the fragmentation and inserting data; while we used JDBC for
running the benchmark queries because it is more lightweight and
straightforward. The Ignite server nodes store data depending on
the fragmentation (called partitioning with Ignite) and replication.
The fragmentation and replication is defined per relation. In the
partitioned mode a relation is partitioned and each server is then
responsible for only a subset of the data. It is also possible to have
partitioning and replication at the same time: the partitions of the
data are stored on more than one server such that each partition
of the data are stored on one server as primary partition and on
the other servers as backup copies for higher availability and data
resiliency in case of server node failures. In replicated mode, a
balancing of the data load is achieved by partitioning the data of
the relation with hash functions into subsets of nearly equal size
that are dispersed equally among all server nodes in the network
to exploit as much memory as possible on all nodes.

By default Apache Ignite provides automatic partitioning and
distribution of the data; the DDBS strives to equalize the load on all
participating nodes yielding a balanced data distribution. Yet, this
equalized approach does not support similarity search. We compare
this basic Ignite setting with our developed approaches that support
cohort identification by clustering-induced data distribution.

4.2 Ignite’s Partitioning Settings
One important concept of Ignite is the collocation of data — which
corresponds to the concept of a derived horizontal fragmentation:
data that are accessed together, e.g. because they are joined via
a common attribute or a foreign key reference, are also stored
together on the same server; this ensures data locality and allows
for collocated distributed joins (between the primary and a derived
fragment) that benefit from data locality because the costly data
transfer between server nodes across the network is avoided.
Ignite offers the database administrator a method to influence
and change the assignment of a tuple to a partition. This affinity



collocation can be defined in Ignite by so-called affinity keys: An
affinity key can be identical to the primary key of a relation or an
attribute of a composite primary key of a relation. Ignite ensures
that all tuples where the affinity keys match are stored on the same
server. The usage is restricted to a single affinity key definition
per relation. With this restriction, there cannot be a collocation
of three or more relations that could be joined via a chain of join
conditions where the join attributes would form possible affinity
keys of the different relations. If all the joined relations in the SQL
query are collocated, the query can be evaluated locally by each
node: all the data they need to compute a correct result set regarding
their portion of the whole data in the cluster are available locally,
i.e. stored by themselves. The concept of affinity collocation strongly
corresponds to the primary and derived horizontal fragmentation
of relations, i.e. the derived fragmentation also ensures that tuples
from the derived horizontal fragments are located at the same
server where also the tuples reside with which they can and will be
joined in SQL queries. Joins between partitioned relations require
for collocation of the data that are about to be joined. Otherwise,
the result set will be incomplete as the non-collocated parts of the
data cannot be joined locally by the nodes. The query execution for
the collocated join case is that a query Q is sent from the client to
each server node which executes the query Q locally and returns
the result set R; to the query according to its stored data set. The
final result set is the union of the result sets R; from each of the
nodes. This is the default Ignite behavior.

On the other hand, non-collocated joins require for additional
communication and data transfer between the nodes of the cluster
as the data that are needed for a join is not locally present. Thus, the
nodes have to send requests for the data to other nodes to complete
their result set computations appropriately. The data request of
a node can be sent as a unicast request to a certain node of the
cluster (peer-to-peer communication) or as a broadcast request to
all other nodes. This decision depends on whether the requesting
node can identify the exact location of the data, i.e. if it is a join
on a primary or affinity key, or if it has to request the missing
data from all other nodes otherwise. This additional data transfer
implies a bad efficiency of query execution as it depends on the
transmission duration of probably bigger data sets between the
nodes. Furthermore, this causes additional load on the network
that can decrease the performance of other tasks or operations.
Non-collocated joins must be enabled explicitly in Ignite to enforce
the distributed answering with data transfer across the network if
necessary. If not enabled explicitly, the query will be executed in
a collocated manner which, in general, leads to incomplete result
sets due to required data not being available locally.

In our implementation - in order to avoid network communica-
tion overhead — we ensure appropriate collocation of the data and
make use of collocated joins for better query execution efficiency.

