
Preprocessing for Controlled Query Evaluation

with Availability Policy∗

Joachim Biskup and Lena Wiese†

Universität Dortmund, 44221 Dortmund, Germany
Tel.: +49-231-755-4813, Fax: +49-231-755-2405
{biskup,wiese}@ls6.cs.uni-dortmund.de

http://ls6-www.cs.uni-dortmund.de/issi/

Abstract

Controlled Query Evaluation (CQE) defines a logical framework to
protect confidential information in a database. By modeling a user’s a
priori knowledge appropriately, a CQE system not only controls access to
certain database entries but also accounts for information inferred by the
user. In this article, we present a static (preprocessing) CQE-approach
for propositional databases with an availability policy. The resulting
inference-proof and availability-preserving database ensures confidential-
ity of secret information while guaranteeing availability of certain database
entries to a highest degree possible. We illustrate the semantics of the sys-
tem by a comprehensive example and state the essential requirements for
an inference-proof and availability-preserving database. We present an
algorithm that accomplishes the preprocessing by combining SAT solving
and “Branch and Bound”.

Keywords: Controlled Query Evaluation, inference control, lying, availability
policy, confidentiality policy, complete database systems, propositional logic,
SAT solving, Branch and Bound

1 Introduction and Related Work

Controlled query evaluation (cf. [1–7]) aims at preserving the confidentiality of
some secret information in a sequence of queries to a database. Not just plain
access to certain database entries is denied (as traditionally based on an “access
control policy”) but instead a“confidentiality policy” is specified and information
that could be gained by logical reasoning is taken into account. This is what

∗This article is an extended version of [7].
†Corresponding author; partially funded by a Research Training Group of the German

Research Council (DFG).

1

is usually called inference control. There are several different approaches ad-
dressing inference control for example for statistical databases [11], distributed
databases [8], relational databases with fuzzy values [16] and for XML docu-
ments [22]. In [13] the authors give a comprehensive overview of existing in-
ference control techniques and state some of the fundamental problems in this
area. Wang et al. [21] name two typical distortion mechanisms (in their case for
online analytical processing (OLAP) systems): restriction (deleting some values
in the query result) and perturbation (changing some values in the query result).
In general, any method for avoiding inferences has an effect on the accuracy of
the returned answers: there is a trade-off between confidentiality of secret in-
formation and availability of correct information; in order to protect the secret
information, some (even non-secret) information must possibly be distorted.
The above mentioned approaches are typically based on specialized data struc-
tures (relational data model, XML documents); Controlled Query Evaluation
(CQE) however offers a flexible framework to execute inference control based
on an arbitrary logic satisfying some natural properties. In this paper, we re-
strict ourselves to CQE with propositional logic; we construct an inference-proof
database considering the original (insecure) database, a user’s a priori knowl-
edge, a set of secrets, and additionally a set of propositional sentences that
should at best not be distorted in the resulting inference-proof database (while
still retaining confidentiality of the secrets). In Section 2 we introduce the CQE
framework and state the prerequisites assumed in this paper. In Section 3 we
formalize the notion of an inference-proof and availability-preserving database.
Section 4 shows a transformation of our problem to SAT solving and “Branch-
and-Bound” and presents an algorithm that computes an inference-proof and
availability-preserving database. Section 5 concludes the article.

2 Controlled Query Evaluation

Basically, a system model for Controlled Query Evaluation consists of:

1. a database that contains some freely accessible information and some se-
cret information

2. a single user (or a group of collaborating users, respectively) having a
certain amount of information as a priori knowledge of the database and
the world in general; the case that several different users independently
query the database is not considered as the database cannot distinguish
whether a group of users collaborates or not

The user sends queries to the database and the database returns corresponding
answers to the user.

To prevent the user from inferring confidential information from the answers
and his assumed a priori knowledge, appropriate restriction or perturbation is
enforced by the CQE system on the database side. In CQE on the one hand
refusal is used as a means of restriction: to a critical query the database refuses

2

to answer (i.e., just returns mum). On the other hand, lying is employed as a
means of perturbation: the database returns a false value or declares the query
answer as undefined although a value exists in the database. In this way, the
CQE approach automates the enforcement of confidentiality: wanting to restrict
access to some secret information, a database administrator just declares the
secrets in the confidentiality policy ; based on this, the CQE system computes
the possibly distorted (hence inference-proof) answers. However, the database
should be as cooperative as possible: availability of correct information should
be maximized and thus only a minimum of answers should be distorted, while
still ensuring confidentiality of secrets.

The notion of availability can even be taken further: In certain cases, avail-
ability of some database entries may be more important than availability of other
entries. In such cases, the database administrator can additionally declare an
availability policy. The CQE system then tries to return correct answers for the
entries in the availability policy and favors distortion of entries not included in
this policy – but still confidentiality takes precedence over availability.

