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Abstract. Though cloud databases offer advantages in terms of main-
tenance cost, they require encryption in order to protect confidential
records. Specialized searchable encryption schemes are needed to provide
the functionality of privacy preserving search on encrypted data. In many
use cases, a search which also returns the correct documents when the
search term was misspelled is very desirable. Therefore, we present a
novel similarity searchable encryption scheme. Our scheme uses symmet-
ric encryption primitives, is dynamic, i.e. allows the efficient addition and
deletion of search terms and has sub-linear search cost. We prove that the
leakage of our scheme is low and that it provides forward security. Our
scheme is built by employing a new construction technique for similarity
searchable encryption schemes. In this construction a searchable encryp-
tion scheme is used as storage layer for a similarity searchable encryption
scheme.
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1 Introduction

Outsourcing data to cloud providers is becoming more and more common. While
this offers great advantages in terms of maintenance cost, the confidentiality
of the data is in peril. One solution to this problem is the use of encryption.
While standard symmetric encryption algorithms like e.g. AES offer good security
by encrypting all records, the cloud data store loses any search functionality
and degrades to just a bunch of encrypted files. However, among the desirable
functionality of a database is the ability to efficiently perform full-text search.

This paper deals with the problem of efficient searching in encrypted cloud
databases. Efficiency means to perform the searches in less than linear time in
the number of document-keyword pairs. For searching encrypted data several
algorithms have been proposed. They can be divided in symmetric and public-key
solutions. Public-key searchable encryption schemes offer multi-user capabilities
but they require computationally costly public-key operations. Therefore, it
appears to be more practical to pursue symmetric key searchable encryption.



Users sometimes misspell search terms. However, in many use cases it is very
desirable that small spelling errors still lead to the correct results. One solution
for this is checking the keyword in a dictionary before searching. This makes
the search more expensive on the client-side and adds additional complexity by
requiring the client to decide between several correct words which are within
a certain distance of the entered term. Furthermore, the client might want to
search for a keyword that is not contained in the dictionary, like a specialist term
or a name.

To overcome these problems, we propose a new similarity searchable encryption
scheme. Our scheme has the following key properties:

1. It is dynamic, i.e. it allows to add new documents and keywords efficiently.
The amortized runtime of adding a document with m keywords to an index
of size N is O

(
m · λ ·N · log2N

)
. Here λ is an encoding dependent constant.

2. It has a small leakage and provides forward security, i.e. when adding a new
document it does not reveal which of the old documents contains similar
words to the new document.

3. The search takes sub-linear time in the number of document-keyword pairs.
Its runtime is O

(
λmin

{
β + logN, γ log3N

})
, where γ is the number of

documents which are similar to the search term and β is the number of
historically added, but perhaps deleted, documents similar to the search
term.

4. It supports similarity search (also known as: fuzzy search). This means it
also finds documents containing slightly misspelled keywords.

To the best of our knowledge no other existing searchable encryption scheme
provides this desirable combination of properties. Furthermore our scheme is
defined in such a way, that it is not restricted to the problem domain of fuzzy text
search. By specifying an appropriate family of locality sensitive hash functions it
could be applied to other domains e.g. biometric data.

Our scheme achieves these properties by combining two existing searchable
encryption schemes. The first scheme is a secure and dynamic searchable encryp-
tion scheme without similarity search capabilities [19], while the second scheme
is a non-dynamic similarity search scheme [14]. They are combined in such a way
that the former acts as a storage layer for the latter. This technique of combining
a non-fuzzy and a fuzzy searchable encryption scheme, seems very powerful to
us, as it allows to build very good similarity searchable encryption schemes from
existing searchable encryption schemes.

In the next section, we will describe the state of the art regarding symmetric
searchable encryption. In Section 3, we will give a formal security definition for
our scheme. Our scheme for general similarity search is described in Section 4. In
Section 5 we explain how to apply this general scheme towards similarity search
for text. We prove that our scheme fulfils the security definition in Section 6.
In the following sections, we will give an experimental analysis of our scheme
(Section 7) and draw a conclusion (Section 8).