4.3 Clustering-based Fragmentation

In contrast to Ignite’s hash-based horizontal partitioning, our pro-
posed clustering-based fragmentation is computed in a semantic
way: the horizontal fragments are induced by a previously calcu-
lated clustering that provides a semantic guidance for the assign-
ment of the tuples to the horizontal fragments. More precisely,

the clustering-based fragmentation is a horizontal fragmentation
strategy that, on the one hand, enables fragmentation regarding a
similarity metric which allows for a more semantic partitioning of
the data set, and, on the other hand, supports the similarity-based
query answering. The underlying clustering is computed with an
approximation algorithm [8] on all values that occur in the active
domain of a chosen attribute of the relation defined as follows.

Definition 4.1. Given an attribute A of a relation instance R, the
active domain of the attribute A is the projection 74 (R) of R to the
values of A.

On the active domain we aim to execute the clustering procedure.
In order to do this, we need a similarity relationship sim(a, b) for
pairs of elements a, b from the active domain 7 4(R) — more formally,
sim : mA(R) X ma(R) — R. It is customary to restrict the range of
the similarity to the interval [0, 1] such that a similarity of 1 denotes
that the elements a and b have highest similarity, whereas the closer
the similarity value gets to 0, the more dissimilar the two elements
are. A clustering (in terms of a partitioning of the active domain into
disjunctive subsets) can be obtained by evaluating the similarities
and assigning the elements to the clusters. An appropriate criterion
for determining how “similar” two elements have to be to belong
to the same cluster is required. We rely on a head element (also
called centroid) which is an element from the cluster that represents
the cluster. In addition, we define a threshold parameter . This
similarity threshold @ which is used in the computation of the
clustering of the active domain of the relaxation attribute (Disease);
it allows to configure how big the similarity of a term to the head
of a cluster has to be at least such that they will be assigned to the
same cluster. By choosing an appropriate threshold, it is assured
that no two diseases, represented by terms, that have no significant
similarity at all belong to the same cluster and are subsequently
seen as similar diseases.

Under this restriction, for any element a of a cluster c, the cor-
responding head element of this cluster, head € ¢, and a given
similarity threshold « it holds that sim(a, head) > «.

The pseudocode of the clustering procedure is described in List-
ing 1. The clustering starts with a single cluster (Line 1) containing
the whole active domain and an arbitrarily chosen head element
from the cluster and then identifies the minimal similarity inside
the cluster between all elements from the active domain and the
cluster head (Line 6). Subsequently, new clusters are created with
new head elements based on the minimal similarity of a term to the
head of a cluster as long as the similarity threshold is not exceeded;
all elements are reassigned if they are more similar to the head of
the newly created cluster (Line 7). The procedure iterates as long
as there are still elements inside one of the clusters that have a
similarity to the corresponding head element that is lower than
the similarity threshold a (while-condition in Line 5). Hence, the
iteration proceeds until each element of the active domain is clus-
tered such that the minimal similarity according to the threshold
a from Definition 4.4 can be ensured. The obtained clustering is
finally returned and used later to induce a horizontal fragmentation
(cf. Definition 4.4). The following example shows how a cluster-
ing is computed for a given set of disease terms and the pairwise
similarities of the diseases.



Listing 1 Clustering procedure

Input: Set 4 (F) of values for attribute A, similarity threshold
Output: A set of clusterscy, .. ., cr
: Let ¢c; = ma(F)
: Choose arbitrary head; € c;
. Simmin = min{sim(a, heady) | a € c1;a # head}
i=1
: while simpin < a do
Choose head;+1 € {b | b € cj;b # headj; sim(b, head;) =
SiMmin; 1 < j < i}
7: civ1={head;iy1} U {c | ¢ € cj;c # headj; sim(c, head;) <
sim(c, head;j+1);1 < j < i}
8: i=i+1
9: simmin = min{sim(d, head;) | d € cj;d # headj;1 < j < i}
10: end while

[ I

Example 4.2. Consider the sample disease term set
{Asthenopia, Corneal Perforation, Ranula, Breast Cyst}

and the corresponding pairwise similarities of the diseases like
shown in Table 1 in order to illustrate the functionality of the
clustering procedure. All eye diseases are similar to one another;
the same holds for the neoplasms — but neoplasms are less similar
to eye diseases, and vice versa.