CQE can be varied based on several different parameters (see [1–7]). In this
paper we focus on a complete information system in propositional logic with a
known confidentiality policy of potential secrets and an additional availability
policy ; we use lying as the only distortion mechanism. Thus, in this paper a
CQE system is based on the following:

• a (possibly infinite) alphabet P of propositional variables; formulas can
be built from the variables with the connectives ¬, ∨ and ∧;1 formulas
contain “positive literals” (variables) and “negative literals” (negations of
variables)

• a database instance as a finite set db ⊂ P that represents an interpretation
I of the propositional variables: for each A ∈ P, if A ∈ db, then I assigns
A the value true (written as I(A) = 1), else I assigns A the value false
(written as I(A) = 0); this means that we consider a complete database
(to each query the database returns either true or false) and only instances
with a finite positive part

• the evaluation function eval*(Φ)(db) that returns the formula Φ (if it is
evaluated to true according to db) or its negation (if it is evaluated to
false):

eval*(Φ)(db) =
{

Φ if I |= Φ (with |= being the model operator)
¬Φ else

• a confidentiality policy pot sec as a finite set of formulas over P of “po-
tential secrets”; the semantics is that for each formula Ψ ∈ pot sec, if Ψ
evaluates to true according to db then the user may not know this, but the
user may believe that the formula evaluates to false (that is, for a com-
plete db the negation of Ψ evaluates to true according to db); furthermore,

1Two consecutive negations cancel each other out: ¬¬A ≡ A

3

the user “knows” the confidentiality policy: he knows the specification of
the secrets (but does not know a priori the truth values of the secrets
according to the current database instance db)

• an availability policy avail as a finite set of formulas over P specifying
important facts whose truth value (according to db) should preferably not
be distorted; that is, if values have to be distorted to protect a secret, for
a formula Θ ∈ avail the distortion should at best not change the value
eval*(Θ)(db) in the answer to the user

• the user’s a priori knowledge as a finite set of formulas over P called
prior ; prior may contain general knowledge (like implications over P) or
knowledge of db (like semantic constraints)

There are some restrictions on the user’s knowledge. In this paper, we presume:

(a) [consistent knowledge] prior is consistent and the user cannot be made
believe inconsistent information at any time

(b) [monotone knowledge] the user cannot be “brainwashed” and forced to
forget some part of his knowledge

(c) [single source of information] the database db is the user’s only source
of information (besides prior)

(d) [unknown secrets] the a priori knowledge does not imply a secret; that
is, for all Ψ ∈ pot sec: prior 6|= Ψ (with |= being the implication operator)

(e) [implicit closure under disjunction] the user may not know (a priori)
that the disjunction of the potential secrets is true:

prior 6|= pot sec disj (where pot sec disj :=
∨

Ψ∈ pot sec
Ψ) (1)

The first three requirements (a) – (c) originate from our system settings: On the
one hand, we use “classical” logic (where contradictions imply any proposition –
including the secrets – and thus have to be avoided). On the other hand, when
trying to model a real-world user, we have to admit that we can merely produce
an approximation of human knowledge, and influencing a user’s knowledge by
technical means is impossible anyway; that is why we assume a closed system
where the user’s knowledge cannot be changed from outside the system and just
be incremented from inside the system.
We require (d) because if the user already knows a potential secret, we obvi-
ously cannot protect the secret anymore. Requirement (e) is an even stricter
condition and is owed to the fact that lying is our only distortion mechanism:
without it, the system could run into a situation where even a lie reveals a se-
cret. To illustrate this, assume pot sec = {α, β} (for formulas α and β that are
both true according to db) and prior = {α ∨ β}; to the query Φ = α the CQE

4

system would return the lie ¬α, but this would enable the user to conclude that
β was true (and he is not allowed to know this); thus, we require prior to fulfill
Equation (1).
This line of reasoning also demands that the CQE system lie to every query
entailing the disjunction of some potential secrets (see [1, 3] for more informa-
tion). This obviously is a disadvantage of the lying approach that restrains its
applicability: whenever an exhaustive enumeration of alternatives is known by
the user although each individual alternative is specified secret there is no op-
tion left for lying. That is, in the lying approach, not all alternatives can be
specified secret: there has to be one non-secret alternative that permits a lie. As
possible remedies we propose to either use refusal as a second distortion mech-
anism (see [3]) or allow the database to be incomplete such that a (non-secret)
undefined value could be returned as a lie (see [6]). Both options are outside the
system settings assumed in this paper and merely stated here without dwelling
on technical details.

2.1 An Example System

The following example shall clarify the system design. We have a database with
Alice’s medical records. The curious user Mallory wants to find out whether she
is seriously ill. We use the alphabet:

P = {cancer, aids, flu, medA, medB}

Poor Alice is badly ill and her medical records (that is, the current database
instance db) look like this:

db = {cancer, aids, medA, medB}

Mallory has certain background knowledge about the medication. He knows
that:

1. if a patient takes medicine A, (s)he suffers from aids or cancer

2. if a patient takes medicine B, (s)he suffers from cancer or flu

Expressing these implications as formulas, we have the a priori knowledge:

prior = {¬medA ∨ aids ∨ cancer,¬medB ∨ cancer ∨ flu}

Apart from maintaining the database, the database administrator specifies the
potential secrets; in our example, Mallory should not be able to infer the diseases
cancer and aids:

pot sec = {aids, cancer}

Obviously, queries concerning potential secrets (for example, the two queries
“cancer” and “aids”) should prompt the CQE system to return lies (in this
case, “¬cancer” and “¬aids”). Moreover, if the answer to a query would enable
the user to infer a secret, the CQE system should return a lie, too (consider for

5

example the query “medB∧¬flu” whose correct answer would imply the secret
“cancer”). As can be seen from these considerations, confidentiality of secret
information is considered more important than a correct and reliable answer.
Secret information has to be kept secret even at the risk of returning inaccurate
information.
Some database entries may be of more importance than others. For example,
some medicine might have serious side effects or mutual reactions with other
substances; that is why information regarding medication should at best not be
distorted. In our example, the database administrator declares the availability
policy:

avail = {medA, medB}

This example will be continued in Sections 4.1 and 4.2.

3 Constructing an Inference-Proof Database

Given a database db, a confidentiality policy pot sec, an availability policy avail
and the user’s a priori knowledge prior as described in the previous section,
we now want to construct a database db′ (representing a new interpretation I ′)
that is inference-proof and availability-preserving with respect to every possible
sequence of queries the user may come up with. We demand the following
properties for db′ to be fulfilled:

i. [complete] db′ is a complete database with a finite positive part

ii. [consistent] db′ is consistent in itself and consistent with prior

iii. [inference-proof] I ′ does not satisfy any of the potential secrets; that is,
for every Ψ ∈ pot sec: I ′ 6|= Ψ

iv. [availability-preserving] db′ evaluates as many of the entries in avail
as possible as db does; only a minimum of entries changes its truth value:

avail dist := ||{Θ | Θ ∈ avail , eval*(Θ)(db′) 6= eval*(Θ)(db)}|| −→ min

v. [distortion-minimal] db′ contains as few lies as possible (with respect
to the original database db); that is, considering the set of propositional
variables P, the difference between db and db′ is minimal:

db dist := ||{A | A ∈ P, eval*(A)(db′) 6= eval*(A)(db)}|| −→ min

As for the completeness property (i.), we want db′ to represent an interpretation
I ′ that assigns a value to every propositional variable in P, but the value true
only to a finite subset of P.

The consistency property (ii.) means that we want to find an interpretation
I ′ such that all formulas in prior are satisfied because the user’s a priori knowl-
edge is fixed and we cannot make him believe inconsistent information; that is
particularly, for every χ ∈ prior : eval*(χ)(db′) = χ.

6

As for the inference-proofness property (iii.), in the special case treated in
this paper – known policy and lying – the user knows that the system lies when
queried after a potential secret: for every Ψ ∈ pot sec: eval*(Ψ)(db′) = ¬Ψ.
That is why we define the set of formulas:

Neg(pot sec) := {¬Ψ | Ψ ∈ pot sec}

and try to find an interpretation I ′ that satisfies all formulas in Neg(pot sec) in
order for db′ to be inference-proof.

With the availability preservation property (iv.), from all interpretations
that ensure confidentiality of the secrets, we choose one that maximizes the
availability of important database entries.
We give availability preservation (iv.) priority over distortion minimality (v.);
however, if there is no unique solution with minimal availability distance, we con-
sider distortion minimality as a basic background availability property: from all
inference-proof interpretations that preserve availability equally well, we choose
one that minimizes the amount of lies in db′.

3.1 Existence and Finiteness of Solution Database

All in all we conclude that I ′ has to be an interpretation (for the variables in
P) that first of all satisfies the set of formulas prior ∪ Neg(pot sec), second,
retains the truth value of a maximum of formulas in avail and in the third place
contains only a minimum of lies with respect to the original interpretation I.
Under the requirements (a) and (e) given in Section 2, such an inference-proof
interpretation always exists. To prove this, first of all note that requirement (e)
implies that pot sec disj is not a tautology. Combining requirements (a) and
(e), we conclude that prior is consistent with the set Neg(pot sec). Thus, there
exists at least one interpretation I ′ satisfying prior ∪Neg(pot sec).
The solution database db′ contains all variables A having the truth value true
(that is, I ′(A) = 1). The finiteness of its positive part is ensured by a restriction
to a finite set Pdecision of “decision variables” and just computing a new inter-
pretation I ′decision for these variables. The decision variables are all variables
occurring in prior, Neg(pot sec) and avail.2 For the set of variables Vars(·)
occurring in a set of formulas, we have:

Pdecision := Vars(prior) ∪Vars(Neg(pot sec)) ∪Vars(avail)

All other (non-decision) variables get assigned the same truth value as be-
fore: I ′(A) := I(A) if A ∈ P\Pdecision. This restriction to a finite set of decision
variables is indeed possible because changing truth values of non-decision vari-
ables has no effect on attaining consistency with the negations of the secrets.
It is also the best we can achieve for distortion minimality as the distance re-
stricted to the non-decision variables is db dist |P\Pdecision

= 0.
The minimization criteria are met with a “Branch and Bound” approach.