2 Background

2.1 Symmetric Searchable Encryption (SSE)

For symmetric searchable encryption there is a wide range of proposed algorithms
(for an overview see [2]). They all consist of at least two different protocols. The
first protocol generates a secure index structure from a set of documents. Each of
these documents contains a set of features (e.g. words). When searching for a
feature, the server returns the identifiers of all documents containing this feature.

The first searchable symmetric encryption schemes were given by [4, 6, 8, 18].
Most of the early schemes were not dynamic, i.e. when adding a new document-
keyword pair the complete index had to be rebuilt from scratch. The runtime of
this rebuild operation is at least linear in the number of document-keyword pairs,
since every document-keyword pair has to be processed at least once. As a result,
index changes in such schemes might be possible but incur large performance
penalties. Furthermore, during the rebuild the index is usually stored on the
client meaning that the index may not become larger than the client’s storage. In
typical Big Data applications, the amount of data stored on the server is much
larger than the storage of a single client. As a result, in such use cases a rebuild
would not only be inefficient but simply impossible.

The security of searchable encryption schemes is usually evaluated in a client-
server setting with a honest-but-curious server as adversary. Its security is then
quantified by the amount of information that is leaked to the server, i.e. that the
server could compute in polynomial-time from its observation of the protocol
execution. The common security definitions were first given by [6].

Dynamic schemes allow for the addition of new document-keyword pairs at
runtime with lower rebuilding cost. In the following, we will consider schemes to be
dynamic if the amortized rebuilding cost is sub-linear in the number of document-
keyword pairs. Of the proposed dynamic SSE schemes [3,10,12,13,18,19], the
best security properties are offered by the scheme of [19], as it provides forward
security. Dynamic schemes are called forward secure if they do not leak to an
attacker if an added document contains a keyword which was previously searched
for. A dynamic scheme is called backward secure if an already deleted document
containing feature w is not contained in the leakage of a search for feature w. To
our knowledge, no existing SSE scheme achieves backward security.

Recent research highlights the importance of forward security [26]. They
showed in a modified threat model, that SSE schemes without forward security
are more vulnerable to attacks. In their threat model the server is able to inject
files in the index, but otherwise behaves in an honest-but-curious manner.

2.2 Similarity Searchable Symmetric Encryption (SSSE)

Often spelling errors occur while typing search queries. Nevertheless, the correct
result set should be found. To achieve this, the notion of searchable symmetric
encryption was extended to similarity searchable symmetric encryption.



Similarity search can be understood in two ways. In the following, we will use
the term similarity search as the search for a single feature (e.g. word), which
may be slightly altered (e.g. misspelled) but nevertheless should be found. In
the literature, a search returning documents which contain a subset of a given
feature set is also called similarity search [17,20,21,24].

In the following, we will only consider the first meaning of similarity search.
Known SSSE schemes in this sense are given by [1, 5, 11, 14–16, 22, 23]. While
searching misspelled words in larger bodies of text is the most important ap-
plication, similarity search can also be applied to other problem domains, e.g.
similarity of biometric data [1]. An important property for the classification of
SSSE schemes is their generality: They can either be focused on a single problem
domain (e.g. text search) or be of general use. In the latter case, they can be
adopted to a specific domain by a problem specific similarity mapping.

Very specific to the problem domain of searching text are schemes using
wild cards letters [11, 15, 16, 23]. Such schemes were first sketched in [15] and
described in more detail in [23]. Several modifications of this approach were
proposed [16] [11]. The disadvantage of all these SSSE is that they do not allow
dynamic updates of the index.

The scheme of [14] is of much greater generality. It encodes features in Bloom
filters. Afterwards, it employs locality sensitive hashing (LSH) on the Bloom
filter and stores the generated subfeatures in an index structure. By specifying
an encoding to Bloom filters and choosing a suitable LSH family, any kind of
data, i.e. not just text, can be subject to similarity search. However, the main
disadvantage of this scheme is that data cannot be added dynamically.

In [5] the authors also encode words in Bloom filters but store the index in a
tree-based structure. Their scheme is dynamic but has a very high leakage, as
the similarity between all documents is leaked even if no search operations have
been performed. Another scheme given by [22] also uses Bloom filters. Searches
are not efficient in this scheme, as the runtime of search operations is linear in
the number of stored documents.