&
@ & X
o N o)
& tod A X
N & & >
v ® & ¥
Asthenopia 1 0.2 0.167 0.167
Corneal Perf 0.2 1 0.125 0.125
Ranula 0.167 0.125 1 0.333
Breast Cyst 0.167 0.125 0.333 1

Table 1: Pairwise similarities of some diseases

Let @ = 0.2. The clustering procedure starts by creating the
first cluster cq that is represented by an arbitrarily chosen head,
e.g. the first disease of the set (head; = Asthenopia), and moves all
remaining terms to the cluster’s subset. In the next step, the min-
imal similarity of any disease term to the cluster head, simmin =
Zneicr} sim(a, heady), is calculated and compared to the similarity

threshold. As this minimal similarity still is below the threshold,
simmin = 0.167 < 0.2 = a, the identified minimizing disease
term is chosen to be the head element of the next cluster, i.e.

argmin sim(a, head;) = Ranula = head; € cp. After this step,
aecy

all diseases of cluster c; that are more similar to the neoplasm
than to Asthenopia will be reassigned to the cluster c;. The clus-
tering computation is complete because the minimal intracluster
similarities for all clusters are above the threshold:
Vei, i € {1,2} : min sim(a, head;) > a
aec;

The resulting clustering is {c1, ¢} where c; = {Ranula, Breast Cyst}
and ¢; = {Asthenopia, Corneal Perforation}.

By varying «, the clustering can be influenced: if the similarity
threshold is below the minimal pairwise similarity of any two
diseases, e.g. @ = 0.12, then the computation stops after the initial
step before the first iteration and the resulting clustering consists
of only one cluster. If in contrast & > 0.2 (but < 0.333), there would
be one cluster with the two neoplasms and an own cluster for each
of the eye diseases. For our further evaluations the chosen value
for a was fixed for the different term subsets between 0.1 and 0.2.

The different clusters contained in the clustering can be used
to obtain a horizontal fragmentation of a relation instance R. Each
cluster induces one horizontal fragment: any two tuples are mapped
to the same fragment if their values for clustering attribute A belong
to the same cluster.

Example 4.3. Based on the clustering, we obtain two fragments

of table III.
I11_0 | ID | Diagnosis

1 Corneal Perf | I11_1 | ID | Diagnosis
2 | Corneal Perf 2 | Ranula

2 | Asthenopia 4 | Breast Cyst
3 | Asthenopia

The clustering-based fragmentation [25] can be formally defined
as follows:

Definition 4.4. Given the active domain 74 (R) regarding an at-
tribute A of a relation instance R, and a complete clustering C =
{cili = 1,...,n} of ma(R) with threshold « and head elements
head; € c; for the clustering. Then, F = {Fj, ..., F,, } is a (horizontal)
clustering-based fragmentation of R if

e every horizontal fragment F; corresponds to one cluster
¢j € Csuch that ¢; = ma(F;)
o the threshold « is respected in every cluster such that Vi €
{1,...,n} :Va € ¢; : sim(a, head;) > a
o the clustering is complete and hence for every tuple ¢ in R
there is an F; in which t is contained
the original instance can be reconstructedas R = F;U. . .UF,
fragments are non-redundant such that for any i # j, F; N
Fj = 0 (or in other words ¢; N ¢; = 0)

The clustering-based fragmentation is a primary horizontal frag-
mentation; as already discussed in Section 3, it is possible and
efficient to derive a horizontal fragmentation for a second relation
from it. Hence we achieve the usual collocation of the data by allo-
cating tuples of the second relation to the corresponding derived
horizontal fragments by considering common join attributes.

Example 4.5. We have two fragments of Ill, hence we obtain two
derived fragments of Anamnesis and Info as well based on the join
attribute ID:

I111_0 | ID | Diagnosis Anamn_0@ | ID | Examination
1 | Corneal Perf 1 | Seidel test
2 | Corneal Perf 2 | Seidel test
2 | Asthenopia 3 | Eye Examin
3 | Asthenopia 2 | Ultrasound
Info_0 | ID | Name Address | Age

1 Miller | Brisbane | 41
2 | Smith | Sydney 48
3 Brown | Canberra | 22




Anamn_1 | ID | Examination
2 | Seidel test
Ultrasound

4 | Biopsy

I11_1 | ID | Diagnosis
2 | Ranula
4 | Breast Cyst

N

Info_1 | ID | Name | Address | Age
2 | Smith | Sydney | 48
4 | Jones | Perth 53

As the data are distributed according to the clustering into hor-
izontal fragments, similarity-based queries can now be executed
in a distributed manner according to the clustering. Finding the
relevant data fragment is done based on the selection condition on
the attribute chosen for the clustering: for each term in the selection
condition the term’s similarity to the head elements of the different
clusters is obtained. The maximal similarity of the comparison ele-
ment and all cluster heads determines the matching cluster as well
as the induced horizontal fragment. More formally, we can define a
similarity-based answer for each selection (sub-)query on attribute
A as follows.