2Actually, we could leave out variables from formulas in avail that are not affected by
variables in prior or Neg(pot sec); for sake of simplicity we do not consider this case here.

7

4 A “Branch and Bound”-SAT-solver

In order to find interpretation I ′, we combine SAT-solving (for the completeness
and satisfiability requirements) with “Branch and Bound” (for the minimization
requirements). The database db′ representing I ′ will be inference-proof and
availability-preserving by construction, as we describe in the following.

SAT solvers try to find a satisfying interpretation for a set of clauses (i.e.
disjunctions of literals). The basis for nearly all non-probabilistic SAT solvers
is the so-called DPLL-algorithm (see [9, 10]). It builds an interpretation step-
by-step by assigning variables a truth value with the methods:3

1. “elimination of one-literal clauses” (also called “boolean constraint propa-
gation”, BCP): a unit clause (i.e., a clause consisting of just one literal)
must be evaluated to true

2. splitting on variables: take one yet uninterpreted variable, set it to false
(to get one subproblem) and to true (to get a second subproblem), and
try to find a solution for at least one of the subproblems

Whenever a variable is assigned a value, the set of clauses can be simplified
by unit subsumption (if a clause contains a literal that is evaluated to true,
remove the whole clause) or unit resolution (if a clause contains a literal that
is evaluated to false, remove this literal from the clause but keep the remaining
clause). If there is only the empty set left (which is equivalent to true), the
current interpretation is satisfying; however, if the clause set eventually contains
the empty clause � (which is equivalent to false), the interpretation is not
satisfying.

“Branch and Bound” (B&B, for short) is a method for finding solutions to an
optimization problem. It offers the features “branching” (dividing the problem
into adequate subproblems), “bounding” (efficiently computing local lower and
upper bounds for subproblems), and “pruning” (discarding a subproblem due
to a bad bound value). For a minimization problem a global upper bound
is maintained stating the currently best value. A B&B-algorithm may have
a super-polynomial running time; however, execution may be stopped with the
assurance that the optimal solution’s value is in between the global upper bound
and the minimum of the local lower bounds.

4.1 The Algorithm

We now describe the algorithm that computes an inference-proof database db′

from db, prior, Neg(pot sec) and avail by using SAT-solving and B&B. List-
ings 1 – 5 show the necessary functions in pseudocode.

In this section, we assume that the input sets prior, Neg(pot sec) and avail
are sets of formulas in conjunctive normal form (CNF). An extension to arbitrary
formulas is given in Section 4.3. Thus, for now each formula can be represented

3We leave out the “affirmative-negative rule” for “pure literals” as it could contradict the
minimization requirements.

8

by a set of clauses (each conjunct can be written as a clause c = [l1, . . . , ln] for
the literals li in the formula). The clause representation of prior is:

Cprior = {{cχ
1 , . . . , cχ

m}| χ ∈ prior , cχ
j is the jth conjunct of χ}

Analogously, CNeg(pot sec) is the clause representation of Neg(pot sec). In our
example, we have:

Cprior = {{[¬medA, aids, cancer]}, {[¬medB, cancer, flu]}}

CNeg(pot sec) = {{[¬aids]}, {[¬cancer]}}

As we build the new interpretation I ′ step-by-step, each formula (that is, each
clause set) is eventually simplified by subsumption and resolution.

For the availability distance avail dist (as defined in the previous section),
we have to count the differences between the original and the new interpretation.
To be able to do this while still simplifying the clause sets, we add an “expected
value” flag to each clause set; it is written as ∅ if the clause set is evaluated to
true according to db, else it is written as {�}. Thus the clause representation
of the availability policy looks like this:

Cavail = {{cΘ
1 , . . . , cΘ

m}(flagΘ)| Θ ∈ avail , cΘ
j is the jth conjunct of Θ}

where

flagΘ =
{

∅ if eval*(Θ)(db) = Θ
{�} else

If we now treat this data structure as a multiset (i.e., allowing duplicates in it),
the availability distance of a database db′ can easily be calculated by counting
the clause sets whose evaluation according to db′ does not coincide with their
expected values (so-called “contradictory entries”). That is, the flag values are
evaluated according to db once at the beginning; with them, the availability
distance (and upper and lower bounds for it) can efficiently be computed at
runtime without the need to re-evaluate all avail formulas on db.
In our example, we have:

Cavail = {{[medA]}(∅), {[medB]}(∅)}

If eventually medA is assigned false and medB is assigned true, the clauses are
resolved and subsumed such that Cavail becomes {{�}(∅), ∅(∅)} with distance
avail dist = 1 due to one contradictory entry.

We apply boolean constraint propagation and splitting of the DPLL-algo-
rithm to find the interpretation I ′decision for the set Pdecision of decision variables
having the properties stated in Section 3. B&B on the set Pdecision yields a
binary tree; its maximal depth is the cardinality of Pdecision. That is, in the
worst case, the search space has size exponential in the number of decision
variables. However, the aim of the B&B algorithm is to prune branches in the
search tree as soon as possible and thus reduce the size of the search space.