The authors of [1] provide a definition of SSSE which is very strict with regard
to result quality and permissible leakage. They show that no space-efficient scheme
satisfying their definition can exist. For a slightly relaxed version of their definition
they give a SSSE scheme for fingerprint data which is still quite space-inefficient.

In the introduction of [25] which addresses similarity of entire documents, a
similar scheme to the one we describe here is briefly considered but dismissed
because it “does not achieve practical efficiency” for their use case. However, for
our use case our scheme achieves a competitive asymptotic search and update
runtime. This will be shown in Section 4.3.

3 Security Definition

Our scheme is a set of protocols executed between a client (user) and a server. The
server stores the index structure of the scheme and is queried by the client. The
client is a trusted computing device while the server is untrustworthy. As in the



standard security model of SSE, we consider the server to be honest-but-curious.
Thus, the server might inspect the request and the stored data and try to deduce
information from it but otherwise follows the prescribed protocol. This section
adapts previous work [6, 14, 19] to our setting. In order to give a formal security
definition we first define our understanding of a dynamic similarity searchable
encryption scheme.

Definition 1 (DSSSE). A dynamic similarity searchable symmetric encryption
(DSSSE) is given by a set of three protocols executed between a client and a
server:

– Setup(1κ): Create an empty data structure with security parameter κ on the
server.

– Search(w, k): Based on feature w, the client calculates a matrix of trapdoors
T and sends them to the server. The server executes the search and returns
an encrypted result vector. The client decrypts the vector and returns the
identifiers of the top-k results.

– Update(D, id, op): If op = add, then the server adds the features of document
D with identifier id to the index, otherwise (op = del) it deletes the keywords
of document D with identifier id from the index.

In contrast to non-dynamic searchable encryption schemes, our scheme does not
need a protocol that builds an index from a document collection as the index
can be build step-by-step by adding documents with the update protocol.

The concept of the history captures the operation of the scheme from the
client’s point of view. The definition of the history from [6] has to be changed to
account for the possible dynamic addition of documents.

Definition 2 (History). Between a client and a server a DSSSE is initialized
via the setup protocol. After a total number of n executions of the search and
update protocols the history Hn is given by:

Hn = (h1, . . . , hn) .

Let Si be a data structure describing which feature is associated to which document
identifier after the execution of the i-th step. The hi are defined depending on
the type of protocol executed in the i-th step. If the i-th operation was a search
operation, then hi = (Si, wi), where wi is the feature that was searched for.
Otherwise hi = (Si, (Di, idi, opi)) where (Di, idi, opi) are the parameters of the
executed update protocol.

Next we want to define which of this information is leaked to the server. The
different types of leakage to the server are given by the following five definitions.

Definition 3 (Protocol Pattern). For a history Hn the protocol pattern Pi
is a vector given by:

Pi =

{
1 if the i-th step is a search operation

0 else
∀1 ≤ i ≤ n



Definition 4 (Search Pattern). For every search protocol execution hi the
search pattern is given by a vector F :

Fj =

{
1 if Pj = 1 and wj = wi

0 else
∀1 ≤ j < i

Definition 5 (Access Pattern). Let hi be a search protocol execution. Let
w1
i , . . . w

λ
i be the subfeatures of wi. Then the access pattern is given by:

A = (A1, . . . ,Aλ)

where Aj are the identifiers of documents added or removed in the past matching

containing the subfeature wji .

Definition 6 (Similarity Pattern). Let hi be a search protocol execution. Let
w1
i , . . . w

λ
i be the subfeatures of wi. Then the similarity pattern S is given by:

Sa,j,b =

{
1 if Pj = 1 and wai = wbj
0 else

∀1 ≤ j < i,∀1 ≤ a, b ≤ λ

Definition 7 (Update Pattern). For every update operation hi the update
pattern U is given by:

U = (opi, idi, |Di|)
where |Di| is the number of subfeatures in Di.

With these patterns we could now define the trace which is the maximal amount
of information the adversary (server) should be able to compute from the leaked
information.

Definition 8 (Trace). The trace T (Hn) for a history Hn consists of the protocol
pattern P and for each search operation the search pattern F , access pattern A
and similarity pattern S and for each update operation the update pattern U .