Definition 4.6. For a clustering-based fragmentation of relation
R, and a selection query o4_«,»R on the clustering attribute A the
similarity-based answer is

{Fi | head; = argmaxj=1,... nsim(s, head;)}.

If there is more than one cluster head with maximal similarity, we
choose one of them at random. In this case it is sufficient to execute
the query only locally at a single server which hosts the single
relevant data fragment. An alternative to this approach would be to
return the union of all fragments with most similar head elements.

Example 4.7. Assuming that sim(Asthenopia, Keratitis) = 0.25
being the highest similarity of all cluster heads to Keratitis, we can
answer all queries having an appropriate selection condition on the
Disease attribute (that is, Disease=Keratitis) in a similarity-based
way by returning the fragment I11_0 - potentially joined with the
collocated derived fragments.

5 IMPLEMENTATION

To evaluate the clustering-based fragmentation, we comparatively
benchmark three implementation alternatives: (1) Basic Ignite, (2)
Materialized Fragments and (3) Partition Number as described in
the following subsections. The source code is available in a Github
repository!.

5.1 Similarity Calculation and Clustering

As the underlying input to our approach, we have to provide the
pairwise similarities, sim(a, b), for two terms a, b of the MeSH
taxonomy. Our implementation is based on the path length measure.
Depending on the use case, other semantic similarities can be used
as well as other similarities or distance measures that can be applied
to numeric data [21].

Definition 5.1. The path length measure is calculated as
1
length(path(a, b))

Thttps://github.com/1-wiese/SiFAMIS

Figure 1: A snippet of MeSH in Neo4]

where length(path(a, b)) denotes the number of all nodes on the
shortest path between a and b.

The clustering, which is required to induce our fragmentation
strategy as described in Section 4.3, was implemented in Java. We
apply it to obtain appropriate clusters of the MeSH disease terms
based on pairwise similarities.

In order to determine the path length between the terms found
in MeSH [23], we imported the taxonomy into the graph database
Neo4j. We used the MeSH taxonomy in the provided RDF N-Triples
format. The RDF triples had to be transformed into the property
graph model as implemented by Neo4j (see Figure 1 for a snippet). To
this end, the neosemantics plugin was utilized [3]. The RDF triples
were hence transformed in the following manner. Each subject
of a triple is modeled as a node. Any predicate attached to the
subject is only modeled as a relationship if the attached object
again is a resource itself (and hence is modeled as a node). If in
contrast the object is a literal then the predicate is mapped to the
corresponding subject node as a property with the object literal as
the property value. Once this mapping has been established, we
can calculate the similarity between two disease nodes by finding
the shortest path between their respective Topical Descriptor nodes
using the provided relationships. Naturally, not all relationships
qualify as valid paths and we therefore only included those of the
type treeNumber, parentTreeNumber, and broaderConcept. We apply
a corresponding query in the Neo4J query language Cypher using
the shortest path algorithm provided by Neo47. In our benchmark
in Section 6 we tested a term set of varying size up to covering
the whole MeSH taxonomy. We randomly choose a subset of the
respective term set for our benchmark dataset.

5.2 Basic Ignite

This basic implementation of the medical information system is
achieved by creating partitioned tables by the default (similarity-
agnostic) Ignite partitioning methodology. The primary table (in
our case, ILL) is partitioned horizontally based on a hash function
applied to its affinity key (that is, attribute ID); the data are par-
titioned and distributed in an arbitrary way without respecting
similarity of disease terms. The other tables are collocated via their
shared attribute, the patient ID, such that personal information and
the diseases and anamnesis of a patient are stored together. That
is, only collocation via the attribute ID is guaranteed to gain some
efficiency as costly data transfer between the nodes (servers) of the
cluster can be avoided if the data to be joined are available locally -



but no similar disease terms are collocated because this approach
is implemented without the clustering-based fragmentation.