9

Each node v in the search tree represents:

• a (partial) interpretation Iv of all the decision variables that already have
been assigned a truth value by either BCP or splitting so far; the rest of
the variables is undefined

• three local sets of clause sets Cprior
v , C

Neg(pot sec)
v and Cavail

v that are
generated from Cprior, CNeg(pot sec) and Cavail by simplification wrt. Iv

• a lower bound for the availability distance avail dist called min unavailv,
defined as the number of clause sets in Cavail

v that do not coincide with
their expected value (the “contradictory entries”)

• an upper bound for the availability distance avail dist called max unavailv,
defined as min unavailv plus the number of clause sets in Cavail

v that still
contain undefined variables (“contradictory and undefined entries”)

• a lower bound for the distortion distance db dist called min liesv, defined
as the number of variables with different value in Iv: ||{A|I(A) 6= Iv(A)}||

• an upper bound for the distortion distance db dist called max liesv, de-
fined as the number of variables with different or undefined value in Iv:
||{A | I(A) 6= Iv(A) or A is undefined}||

We also have a current global optimum Ibest (with the bounds max unavailbest

etc.) that stores the best complete interpretation found so far; it is however
initialized with the partial interpretation of the root node (see Listing 1).
Availability preservation takes priority over distortion minimality. That is, we
have a lexicographic ordering of the two distance measures: for two complete
interpretations Iv and Iv′ , Iv is better than Iv′ if max unavailv <max unavailv′

or if max unavailv =max unavailv′ and max liesv <max liesv′ . Note that for
complete interpretations, lower and upper bounds coincide and form the distance
measures defined previously.

Now in each node v in our search tree, we can easily check the following
pruning conditions (see Listing 5):

1. [unsatisfiability] if the simplified sets Cprior
v or C

Neg(pot sec)
v contain

an empty clause, the (possibly partial) interpretation Iv can never be
expanded to a complete interpretation satisfying prior ∪Neg(pot sec)

2. [bad availability distance] if the local lower bound is worse than the
current global upper bound, that is, min unavailv >max unavailbest, we
already found a solution that preserves availability better than Iv

3. [bad distortion distance] in case that Iv preserves availability equally
well as the currently best solution, i.e. min unavailv =max unavailbest

we check the distortion distance: if min liesv ≥max liesbest, we already
found a solution that contains less lies than (or as many lies as) Iv

10

If one of the pruning conditions is met, we can skip exploration of the current
branch and backtrack to the next alternative branch to continue the search.

The search is started in the root node r with an “empty” interpretation Ir

where all propositional variables in Pdecision are undefined (see Listing 1). This
initial interpretation is then gradually expanded in each node v by:

• choosing a unit clause from a clause set in Cprior
v or C

Neg(pot sec)
v and

propagating its value in Cprior
v , C

Neg(pot sec)
v and Cavail

v with BCP (see
Listing 2); note that in general we cannot choose unit clauses from Cavail

v

as we want to minimize the number of contradictory entries in this set and
satisfying those unit clauses could yield a suboptimal solution

• choosing a variable from Pdecision that is undefined in Iv (the “splitting
variable”) and constructing a left and a right child node of v: in one
child node we assign the variable the same truth value as in the original
interpretation I and in the other child node we assign the variable the
opposite truth value (see Listing 3); one child node is processed before the
other one (e.g., according to a“best-first-search”heuristic based on a look-
ahead strategy or by preferring the value of the original interpretation)

After an assignment, the clause sets are simplified (see Listing 4). Due to
subsumption, variables (so called “don’t care variables”) might “disappear” from
the clauses: they are still undefined but there are no clauses left that contain
them. However, these variables had no influence on the satisfiability of the
clauses; due to distortion-minimality, they are assigned the same truth value as
in the original interpretation.

Having found I ′decision satisfying Cprior as well as C
Neg(pot sec)
v and having

minimal distances to avail and db, we can construct our inference-proof database
db′ as follows:

for all A ∈ Pdecision : A ∈ db′ iff I ′decision(A) = 1
for all A ∈ P \ Pdecision : A ∈ db′ iff A ∈ db (that is I(A) = 1)

1. Initialization for the root node r

1.1. Ir(A) := undefined for all A ∈ Pdecision;
1.2. min unavailr := 0; max unavailr := ||avail ||;
1.3. min liesr := 0; max liesr := ||Pdecision||;
1.4. Cprior

r := Cprior; C
Neg(pot sec)
r := CNeg(pot sec); Cavail

r := Cavail;
1.5. Ibest := Ir;
1.6. BCP(r);

Listing 1: Initialization for root node r

11

2. BCP(v): Boolean Constraint Propagation in node v

2.1. while (there is a unit clause [l] in Cprior
v or C

Neg(pot sec)
v)

2.1.1. if (l = A) {Iv(A) := 1; }
2.1.2. if (l = ¬A) {Iv(A) := 0; }
2.1.3. SIMP(v,A);