Our definition of the update pattern does not leak whether a feature of the
updated document D was searched for previously. Therefore, a scheme with a
trace as given above provides forward security. Since deleted documents which
match the search term are still included in the access pattern, this definition of
the trace does not provide backward security.

For a given history Hn, the information that is leaked to the server is called
the view and denoted by V(Hn). We want that the server in our scheme cannot
deduce more information than the trace T (Hn) from this view. Therefore, the
following security definition should hold for our scheme. We will prove that it
indeed satisfies this security definition in Section 6.

Definition 9 (Adaptive Semantic Security for DSSSE). A scheme pro-
vides adaptive semantic security if one can define a simulator S such that for all
polynomial size distinguishers D and for all polynomials p and a large r holds:

P[D(V(Hn)) = 1]− P[D(S(T (Hn)) = 1] <
1

p(r)

with probabilities taken over Hn and the coins of the scheme’s key generation
and encryption.



4 Our Scheme

Our scheme combines the dynamic SSE of Stefanov et al. [19] with the similarity
search of Kuzu et al. [14]. This way, the scheme achieves very good security (see
Section 3) and an efficient similarity search at the same time. In this section we
will describe our scheme in detail.

4.1 Preliminaries

Our construction is based on the following primitives. Oblivious sorting and the
LSH family are described below in more detail.

– A function keygen(κ) which generates a new, random symmetric encryption
key, the length of which is determined by the security parameter κ.

– Symmetric (probabilistic) encryption and decryption functions Encrypt and
Decrypt.

– Symmetric, deterministic encryption and decryption functions DetEncrypt

and DetDecrypt.
– A keyed hash function Hkey.
– A random oracle H∗

key. For the security proof we need this keyed hash function
to be modelled as random oracle (see Section 6).

– a hash function h.
– An oblivious sorting protocol o-sort.
– A metric space embedding ρ which maps features w into a metric space F .
– A (r1, r2, p1, p2)-sensitive LSH family G = (gi)1≤i≤λ.

Oblivious Sorting. With the oblivious sorting protocol, the client sorts the data
stored on the server in such a way that the server remains oblivious about the
order of the items. In each step of this protocol the client downloads a chunk
of O(Nα) entries from the server, decrypts them for sorting and afterwards
uploads them in encrypted form to the server. The parameter 0 < α ≤ 1 can be
chosen so that the chunk still fits in the client’s memory. We used the oblivious
k-way mergesort algorithm from [9] as this algorithm was specifically created for
external oblivious sorting.

LSH family. Let dist be a metric on a metric space F . Then a family of hash
functions G is called (r1, r2, p1, p2)-sensitive if for any features x, y ∈ F and for
any g ∈ G holds:

– if dist(x, y) ≤ r1 then P[g(x) = g(y)] ≥ p1
– if dist(x, y) ≥ r2 then P[g(x) = g(y)] ≤ p2

An LSH family of a desired sensitivity can be constructed from another LSH
family with a different sensitivity as a result of an AND- and OR-construction of
this existing family. For further details see [14]. How to choose the metric space
embedding ρ and the LSH family G for text search is given in Section 5.

The following parameters of our scheme can be chosen by a user to customize
it to a certain setting:



κ Security parameter defining the length of the symmetric encryption keys.
α This value is used to adapt the scheme to available storage on the client.
ρ Mapping of the features to a metric space depending on the problem’s domain.
G A family of LSH functions. The value of λ = |G| is very critical for the scheme’s

performance as well as storage demand.

4.2 Detailed Construction

The index structure of our scheme consists of L = dlog2Ne+ 1 hash maps Hi of
size 2i for 0 ≤ i ≤ L which are stored on a server. Here i denoted the level of
an entry in the data structure. Added or deleted document-subfeature pairs will
always be added to the first empty hash map. For each hash map Hi the client
possesses a symmetric encryption key ki.

The scheme consists of the three protocols Setup (Protocol 1), Update (Pro-
tocol 2) and Search (Protocol 4). While the Update protocol sometimes requires
several roundtrips between the client and the server, the Setup and Search proto-
cols are non-interactive (1-round protocol). Furthermore, there are two helper
functions for encoding (Algorithm 5) and searching (Algorithm 6) entries in the
hash map structure. During updates an additional Rebuild protocol (Protocol 3)
is used to partially rebuild the hash map structure.