5.3 Materialized Fragments

The materialized approach stores the horizontal fragments of the
primary table (as induced by the precomputed clustering of the dis-
ease terms based on similarity) as separate relations in the database
- with different table names for the different fragments. This implies
that fragments are now separate tables and not longer belong to-
gether syntactically from the DDBS’s point of view. To achieve the
distribution of the horizontal fragments to the servers, a modified
affinity function has to be explicitly provided and made available
on all nodes. This affinity function handles the mapping of the
materialized fragments to the servers; it also provides the similarity
function for two disease terms that is required for both the clus-
tering and the query rewriting and answering. Furthermore, the
collocation of table fragments via a derived horizontal fragmen-
tation is achieved by storing materialized fragments of the other
tables on the same server. For example, personal information of
patients (Info-tuples) at each server may be joined with information
about a disease that this patient has; that is, for each materialized
Il fragment there is also a materialized Info fragment present for
appropriate collocation. Note that the materialization of the hori-
zontal fragments as separate tables is transparent for the user: the
clustering and the rewriting of queries is done automatically by our
system.

5.4 Partition Number

The partitions approach also materializes the fragments. However,
in contrast to the Materialized Fragments approach, the fragmenta-
tion is invisible from the SQL perspective: instead of using different
relation names, we assign different partition numbers to the dif-
ferent fragments of the relations via the affinity function APL The
partitions are then distributed and mapped to the servers. By doing
so, the queries do not require to be rewritten as in the Material-
ized Fragments approach because the query processing is almost
completely done by Ignite’s query processor; this is because — in-
stead of having different relation names for each fragment - the
different fragments are distinguished by their partition numbers.
Additionally, the fragmentation is again fully transparent for the
user. Collocation of derived partitions is also achieved with the
help of the affinity function and the identification of the correct
partition number that is inferred from the clustering.

5.5 Query Rewriting

Based on term similarity, intelligent query answering by relaxing
the selection condition on the appropriate attribute can be per-
formed as query rewriting for all three implementations. Hence,
the developed approaches are able to rewrite given SQL queries
such that they match the underlying clustering-based fragmenta-
tion.

o The Basic Ignite implementation substitutes the selection
condition of the clustering attribute (in our case, a disease
term) with a set of constant symbols (other similar disease
terms). The original SQL query is translated into one with a

SQL IN-clause containing the similar disease terms from the
appropriate cluster.

e In case of the Materialized Fragments approach where the
fragments of the relations are materialized as separate SQL
tables, it is required to rewrite queries according to that ma-
terialization — that is, all the table names in the queries have
to be adapted to the corresponding fragment. If there is a
selection condition on the appropriate attribute in the query,
the single relevant fragment is determined and is substituted
for the table name. If there is no such selection condition,
a UNION query has to be executed in order to answer the
query correctly by considering all existing fragments.

o In case of the Partition Number approach where the frag-
mentation is done by assigning a partition number to each
fragment and mapping each partition to one of the servers,
substituting the table names is not required because the par-
titions are known to Ignite’s query processor already and
the query contains the correct relation names. Nevertheless,
selection conditions on the chosen attribute are answered
in a similarity-based manner. Our implementation is capa-
ble of executing queries only on the server that hosts the
corresponding partition by identifying the most similar clus-
ter first and then using Ignite’s SQL API in order to set the
partition number for the query according to the identified
fragment.

In summary, the first approach needs a substitution of the selec-
tion condition with a more general expression corresponding to
the addressed cluster. In the latter two approaches, the selection
condition is simply omitted and the query is adapted by restricting
it to the fragment that belongs to the cluster with the relevant dis-
eases, such that then all answers only need to be obtained from this
fragment. Thus, for the materialized fragment approach only the
relation names have to be changed to the corresponding fragment
— whereas for the partition number approach only the correspond-
ing partition number has to be set via the SQL API. Furthermore,
too many irrelevant answers (so-called overgeneralization [25])
are avoided as the attribute values of the obtained answers are
restricted to terms of the same cluster providing a semantically
close result set instead of a result set that also includes too general
answers.

6 BENCHMARK
6.1 Data Set

We generated a synthetic data set to comparatively investigate the
behavior of our two implementation variants with the basic Ignite
behavior. We analyzed scalability of our approach by varying both
the data set size and the size of the term set (that is, active domain
of the clustering attribute) on which similarities are calculated.
Our test data set is modelled according to the three tables in our
running example. The three data set tables are obtained as follows.
The Iil table is our primary table; the patient IDs are generated
in increasing order; the diagnosis attribute contains disease terms
extracted randomly from the MeSH data set. The Anamnesis table
contains the patient IDs and randomly generated string data as the
examination. The Info table contains one random address string
for each patient as well as a randomly generated age.