2.2. if (there is an A′ ∈ Pdecision with Iv(A′) =undefined) {SPLIT(v); }

Listing 2: Boolean Constraint Propagation

3. SPLIT(v): Splitting on a decision variable in node v

3.1. generate two child nodes vleft and vright of node v and copy partial inter-
pretation and bound values of v into them

3.2. choose A ∈ Pdecision with Iv(A) =undefined
3.3. Ivleft(A) := I(A);
3.4. SIMP(vleft,A);
3.5. BCP(vleft);

3.6. Ivright(A) := I(A);
3.7. SIMP(vright,A);
3.8. BCP(vright);

Listing 3: Splitting on a decision variable

4. SIMP(v,A): Simplification of clause sets given Iv(A)

4.1. foreach clause c of a clause set in Cprior
v , C

Neg(pot sec)
v and Cavail

v

4.1.1. if (Iv(A) = 1 and A ∈ c or Iv(A) = 0 and ¬A ∈ c)

4.1.1.1. Subsumption: remove c from the clause set

4.1.2. if (Iv(A) = 0 and A ∈ c or Iv(A) = 1 and ¬A ∈ c)

4.1.2.1. Resolution: remove (¬)A from c

4.2. CHECKPRUNE(v);
4.3. if (Iv(A′) 6= undefined for all A′ ∈ Pdecision)

4.3.1. if (max unavailv <max unavailbest or
max unavailv =max unavailbest and max liesv <max liesbest)

4.3.1.1. Ibest := Iv;

Listing 4: Simplification of clauses

5. CHECKPRUNE(v): Check pruning conditions in node v

5.1. min unavailv := number of contradictory entries in Cavail
v ;

5.2. max unavailv := number of contradictory and undefined entries;
5.3. if (Iv(A) = I(A)) {max liesv--;}
5.4. if (Iv(A) 6= I(A)) {min liesv++;}
5.5. if ({�} ∈ Cprior

v or {�} ∈ C
Neg(pot sec)
v or

min unavailv >max unavailbest or
min unavailv =max unavailbest and min liesv ≥max liesbest)

5.5.1. PRUNE;

Listing 5: Check pruning conditions

12

root r"!

J
J

BCP:
Ir(aids) = Ir(cancer) = Ir(medA) = 0

max unavailr = 2, min unavailr = 1

left"!

Ileft(medB) = 1

BCP: Ileft(flu) = 1
min unavail left = 1

max unavail left = 1

Ibest = Ileft

max unavailbest = 1
right"!

Iright(medB) = 0
min unavailright = 2 −→PRUNE

�
splitting on medB

Figure 1: An example run

4.2 An Example Run

We now present the search tree for our example (see Figure 1). For the root
node r we initially have:

Cprior
r = {{[¬medA, aids, cancer]}, {[¬medB, cancer, flu]}}

CNeg(pot sec)
r = {{[¬aids]}, {[¬cancer]}}

Cavail
r = {{[medA]}(∅), {[medB]}(∅)}

min unavailr = 0 and max unavailr = 2

There are three BCP steps in r: the first one on [¬aids], the second one
on [¬cancer] and the third one on [¬medA]. This yields the partial interpreta-
tion Ir(aids) = Ir(cancer) = Ir(medA) = 0; from this we compute the bound
min unavailr = 1.

Next we split on medB: we construct the child nodes left and right and begin
with Ileft(medB) = 1; the resulting bounds after simplification are:

min unavail left = max unavail left = 1

Simplification also produces the new unit clause [flu]; with BCP on this clause
we have found a complete and satisfying interpretation in this branch and we
set Ibest = Ileft with max unavailbest=1.

In node right we set Iright(medB) = 0. We find that min unavail left = 2,
but 2 >max unavailbest; this means, a solution better than the current Ibest

cannot be found in this branch. That is why we prune this branch.
We found the optimal solution in the first branch: I ′(medB) = I ′(flu) = 1

and I ′(aids) = I ′(cancer) = I ′(medA) = 0; the transformed database is db′ =
{medB, flu} with distance avail dist = 1. We have not considered db dist here
as there is only one solution with maximum availability.

4.3 Optimizations and Extensions

First of all, a vast number of optimization techniques and splitting heuristics
have been proposed for the basic DPLL-algorithm; for example, subsumption
removal [23], reduction of the number of clauses [12] or elimination of variables
[19]. Such techniques can be employed to speed up the search process.

13

Furthermore, there exist several adaptations of the basic DPLL-algorithm
to non-CNF formulas. For example, Giunchiglia et al. [15] apply renaming
of subformulas by adding new variables (thus constructing an equisatisfiable
formula in CNF for a non-CNF input formula) but propose to split only on
the original (“independent”) variables. Alternatively, Ganai et al. [14] introduce
hybrid SAT for boolean circuits where only newly added (“learned”) clauses are
in CNF; propagation in circuits is supported by a lookup table and “watched
literals” (see also [24]). Thiffault et al. [20] also represent the non-CNF input
formula as a boolean circuit and base propagation very efficiently on “watch
children” and “don’t care watch parents”. In the boolean circuit approaches,
new propagation techniques are defined for the different boolean operators.