Protocol 1 Setup(Security parameter κ)

esk← keygen(κ)
L← 0
H0 ← ∅

Protocol 2 Update(document D, identifier id, operation op)

V ← ∅
for all features w ∈ D do
−→w ← ρ(w)
for all g ∈ G do

V ← V ∪ {g (−→w )}
for all v ∈ V in random order do

if H0 is empty then
k0 ← keygen(κ)
H0 ← encodeEntry(v, id, op, 0, esk, k0)

else
Execute protocol: Rebuild(v, id, op)

Setup (Protocol 1). The Setup algorithm generates a encryption key esk, initializes
the number of levels L with 0 and creates an empty hash map H0 for level 0.



Protocol 3 Rebuild(subfeature v, identifier id, operation op)

lnew ← Smallest l for which Hl is empty
Set e∗ ← encodeEntry(v, id, op, 0, esk, k0) and store e∗ on the server
Let B denote {e∗} ∪

⋃l−1
i=0 Hi

for all e = (hkey, c1, c2) ∈ B on server do
(v, id, op, cnt)← Decryptesk(c2)
Replace e on server with Encryptesk(v, id, op, cnt)

B ← o-sort (B) according to sorting key (v, id, op)
for all e = Encryptesk(v, op, id, cnt) ∈ B on server do

if e is the start of a new feature v for operation op then
cntop,v ← 0
Replace e on server with Encryptesk(v, id, op, 0)

if e and next entry in B are add and del operations for the same word then
Replace each of them by Encrypt(⊥) on the server

else
cntop,v ← cntop,v + 1
Replace e on server with Encryptesk(v, id, op, cntop,v)

Permute B randomly by B ← o-sort (B) according to sorting key hkey
kl ← keygen(κ)
for all e ∈ B on the server do

(v, id, op, cnt)← Decryptesk(e)
Add encodeEntry(v, id, op, cnt) to Hl on server

Remove all entries from Hi for i = 0, . . . , l − 1

Update (Protocol 2). The Update algorithm is used to add or delete documents
to the search scheme. An addition operation is specified by op = add and a
deletion operation by op = del. The algorithm processes all features w of the
document. These features are embedded in a metric space where the LSH family
G is applied. The set of all these hash values is then shuffled randomly and
inserted in the data structure on the server. During this process two cases have
to be distinguished. If the hash map on the first level (H0) is empty, the current
hash will be inserted in this level. Otherwise a rebuild (see Protocol 3) of the
data structure is required. This works as follows: First the first completely empty
level l is determined. The rebuild will operate on the entries of the hash maps
Hi with i < l and the new entry e∗. For better readability we denote this set of
entries by B. At the end of the protocols all the entries of B will be inserted
in Hl and the levels Hi with i < l will be empty. In a for loop the encoding of
the elements of B is changed for easier subsequent processing. This loop as well
as the later for loop only requires constant storage on the client, as the entry,
after processing, is stored again on the server. Now, all entries of Hl are sorted
according to (v, id, op). The sorting employs oblivious sorting to not leak any
information about the entries to the server. In Subsection 4.1 we describe how
this can be achieved using only sublinear client’s storage. Then the cnt values of
entries belonging to the same (v, id) tuple are enumerated in the sorted order.
To remove complementary operations pairs of add and del operations belonging



Protocol 4 Search(feature w, number of results k)

Client:
−→w ← ρ(w)
t← (gi (−→w ))1≤i≤λ
T ←

(
Hkj (h(ti))

)
1≤i≤λ,0≤j≤L

Send T to server
Server:
C ← ∅
for all 1 ≤ i ≤ λ do

for all l ∈ {L,L− 1, . . . , 0} do
cnt← 0
eid← Lookup(Ti,l, add, cnt)
while eid 6= ⊥ do

C ← C ∪ {eid}
cnt← cnt + 1
eid← Lookup(Ti,l, add, cnt)

cnt← 0
eid← Lookup(Ti,l, del, cnt)
while eid 6= ⊥ do

C ← C \ {eid}
cnt← cnt + 1
eid← Lookup(Ti,l, del, cnt)

return C to client
Client:
D ← empty dictionary
for all eid ∈ C do

v, id← DetDecrypt(c)
if id not in C then

D[id]← 0

D[id]← D[id] + 1

return the identifiers from C with top-k values

to the same (v, id) tuple both of them are replaced with ⊥. Afterwards, a new
level key kl is chosen to re-encode the entries.

