
On Finding an Inference-Proof Complete
Database for Controlled Query Evaluation

Joachim Biskup and Lena Wiese

Universität Dortmund, 44221 Dortmund, Germany
{biskup,wiese}@ls6.cs.uni-dortmund.de

http://ls6-www.cs.uni-dortmund.de/issi/

Abstract. Controlled Query Evaluation (CQE) offers a logical frame-
work to prevent a user of a database from inadvertently gaining knowl-
edge he is not allowed to know. By modeling the user’s a priori knowledge
in an appropriate way, a CQE system can control not only plain access
to database entries but also inferences made by the user. A dynamic
CQE system that enforces inference control at runtime has already been
investigated. In this article, we pursue a static approach that constructs
an inference-proof database in a preprocessing step. The inference-proof
database can respond to any query without enabling the user to in-
fer confidential information. We illustrate the semantics of the system
by a comprehensive example and state the essential requirements for
an inference-proof and highly available database. We present an algo-
rithm that accomplishes the preprocessing by combining SAT solving
and “Branch and Bound”.

Keywords: Controlled Query Evaluation, inference control, lying, confidential-
ity of data, complete database systems, propositional logic, SAT solving, Branch
and Bound

1 Introduction and Related Work

Controlled query evaluation (cf. [1–3]) aims at preserving the confidentiality of
some secret information in a sequence of queries to a database. Not only plain
access to certain database entries is denied but also information that can be
gained by logical reasoning is taken into consideration. This is what is usually
called inference control. There are a lot of different approaches addressing in-
ference control for example for statistical databases [9], distributed databases
[5], relational databases with fuzzy values [15] and for XML documents [19].
In [11] the authors give a comprehensive overview of existing inference control
techniques and state some of the fundamental problems in this area. Wang et
al. [18] name two typical protection mechanisms (in their case for online analyt-
ical processing (OLAP) systems): restriction (deleting some values in the query
result) and perturbation (changing some values in the query result). In general,
any method for avoiding inferences has an effect on the accuracy of the returned

answers. Hence, there is a trade-off between confidentiality of secret information
and availability of information; in order to protect the secret information, some
(even non-secret) information may be modified. Reliability may also be reduced
by protection mechanisms; the user may be unsure of whether he got a correct
or a modified answer.
The above mentioned approaches are typically based on specialized data struc-
tures (relational data model, XML documents); Controlled Query Evaluation
(CQE) however offers a flexible framework to execute inference control based on
an arbitrary logic. In this paper, we construct an inference-proof database in the
CQE framework considering the original database, a user’s a priori knowledge
and a set of secrets. In Section 2 we introduce the CQE framework and state
the prerequisites assumed in this paper. In Section 3 we formalize the notion of
an inference-proof and highly available database. Section 4 shows a transforma-
tion of our problem to SAT solving and presents an algorithm that computes an
inference-proof database. A comprehensive example illustrates our approach in
Subsections 2.1 and 4.3.

2 Controlled Query Evaluation

Basically, a system model for Controlled Query Evaluation consists of:

1. a database that contains some freely accessible information and some secret
information

2. a single user (or a group of collaborating users, respectively) having a cer-
tain amount of information as a priori knowledge of the database and the
world in general; the case that several different users independently query
the database is not considered as the database cannot distinguish whether a
group of users collaborates or not

The user sends queries to the database and the database sends corresponding
answers to the user. To prevent the user from inferring confidential information
from the answers and his assumed a priori knowledge, appropriate restriction or
perturbation is done by the CQE system on the database side. In CQE on the
one hand refusal is used as a means of restriction: to a critical query the database
refuses to answer (i.e., just returns mum). On the other hand, lying is employed as
a means of perturbation: the database returns a false value or declares the query
answer as undefined although a value exists in the database. In this way, the
CQE approach automates the enforcement of confidentiality: wanting to restrict
access to some secret information, a database administrator just specifies which
information has to be kept secret; then, the CQE system computes the inference-
proof answers. No human being ever has to consider inferences potentially made
by the user, because the CQE system computes these inferences and employs
the above mentioned protection mechanisms such that only “safe” answers are
returned to the user. However, the database should be as cooperative as possible:
only a minimum of answers should be distorted to ensure the confidentiality of
the secret information. CQE can be varied based on several different parameters:

– complete information systems are considered with a model-theoretic ap-
proach (see [2]) while incomplete information systems are treated with a
proof-theoretic approach (see [4])

– the secret information can be represented by two distinct types of “confiden-
tiality policies”: either secrecies (no truth value may be known by the user –
be it true or false) or potential secrets (the user may know that a secret is
false or possibly undefined, but the user may not know that a secret is true)

– the user may or may not know what kind of information is to be kept secret;
therefore the “user awareness” can be divided into the known policy and the
unknown policy case

– as the protection mechanism (also called “enforcement method”) either lying
or refusal or a combination of both can be employed (see [3])

In this paper we focus on a complete information system in propositional logic
with a security policy of potential secrets and a known policy. Additionally, we
only use lying as a protection mechanism. Thus, in this paper a CQE system is
based on the following:

– a finite alphabet P of propositional variables; formulas can be built from
the variables with the connectives ¬, ∨ and ∧;1 formulas contain “positive
literals” (variables) and “negative literals” (negations of variables)

– a database db ⊂ P that represents an interpretation I of the propositional
variables: for each A ∈ P, if A ∈ db, then I assigns A the value true (written
as I(A) = 1), else I assigns A the value false (written as I(A) = 0); this
means that we have a complete database: to each query the database returns
either true or false

– the user’s queries to the database as formulas Φ over P
– a security policy pot sec as a set of formulas over P of “potential secrets”;

these potential secrets represent the secret information; the semantics is that
for each formula Ψ ∈ pot sec, if Ψ evaluates to true according to db then the
user may not know this, but the user may believe that the formula evaluates
to false (that is, the negation of Ψ evaluates to true according to db).

– the user’s a priori knowledge as a set of formulas over P called prior ; prior
may contain general knowledge (like implications over P) or knowledge of
db (like semantic constraints)

There are some prerequisites our system has to fulfill. In this paper, we presume
that:

(a) [consistent knowledge] prior is consistent and the user cannot be made
believe inconsistent information at any time

(b) [monotone knowledge] the user cannot be “brainwashed” and forced to
forget some part of his knowledge

(c) [single source of information] the database db is the user’s only source
of information (besides prior)

(d) [unknown secrets] for all Ψ ∈ pot sec: prior 6|= Ψ

1 Two consecutive negations cancel each other out: ¬¬A ≡ A

(e) [implicit closure under disjunction] the user may not know (a priori)
that the disjunction of the potential secrets is true:

prior 6|= pot sec disj (where pot sec disj :=
∨

Ψ∈ pot sec
Ψ) (1)

We require (d) because if the user already knows a potential secret, we obviously
cannot protect the secret anymore. Moreover, in the case of lying as the only
protection mechanism, we even have to be more strict: requirement (e) is nec-
essary, because otherwise the system could run into a situation where even a lie
reveals a secret. To illustrate this, assume pot sec = {α, β} (for formulas α and β
that are both true according to db) and prior = {α∨β}; to the query Φ = α the
CQE system would return the lie ¬α, but this would enable the user to conclude
that β were true (and he is not allowed to know this); thus, we require prior to
fulfill Equation (1). This line of reasoning also demands that the CQE system
lie to every query entailing the disjunction of some potential secrets. See [1, 3]
for more information.

2.1 An Example System

The following example shall clarify the system design. Let us imagine that we
have a database with Alice’s medical records. The curious user Mallory wants to
find out whether she is incapable of working or has financial problems. We use
the alphabet

P = {cancer, brokenArm, brokenLeg, highCosts, lowWorkCpcty}.

Poor Alice is badly ill and her medical records (as a set of literals) look like this:

record = {cancer, brokenArm, brokenLeg}.