Q1 | SELECT p.name, p.age, p.address FROM ILL i, INFO
p WHERE i.id = p.id AND i.disease=’Asthenopia’

Q2 | SELECT p.name, p.age, p.address FROM ILL i1, ILL
i2, INFO p WHERE i1.id = p.id AND i2.id = p.id AND
i1.disease=’"Asthenopia’ AND i2.disease=’Ranula’

Qs | SELECT a.examination FROM ILL i,ANAMNESIS a WHERE
a.id = i.id AND i.disease = ’Asthenopia’

Q4 | SELECT p.name, p.age, a.examination FROM ILL
i,ANAMNESIS a, INFO p WHERE a.id = i.id AND i.id
= p.id AND i.disease = ’Asthenopia’

Qs | SELECT a.examination FROM ILL i, ILL i2, ANAMNESIS

a WHERE i.id = i2.id AND i.id = a.id AND
i.disease = ’Asthenopia’ AND i2.disease = ’Corneal
Perforation’

Table 2: Benchmark queries (disease terms are chosen ran-
domly)

Scaling of the data set was obtained by a default number of tuples
for each of the tables multiplied by a scaling factor. The default size
of the Ill table is 100 tuples and the default size of both Anamnesis
and Info table is 50 tuples - that is, an average of two disease entries
per person plus one sample examination. For a given scaling factor
s the dataset is expanded to a total of s - (100 + 50 + 50) = 200 - s
tuples. We vary s from 100 over 1000 up to 10000, so that we have
datasets with 20000, 200000 and 2000000 tuples each. The MeSH
term set was divided into smaller, randomly chosen subsets ranging
from a minimum of 100 terms, over 500, 1000 and 2500 up to all
4798 terms from which the Diagnosis column of the Iil table is filled.
The similarity threshold of the clustering was chosen manually to
achieve a relatively balanced clustering in terms of the number and
size of clusters. Values below 0.1 and above 0.2 produce imbalanced
clusterings with one huge cluster for all terms or one separate
cluster per term. Thus, the similarity threshold was set to 0.12 for
all term sets resulting in 15 clusters with 7 terms in each of them
(on average) for 100 terms, 7 clusters with 71 terms in each of them
for 500 terms, 13 clusters with 76 terms per cluster for 1000 terms,
22 clusters with 113 terms per cluster for 2500 terms and 16 clusters
with 299 terms per cluster for all 4798 terms.

6.2 Queries

Recall that Ill is our primary table. While in the first Basic Ignite
approach data allocation is up to hashing of the patient id, in the two
other approaches data allocation is based on the clustering executed
on the diagnosis attribute. In all three cases derived fragments
of the Anamnesis and Info tables are allocated together with the
matching primary fragments. Our benchmark queries Q; to Qs (see
Table 2) consist of executing joins (between primary and secondary
fragments) with a selection condition on the diagnosis attribute.
Selection conditions are randomly chosen from the term set selected
from the underlying taxonomy; selection conditions need not be
contained in the randomly generated data set. Similarity-based
query execution includes finding the fragment that is closest to the
selection condition (in terms of similarity to the cluster head that
is contained in the diagnosis attribute of the fragment). In other
words, query execution extracts the selection condition, applies the
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Figure 2: Average query execution time in milliseconds (y-
axis) of Q; when scaling the amount of tuples in the database
(x-axis) and the amount of disease terms (color bars).
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Figure 3: Average query execution time in milliseconds (y-
axis) of Q2 when scaling the amount of tuples in the database
(x-axis) and the amount of disease terms (color bars)

query rewriting described in Section 5.5 and returns the obtained
fragment (or joins of fragments, respectively) as the set of related
answers. Note that queries Q2 and Q5 both have two selection
conditions on which similarity-based query answering is applied.
The difference between the two queries is that in Q2 both selection
conditions are not in the same cluster and data have to be retrieved
from different fragments before joining them; whereas in Q5 the
selection conditions come from the same fragment (and the tuples
are hence collocated).