When the client possesses enough storage to hold all the entries in B a simpler
rebuild is possible by transferring all the entries of B to the client, decrypting
them, performing a processing similar to line 8 – 16 in Protocol 3 locally and
storing them in Hl on the server again. (see [19] for details).

Search (Protocol 4). For the execution of the Search algorithm as described in
Figure 4 only a single round of interaction between the client and server suffices.
In a first step the client embeds the search term in a metric space and applies
the locality sensitive hash functions on this vector. Based on these hash values
trapdoor values T are generated and sent to the server. The server starts with
initializing an empty dictionary C where the found encrypted ids of possible hits
are stored. Now the server iterates over all hash values. Starting in the last one,



Algorithm 5 Algorithm for the generation of the hash map entries

procedure encodeEntry(v, id, op, cnt, esk, kl)
token← Hkl(h(v))
hkey← H∗

token(0||op||cnt)
c1 ← DetEncryptesk(v||id)⊕H∗

token(1||op||cnt)
c2 ← Encryptesk(v||id||op||cnt)
return (hkey, c1, c2)

Algorithm 6 Algorithm for the lookup of a certain entry in the hash maps

procedure Lookup(token, op, cnt))
hkey← H∗

token(0||op||cnt)
if hkey ∈ Hl then

return Hl[hkey].c1 ⊕H∗
token(1||op||cnt)

else
return ⊥

it searches the hash maps for documents containing an add operation for the
considered subfeature. In order to execute this search operation the trapdoor T
is required. When successful the identifier is added to a list of search results C.
Afterwards, the server searches for del-operations for the same subfeature. The
corresponding identifiers are removed from C as this document-subfeature pair
was deleted from the index. Concluding its operation, the server sends C to the
client. The client decrypts the values of C with the key esk. Then the contained
identifiers are ranked according to their number of occurrence in C. Finally, the
client returns the identifiers with top-k scores.

4.3 Analysis

Runtime Update. The rebuild of level l requires O
(
2l · l

)
operations as this

level contains at most 2l entries. A rebuild of level l is always required after
2l update operations. Therefore, for a total number of N inserted subfeatures
we get an amortized update cost of O

(
N · log2N

)
per update. As a result, the

amortized update cost of inserting a document with m features is given by:
O
(
m · λ ·N · log2N

)
, where λ is the size of the used LSH family.

Runtime Search. In the worst case the protocol described here does not achieve
sub-linear search time. This can be seen when adding a subfeature multiple times
to the index and then deleting all of them except one. However, the authors of [19]
describe how to slightly modify their scheme to achieve a sub-linear search time.
This is achieved by storing the level of the corresponding add entry in del entries.
As the algorithm works exactly as described in their paper, we decided to leave
it out here. With these additions our scheme achieves a runtime for searching
a single feature of O

(
λmin

{
β + logN, γ log3N

})
, where γ is the number of

documents having a subfeature in common with the search query and β is the



number of added (but maybe in the meantime deleted) documents containing
one of the searched subfeatures.

Roundtrips. As stated before, the Setup and Search protocols consist of a single
round of communication between the client and the server. The number of
roundtrips for the Update Protocol is determined by the Rebuild Protocol. As
most rebuilds concern the upper levels of the hash maps, the data of the concerned
levels will fit into the client’s memory of size O(Nα) and hence only a single
round of communication is required. In the worst case, the whole data structure
has to be rebuild. A result of [9] on his oblivious sorting algorithm gives us
the number of O

(
N1−α log2N1−α) roundtrips in this case. Although such large

rebuilds happen only very occasionally the high number of roundtrips favour fast
RAM over disk storage as storage location for the hash maps.

Required Storage. For every subfeature, the three values hkey, c1 and c2 are
stored in a hash map. When using AES-256 for encryption and an SHA-256
based keyed hash function, hkey and c1 will require 32 Bytes, while c2 requires
48 Bytes of storage. Thus, 112λm Bytes are necessary for storing a document
with m features.