It is generally known that cancer leads to high medical costs and low work
capacity and that a broken arm leads to low work capacity and a broken leg
to high medical costs. Expressing these implications as formulas, we have the
general knowledge

genknowl = { ¬cancer ∨ highCosts,¬cancer ∨ lowWorkCpcty,

¬brokenArm ∨ lowWorkCpcty,¬brokenLeg ∨ highCosts}.

The database db contains the medical record record and is compliant with the
general knowledge genknowl; thus, in this example we have

db = P.

Mallory just knows what is also generally known:

prior = genknowl .

Now we can specify the potential secrets. As a first example we have just one
formula consisting of one literal:

pot sec1 = {lowWorkCpcty}.

To the query Φ = cancer the database should now return the lie false (as
otherwise Mallory would conclude from his a priori knowledge that Alice has low
work capacity). The same applies to the queries brokenArm and lowWorkCpcty.
However, to the queries brokenLeg and highCosts the database should return
the correct answer true.
A conjunction of two literals means that Mallory may know one of the literals
but may not know both at the same time. As an example, consider the secret

pot sec2 = {highCosts ∧ lowWorkCpcty}.

To one of the queries Φ1 = brokenArm and Φ2 = brokenLeg the database can
return the correct answer true; however, to the other query the database has to
return the lie false (otherwise both high medical costs and low work capacity
can be concluded).
The meaning of a disjunction of two literals implies that Mallory may know
neither of the literals. Consider

pot sec3 = {highCosts ∨ lowWorkCpcty}.

To every possible atomic query Φ ∈ P the database has to return the lie false
(as otherwise either high medical costs or low work capacity or both can be
concluded).
The intended semantics of pot sec can inductively be extended to non-singleton
sets of arbitrary formulas.

As can be seen from the above examples, confidentiality of secret information
is considered more important than a correct and reliable answer. Secret informa-
tion has to be kept secret even at the risk of returning inaccurate information.

3 Constructing an Inference-Proof Database

Given a database db, a security policy pot sec in the form of potential secrets,
and the user’s a priori knowledge prior as described in the previous section, we
now want to construct a database db′ that is inference-proof with respect to
every possible sequence of queries the user may come up with. We demand the
following for db′ to be fulfilled:

i. [inference-proof] db′ does not satisfy any of the potential secrets: db′ 6|= Ψ
for every Ψ ∈ pot sec

ii. [complete] db′ is complete (as is db)
iii. [highly available] db′ contains as few lies as possible; we want to remove,

add or change only a minimum of entries (with respect to the original
database db): db′ shall contain a lie only if otherwise a potential secret would
be endangered

iv. [consistent] db′ is consistent in itself and also consistent with prior as the
user’s a priori knowledge is fixed and we cannot make the user believe in-
consistent information

As for the inference-proofness and completeness features (i. and ii.), we want
db′ to represent an interpretation I ′ that assigns a value to every propositional
variable in P. Hence the database db′ must return an answer (true or false)
to every query – also to a query containing a potential secret. As we consider
here the known policy case, the user knows that he gets the answer false when
querying a potential secret (because he is not allowed to know that a potential
secret is true). So concluding from completeness and the user’s awareness of the
security policy, as one property of the database db′ we have:

db′ |= ¬Ψ for every Ψ ∈ pot sec (2)

We define the set of formulas Neg(pot sec) := {¬Ψ |Ψ ∈ pot sec} and try to find
an interpretation I ′ that satisfies all formulas in Neg(pot sec) in order for db′ to
fulfill (2).

Now, let us turn to the availability feature (iii.).2 To have a measure for
the availability of db′ we define a distance between an interpretation I and an
interpretation J with respect to a set of propositional variables V as follows:
distV(I, J) := ||{A|A ∈ V, I(A) 6= J(A)}||. That is, we count all variables in V
having in one interpretation a value distinct from the value in the other interpre-
tation. As we want to maximize availability, we have to minimize the distance
of the new interpretation I ′ with respect to the original interpretation I and all
variables in P: distP(I, I ′) −→ min.

The consistency feature (iv.) means that we want to find an interpretation
I ′ such that all formulas in prior are satisfied.