The boolean circuit approaches seem to be the most promising when extend-
ing our algorithm to the non-CNF case for the following reasons:

• as we want to find a satisfying interpretation for all (now arbitrary) for-
mulas in prior as well as Neg(pot sec), we can represent each formula
by a boolean circuit and use splitting as well as non-CNF propagation
techniques to simplify the circuits step-by-step

• as for availability preservation, we can represent each (now arbitrary) for-
mula Θ in avail by a boolean circuit and maximize availability by min-
imizing the number of circuits that are evaluated differently analogously
to our algorithm; we can also abandon the usage of flags and instead set
the “top level node” (see [20]) of the circuit representing Θ to eval*(Θ)(db)
and count the number of inconsistent circuits for the availability distance

In order to give the database administrator greater flexibility when specifying
the policies, instead of solving a SAT problem based on prior and Neg(pot sec)
and a minimization problem with avail, we can extend the algorithm to solve a
hierarchical SAT problem: while only prior is in hierarchy level 0 (and thus has
to be fully satisfied), there can be other hierarchy levels consisting of alternating
sets of confidentiality and availability policies that have to be satisfied as good
as possible while lower levels take precedence over higher levels. This way, the
administrator can specify fine-grained confidentiality and availability require-
ments of differing importance. In this setting, we can also skip requirement (e)
(see Section 2) as we now solve a MAX-SAT problem for the negations of the
potential secrets and not all secrets have to be protected. This approach has
been published in a more generalized form for a hierarchical constraint solver
in [5].

Last but not least, if the number of changes in db′ (that it the distortion
distance) is very small, it may be more efficient to just maintain a small separate
database db′′, that contains all those entries of db′ that were added (as positive
entries) or deleted (as negative entries) in comparison to db. db′′ returns the
truth values for all changed variables; the original database db returns the truth
values for the rest (that is, only if db′′ did not return a result).

14

4.4 Implementational Issues and Applications

Our approach can profit from existing SAT solver implementations, particularly
solvers for the weighted MAX-SAT problem (where weights are assigned to
clauses and the summed weight of the satisfied clauses is maximized). To benefit
from the expertise of the developers of these solvers, we implemented a tool
that translates the original database and the input formulas into a weighted
MAX-SAT instance. As input format we use the TPTP (http://www.tptp.org/)
syntax and take advantage of the variety of TPTP tools for translations into
solver-specific SAT formats (e.g., DIMACS). Our tool has been tested with the
solvers MiniMaxSAT (see [17]), MAX-DPLL (Toolbar; see [18]) and SAT4J
(http://www.sat4j.org/).

We made test runs with relational databases of the following form:

Ill Name Diagnosis
Pete Cancer
Mary Flu
Mary Cancer
...

...

Treat Name Medicine
Pete MedA
Mary MedB

...
...

Each attribute has a fixed finite domain such that the problem can be fully
propositionalized: a new propositional variable is introduced for each ground
fact (e.g., pete_cancer for the ground fact Ill(Pete,Cancer)). We made test runs
with domain size up to 2400 for the Name attribute, domain size 3 for the Diag-
nosis attribute and domain size 2 for the Medicine attribute. The proposition-
alized input database db consists of those propositional variables whose ground
facts are included in the relational tables. Entries are permuted randomly in db.
The input clauses analogous to the propositional example (as for prior e.g., ∀x :
¬Treat(x,MedA)∨Ill(x,Aids)∨Ill(x,Cancer)) are propositionalized accordingly
for all possible combinations (e.g., ¬pete_medA ∨ pete_aids ∨ pete_cancer) –
yielding 9600 clauses in total. With the given domains, per Name value there are
24 admissable combinations of Diagnosis and Medicine values that are consis-
tent with prior. We uniformly distributed those combinations in the database,
leading to up to 4400 tuples in Ill and up to 2200 tuples in Treat. With Mini-
MaxSAT, solutions were found in less than a second.

5 Conclusion and Future Work

We presented an algorithm to preprocess an inference-proof and availability-
preserving database based on a user’s a priori knowledge and specifications of
secret information on the one hand and (wrt. availability) important infor-
mation on the other hand. While the worst-case runtime is exponential (in the
number of propositional decision variables), there is a good chance to find an ac-
ceptable (or even optimal) solution in a smaller amount of time. We employed
several state-of-the-art weighted MAX-SAT solvers that efficiently compute a
solution database. Note that with the presented algorithm, even if we stopped

15

the algorithm prematurely and accepted a suboptimal solution, this solution
would be definitely inference-proof; it might only be suboptimal with respect to
availability: not all important information might be preserved and there may
be more lies in the database than necessary.

Future work shall investigate how this approach can be adapted to other
CQE parameters, namely, the unknown policy case, refusal as a restriction
method and incomplete databases. Furthermore, this method shall be expanded
to other logics (for example, first-order logic with an infinite underlying domain
analogously to [4]). Moreover, a comparison of the CQE system to existing
approaches for general purpose databases (see e.g. [13]) is in progress.