6.3 Results

Our benchmark is evaluated in a network of three Apache Ignite
nodes where each of the nodes runs in a JVM and is hosted by
one of three servers. Each server has 4 processors and is equipped
with 8GB of memory. We tested the basic approach (independent
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Figure 4: Average query execution time in milliseconds (y-
axis) of Q3 when scaling the amount of tuples in the database
(x-axis) and the amount of disease terms (color bars)
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Figure 5: Average query execution time in milliseconds (y-
axis) of Q4 when scaling the amount of tuples in the database
(x-axis) and the amount of disease terms (color bars)

of any similarity-based fragmentation) and compared it to both the
similarity-based approaches: materialized fragments and partition
numbers in Ignite’s affinity function. Figures 2 to 6 show the results
of executing our five benchmark queries (Table 2) when scaling
the amount of tuples in the database from 20000 over 200000 to
2000000. All three approaches return the same set of results. For
the two similarity-based approaches we tested in addition different
amounts of underlying disease terms from MeSH that are used in
the Diagnosis column: we tested 100, 500, 1000, and 2500 randomly
chosen as well as all (4798) MeSH terms. We ran the five queries
three times and averaged the runtimes. Whenever the Basic Ignite
approach runtime significantly exceeded the runtime of the other
approaches, we cut off its measurements after 4000ms.
Comparing the Materialized Fragments and the Partion Number
approach, the performance is on average quite similar with both
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Figure 6: Average query execution time in milliseconds (y-
axis) of Q5 when scaling the amount of tuples in the database
(x-axis) and the amount of disease terms (color bars)

approaches. Only with the largest data set, the Partition Number
approach shows a slight advantage over the Materialized Fragments
approach: in this case, on average the Partition Number approach
is 5.12 % faster than the Materialized Fragments approach.

One interesting thing to note is that for the entire MeSH term
set (4798 terms) the runtime is often less than the one for measure-
ments with fewer MeSH terms. This is due to the fact that the more
MeSH terms are available in the dataset, the smaller the resulting
fragments become. In other words, if there are less MeSH terms
underlying the clustering, then more patients will have a tuple in
the Ill relation with a certain disease term (like Asthenopia) as the
data are generated completely randomly and diseases are picked
randomly from the chosen term set. This results in more tuples
matching the selection condition and also more tuples that have
to be joined. While the join is still pretty fast due to collocation, a
presumably bigger result set has to be transferred back to the client.

Another interesting observation is that joining two subresults
from two different fragments in Q, performs better (due to paral-
lelization of the subresult computation on two different servers)
than joining two subresults from the same fragment in Qs.

In sum, with both our similarity-based approaches the join com-
putation is much less a bottleneck than for the basic off-the-shelf
implementation. In roughly half of our tests the basic implemen-
tation exceeded the time limit of 4 seconds and had to be stopped
prematurely; in contrast, our two implementations show a good
scalability and a decent performance in all test runs.

7 DISCUSSION AND CONCLUSION

The previously depicted results of the query executions in the differ-
ent implementations show that the clustering-based fragmentation
of the data improves the execution time of cohort identification
queries against the DDB significantly when comparing to the refer-
ence implementation that provides only an arbitrary, but balanced



horizontal fragmentation of the data. The intelligent similarity-
based query answering enables the DDBS to speed up the execu-
tion of queries containing selection conditions on the relaxation
attribute as the underlying fragmentation is not only meaningful
but also more efficient when answering queries. The intelligent
similarity-based answering hence enables the DDBS to speed up
the execution of queries containing selection conditions on the
clustering attribute. In addition to this, both clustering-based tech-
niques scale well with the size of the database, whereas the query
execution time of the basic implementation does not.

As already mentioned in the introduction, in future work we
aim to support more sophisticated notions of similarity (like a com-
bination of semantic as well as numeric as in [21, 24]) in order
to identify not only patients that suffer from similar diseases but
also whole patient profiles based on the similarity of their personal
characteristics (e.g. their age or weight) and some other recorded
measurements (e.g. body temperature or blood parameters). An-
other open issue is modification (by either insertions, deletions or
updates) of the data set. The mechanisms for cluster adaption have
been theoretically discussed in [25] but have not yet been tested
in our implementation. In addition the clustering-based fragmen-
tation could also be considered for more flexible non-relational
data models [1, 26]. Moreover, fragmentation can indeed be used
to protect sensitive content from unauthorized access [2, 5, 18]; in
future work we aim to further elaborate the security enforcement
by fragmentation for specific applications in the medical domain.
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