5 Parameters for Text Search

In the last section our scheme was presented in great generality so that it is
applicable to a large range of problem domains. However, in order to apply the
scheme to fuzzy text search, we have to specify a metric space embedding and a
LSH family. Their parameters are chosen as in [14].

Metric Space Embedding ρ. We will define the metric space embedding as function
ρ : w 7→ {0, 1}500. This is accomplished by considering the word w as a set of
bigrams. All the bigrams of a word are then encoded in a common Bloom filter
of length 500 by using 15 hash functions per bigram. The bits of the Bloom filter
hit by a hash function then give ρ(w).

LSH Family. We use the following LSH family G = (gi)1≤i≤λ with λ = 37. We
define:

gi(x) = hi,1(x)|| · · · ||hi,k(x)

with k = 5. For all 1 ≤ i ≤ λ and for all 1 ≤ j ≤ k we set:

hi,j : {0, 1}500 → {0, 1, . . . , 499} , x 7→ min
{
y | 0 ≤ y ≤ 499 and xπi,j(y) = 1

}
,

where πi,j is a random permutation on {0, . . . , 499}. The parameters given here
will be used in the Implementation in Section 7.



6 Security Proof

In this chapter we will prove that our proposed protocol indeed provides Adaptive
Semantic Security for DSSSE. For this purpose we will adopt the security proof
of [19].

Theorem 1. The DSSSE given in Section 4 provides Adaptive Semantic Security
for DSSSE (Definition 9) in the random oracle model.

Proof. We will show that there exists a polynomial-size simulator S, such that
the simulated view S(T (Hn)) and the real view V(Hn) are computationally
indistinguishable. To show the existence of such a simulator S we will state how
it constructs the different elements of the view from the available trace T (Hn).
The number of executed protocol steps is available to the simulator via the trace.
Furthermore, it can access via the protocol pattern whether a protocol step was
an update or a search operation. We can therefore consider update and search
operations separately:

Update. We describe the behaviour of S separately for every subfeature v ∈ V
in the update protocol. The update pattern of previous updates contains the
number of subfeatures which have been inserted in the data structure. As the
entries are inserted deterministically into the hash maps Hi, the simulator can
calculate the level l in which the new subfeature v will be stored by the number of
already inserted entries. The simulator S can also calculate the number of entries
in H. During the oblivious sorting protocol chunks of size O(Nα) are transferred
to the client, sorted in its memory and uploaded back to the adversary. The
simulator S simulates this step by generating correctly sized chunks of encoded
entries e = (hkey, c1, c2) and uploading them to the adversary. The values of hkey
and c1 are chosen at random, while c2 as semantically-secure ciphertext is chosen
as the value of Encrypt(0). Due to the obliviousness of the sorting algorithm this
successfully simulates the rebuild protocol.

Search. In the case of search operation, the simulator knows the access pattern
A, the search pattern F and the similarity pattern S. By the update patterns
of all the previous update operations, the simulator knows the size of the data
structure N . Furthermore it can deduce by the update and access pattern the
levels in which the subfeatures v of the query are stored. The client generates
the following trapdoor T . If the subfeature has not been searched before or its
level l has been rebuilt meanwhile, the trapdoor tokenl for this subfeature and
level l consists of random values. Otherwise, it resends the old trapdoor tokenl.
Due to the pseudorandomness of the keyed hash function H, the adversary
cannot distinguish between these pseudorandom values and the output of H.
Furthermore, due to this pseudorandomness the probability that this same token
has already been sent to the adversary is also negligible.

We now want to program the random oracle H∗ in the right way, i.e. such that
H∗

tokenl
(0||op||cnt) and H∗

tokenl
(1||op||cnt) return the “right” values, when queried

by the adversary. If the oracle H∗
tokenl

is queried for (0||op||cnt) or (1||op||cnt)



where cnt is greater than cntop,v it returns random values. In all other cases it
should return a valid pair of (hkey, id⊕ c1) values when queried for (0||op||cnt)
and (1||op||cnt).