All in all we conclude that I ′ has to be an interpretation (for the variables
in P) that has minimal distance to the original interpretation I and satisfies the
set of formulas prior ∪Neg(pot sec).
Under the requirements (a)–(e) given in Section 2, such a satisfying interpreta-
tion always exists. To prove this, first of all note that requirement (e) implies
that pot sec disj is not a tautology. Combining requirements (a) and (e), we
conclude that prior is consistent with the set Neg(pot sec). Thus, there exists at
least one interpretation I ′ satisfying prior ∪Neg(pot sec).

4 A “Branch and Bound”-SAT-solver

In order to find interpretation I ′, we combine SAT-solving (for the completeness
and satisfiability requirements) with “Branch and Bound” (for the minimiza-
tion requirement). The database db′ representing I ′ will be inference-proof by
construction, as we describe in the following.
2 Availability in this context is defined as “containing as much correct information as

possible”; in contrast, reliability is defined as “the user knows that the answer he got
from db′ is correct”.

SAT-solvers try to find a satisfying interpretation for a set of clauses (i.e.
disjunctions of literals). The basis for nearly all non-probabilistic SAT-solvers is
the so-called DLL-algorithm (see [7, 6]). It implements:

1. “elimination of one-literal clauses” (also called “boolean constraint propaga-
tion”, BCP): a unit clause (i.e., a clause consisting of just one literal) must
be evaluated to true

2. “affirmative-negative rule”: if in all clauses only the positive literal or only
the negative literal of a variable occurs (a so-called “pure literal”), then the
literal can be evaluated to true

3. splitting on variables: take one yet uninterpreted variable, set it to false (to
get one subproblem) and to true (to get a second subproblem), and try to
find a solution for at least one of the subproblems

Whenever a value is assigned to a variable, the set of clauses can be simplified
by subsumption (if a clause contains a literal that is evaluated to true, remove
the whole clause) or resolution (if a clause contains a literal that is evaluated to
false, remove this literal from the clause but keep the remaining clause).

“Branch and Bound” (B&B, for short) is a method for finding solutions to
an optimization problem. It offers the features “branching” (dividing the prob-
lem into adequate subproblems), “bounding” (efficiently computing local lower
and upper bounds for subproblems), and “pruning” (discarding a subproblem
due to a bad bound value). For a minimization problem a global upper bound
is maintained stating the currently best value. A B&B-algorithm may have a
superpolynomial running time; however, execution may be stopped with the as-
surance that the optimal solution’s value is in between the global upper bound
and the minimum of the local lower bounds.

4.1 The Algorithm

First of all, we consider the case where prior∪Neg(pot sec) is a set of formulas in
conjunctive normal form (CNF); the general case will be treated in Section 4.2.
We define the set of clauses Cdecision as

Cdecision :=
⋃

Ψ∈prior∪Neg(pot sec)

clauses(Ψ)

where clauses(Ψ) is a set of clauses representing Ψ ∈ prior ∪ Neg(pot sec).
Cdecision is the input to our SAT-solving algorithm. Let Pdecision ⊂ P be the set
of all variables occurring in Cdecision; these are the“decision variables”. Our SAT-
solver finds an interpretation I ′decision for all decision variables; all other variables
get assigned the same truth value as before: I ′(A) := I(A) if A ∈ P \ Pdecision.
Thus, we have distP\Pdecision

(I, I ′) = 0. We find an interpretation I ′decision for
Pdecision satisfying Cdecision with minimal distance to I by employing a branch
and bound algorithm. Listings 1, 2, 3 and 4 show the four functions “initializa-
tion”, “best-first-search splitting”, “boolean constraint propagation”, and“simpli-
fication of clauses” of our algorithm. In the following we describe each function
in detail.