6 Acknowledgments

We are much obliged to the developers of the cited SAT solver programs and to
Cornelia Tadros for her implementation of the translation tool. We also thank
the anonymous referees whose comments helped improve the overall presentation
of this article.

References

[1] Joachim Biskup and Piero A. Bonatti. Lying versus refusal for known potential
secrets. Data & Knowledge Engineering, 38(2):199–222, 2001.

[2] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for enforcing
confidentiality in complete information systems. International Journal of Infor-
mation Security, 3(1):14–27, 2004.

[3] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known
policies by combining lying and refusal. Annals of Mathematics and Artificial
Intelligence, 40(1-2):37–62, 2004.

[4] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation with open
queries for a decidable relational submodel. Annals of Mathematics and Artificial
Intelligence, 50(1-2):39–77, 2007.

[5] Joachim Biskup, Dominique Marc Burgard, Torben Weibert, and Lena Wiese.
Inference control in logic databases as a constraint satisfaction problem. In Third
International Conference on Information Systems Security, Proceedings, volume
4812 of Lecture Notes in Computer Science, pages 128–142. Springer, 2007.

[6] Joachim Biskup and Torben Weibert. Keeping secrets in incom-
plete databases. International Journal of Information Security, 2007.
http://www.springerlink.com/content/g0565w1705t2155u/.

[7] Joachim Biskup and Lena Wiese. On finding an inference-proof complete database
for controlled query evaluation. In Ernesto Damiani and Peng Liu, editors, 20th
Annual IFIP WG 11.3 Conference on Data and Applications Security, Proceed-
ings, volume 4127 of Lecture Notes in Computer Science, pages 30–43. Springer,
2006.

[8] LiWu Chang and Ira S. Moskowitz. A study of inference problems in distributed
databases. In Ehud Gudes and Sujeet Shenoi, editors, 16th Annual IFIP WG

16

11.3 Conference on Data and Applications Security, Proceedings, pages 191–204.
Kluwer, 2002.

[9] Martin Davis, George Logemann, and Donald W. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[10] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[11] Josep Domingo-Ferrer, editor. Inference Control in Statistical Databases, From
Theory to Practice, volume 2316 of Lecture Notes in Computer Science. Springer,
2002.

[12] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In Fahiem Bacchus and Toby Walsh, editors, 8th International
Conference on Theory and Applications of Satisfiability Testing, Proceedings, vol-
ume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[13] Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD
Explorations, 4(2):6–11, 2002.

[14] Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and Sharad Ma-
lik. Combining strengths of circuit-based and CNF-based algorithms for a high-
performance SAT solver. In 39th Design Automation Conference, Proceedings,
pages 747–750. ACM, 2002.

[15] Enrico Giunchiglia and Roberto Sebastiani. Applying the Davis-Putnam proce-
dure to non-clausal formulas. In Evelina Lamma and Paola Mello, editors, 6th
Congress of the Italian Association for Artificial Intelligence, Proceedings, volume
1792 of Lecture Notes in Computer Science, pages 84–94. Springer, 2000.

[16] John Hale and Sujeet Shenoi. Analyzing FD inference in relational databases.
Data & Knowledge Engineering, 18(2):167–183, 1996.

[17] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An efficient
Weighted Max-SAT Solver. Journal of Artificial Intelligence Research, 31:1–32,
2008.

[18] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient
Max-SAT solving. Artificial Intelligence, 172(2-3):204–233, 2008.

[19] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. Niver: Non increasing vari-
able elimination resolution for preprocessing SAT instances. In 7th International
Conference on Theory and Applications of Satisfiability Testing, Proceedings, vol-
ume 3542 of Lecture Notes in Computer Science, pages 276–291. Springer, 2004.

[20] Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal for-
mulas with DPLL search. In 7th International Conference on Theory and Appli-
cations of Satisfiability Testing, Online Proceedings, 2004.

[21] Lingyu Wang, Yingjiu Li, Duminda Wijesekera, and Sushil Jajodia. Precisely
answering multi-dimensional range queries without privacy breaches. In Einar
Snekkenes and Dieter Gollmann, editors, 8th European Symposium on Research
in Computer Security, Proceedings, volume 2808 of Lecture Notes in Computer
Science, pages 100–115. Springer, 2003.

[22] Xiaochun Yang and Chen Li. Secure XML publishing without information leakage
in the presence of data inference. In Mario A. Nascimento, M. Tamer Özsu,
Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer,
editors, 30th International Conference on Very Large Data Bases, Proceedings,
pages 96–107. Morgan Kaufmann, 2004.

17

[23] Lintao Zhang. On subsumption removal and on-the-fly CNF simplification. In
Fahiem Bacchus and Toby Walsh, editors, 8th International Conference on Theory
and Applications of Satisfiability Testing, Proceedings, volume 3569 of Lecture
Notes in Computer Science, pages 482–489. Springer, 2005.

[24] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability
solvers. In Andrei Voronkov, editor, 18th International Conference on Automated
Deduction, Proceedings, volume 2392 of Lecture Notes in Computer Science, pages
295–313. Springer, 2002.

18