Now two cases can be considered. It could be the case that all items (v, id, op)
belonging to the same (v, id) are in the same level. In this case, the random
oracle chooses a random, unused entry from this level and returns it when queried
for the values mentioned above. If these items are not in the same level, the
simulator randomly chooses a level according to the distribution of the entries.
As the insertion order of entries belonging to the same document is random,
this return values are indistinguishable from real values for the adversary. Since
by this construction all elements of S(T (Hn)) and V(Hn) are computationally
indistinguishable, our scheme fulfils the security definition. ut

By slightly changing the protocol, the assumption of the random oracle is not
necessary [19]. As this change increases the amount of computation performed
on the client as well as the communication bandwith between client and server,
we will not describe it here.

7 Experimental Results

We implemented the proposed scheme in Java to evaluate its performance. The
encryption and decryption is implemented as AES-256. For the hash function we
used SHA-256, and for the keyed hash function H as well as the random oracle
H∗ we used HMAC-SHA-256. Within the rebuild algorithm we used a 8-way
mergesort and assumed a client storage of 1024 entries, which is significantly lower
than in [19]. Our implementation is single-threaded and does not contain the
optimizations described in Section 4.3 to achieve the asymptotic search runtime
also in the worst case. In our opinion, this worst case occurs too seldom to justify
the overhead introduced by improving its asymptotic runtime. For our benchmark
the client as well as the server code was deployed on the same machine.

For measuring the update and search runtime we used the bodies of the mails
in the Enron e-mail data set [7]. This dataset contains 517 401 mails with a total
of 688 270 unique keywords. The total number of document-keyword pairs in this
dataset is 60 920 970, i.e. each mail contains an average number of about 118
unique keywords. We generated the keywords by changing all letters to lower
case and thereafter considering all strings of a length greater than one character.
The large number of unique keywords can be explained by the fact that the mails
sometimes contain misspelled words or e-mail addresses.

In order to test the update operations, we inserted part of the mail dataset in
a random order. For 100 000 document-keywords pairs, we achieved an insertion
performance of about 26 document-keyword pairs per second on our test system
(Intel i7-3770 @ 3.40GHz, 16 GB RAM, Ubuntu 14.04, Oracle Java 8).

The search operation was benchmarked by queries chosen at random from the
set of unique keywords. The probability of choosing a certain keyword was given
by its relative frequency in the whole dataset. When executing search operations



over an index containing 100 000 document-keyword pairs, we achieved a average
performance of 20 queries per second. Since all identifiers have to be ranked,
this figure is independent of the number k of returned identifiers. We did not
benchmark the quality of our search results as the results of [14] regarding
precision and recall remain unchanged.

8 Conclusion

Our SSSE scheme is dynamic, provides sub-linear search time and has low
leakage. This is accomplished by combining a fuzzy and a non-fuzzy searchable
encryption scheme. In our opinion, this technique of combining fuzzy and non-
fuzzy schemes is interesting in its own right. It allows to consider searchable
encryption and similarity search separately. By combining such schemes, very
promising candidates for feature-rich similarity search schemes could be created.

Our scheme could be easily extended to a multi-keyword search by slightly
changing the Search Protocol. To achieve this the client would send the trapdoors
belonging to several words to the server. When the client ranks the results,
identifiers of documents containing all search terms (conjunctive search) then are
ranked higher than documents containing only a subset of the search terms.

To apply our scheme to a specific problem domain a appropriate metric space
embedding has to be used. In Section 5 we showed how this embedding can be
chosen in the case of text search. It would be an interesting task to find such
mappings for other problem domains, e.g. different types of biometric date as
fingerprints or iris images.

The (amortized) asymptotic runtime of search and update operations of
our scheme is good compared to other fuzzy search schemes. However, as our
implementation shows, the involved constants are high. Although a further
optimisation of the scheme might achieve better runtime, the most compelling
aspect of our scheme is something different: By achieving good asymptotic
runtimes with low leakage, our work complements the theoretical work of [1].
They investigated how much performance in terms of asymptotic runtime, low
leakage and storage efficiency an SSSE scheme can achieve. On the one hand,
their impossibility result for a certain combination of these properties can be
seen as an upper bound for the performance of any DSSSE scheme. On the
other hand, our construction of a good scheme with regard to this performance
characteristics can be understood as lower bound for an optimal DSSSE scheme.
Further research is necessary in order to find the “optimal” scheme.
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