1. Initialization for the root node r
1.1. Ir(A) := undefined for all A ∈ Pdecision

1.2. lbr := 0; ubr := depthmax; ubglobal := ubr

1.3. Cr := Cdecision

1.4. BCP(Ir,Cr,lbr,ubr)

Listing 1. Initialization for root node r

B&B on the set Pdecision yields a binary tree; its maximal depth is the car-
dinality of Pdecision: depthmax = ||Pdecision||. The binary structure of the tree is
created as follows. In every node v a“splitting variable”A ∈ Pdecision is selected;
we refer to this variable by splitvar(v). Then, a left and a right child node vleft

and vright are constructed; in one of the child nodes A is set to true and in the
other child node A is set to false. This is the splitting step of the DLL-algorithm
as well as the branching step of B&B. We conduct a “best-first search” with our
B&B algorithm: in the left child node we assign splitvar(v) the same truth value
as in I (this choice yields better local bounds and we process the left child node
first; see Listing 2, line 2.3.), and in the right child node we assign splitvar(v)
the opposite truth value I(splitvar(v)) (which yields worse local bounds; see
line 2.6.). A splitting step is pictured in Figure 1.

root r"!

qq q qqq

clauses Cr

interpretation Ir

local bounds lbr, ubr

node v"!

J
JJ

clauses Cv

interpretation Iv

local bounds lbv, ubv

vleft"!

qq q qqq

Ivleft(splitvar(v))

:= I(splitvar(v))
ubvleft := ubv − 1

lbvleft := lbv

vright"!

Ivright(splitvar(v))

:= I(splitvar(v))
ubvright := ubv

lbvright := lbv + 1q q q qqq
� Splitting on splitvar(v)

Fig. 1. A splitting step

Each node v has its own set of clauses Cv. The child nodes get each a sim-
plified set of clauses constructed from Cv by subsumption and resolution (see
lines 2.5.1. and 2.8.1. and Listing 4). Initially, for the root node r the set of
clauses is Cr = Cdecision (see Listing 1, line 1.3.).
Before splitting takes place in node v, we carry out BCP: unit clauses are re-
peatedly eliminated from Cv until there are none left (see Listing 3, line 3.2.).
Variables in unit clauses are assigned a value without splitting on these variables;
thus, BCP reduces the number of branches in the tree.

2. SPLIT(Iv,Cv,lbv,ubv): Best-First-Search-Splitting on A ∈ Pdecision

2.1. generate two child nodes vleft and vright

2.2. copy Iv into Ivleft and Ivright

2.3. Ivleft(A) := I(A); ubvleft := ubv − 1; lbvleft := lbv

2.4. if (lbvleft > ubglobal) { GOTO line 2.6. }
2.5. else

2.5.1. Cvleft := SIMP(Ivleft ,Cv,ubv)

2.5.2. BCP(Ivleft ,Cvleft ,lbvleft ,ubvleft)

2.6. Ivright(A) := I(A); ubvright := ubv; lbvright := lbv + 1
2.7. if (lbvright > ubglobal) { RETURN }
2.8. else

2.8.1. Cvright := SIMP(Ivright ,Cv,ubv)

2.8.2. BCP(Ivright ,Cvright ,lbvright ,ubvright)

Listing 2. Best-First-Search Splitting

3. BCP(Iv,Cv,lbv,ubv): Boolean Constraint Propagation in node v
3.1. Cunit

v := set of unit clauses of Cv

3.2. while (Cunit
v 6= ∅)

3.2.1. foreach clause [l] ∈ Cunit
v (with l = A or l = ¬A for an A ∈ Pdecision)

3.2.1.1. remove [l] from Cunit
v ; set Iv(A) such that Iv |= l

3.2.1.2. if (Iv(A) == I(A)) {ubv −−}
3.2.1.3. else {lbv + +}

3.2.2. if (lbv > ubglobal) { RETURN }
3.2.3. else

3.2.3.1. Cv := SIMP(Iv,Cv,ubv); Cunit
v := set of unit clauses of Cv

3.3. if (v == r and ubglobal > ubr) {ubglobal := ubr}
3.4. if (Cv 6= ∅) {SPLIT(Iv,Cv,lbv,ubv)}

Listing 3. Boolean Constraint Propagation

Each node v represents an interpretation Iv containing all variable assignments
occurring on the path from the root node r to the node v. Initially, for the root
node r all values are undefined (see Listing 1, line 1.1.).
In each node v also the local lower bound lbv and the local upper bound ubv

are defined. The global upper bound is called ubglobal. We compute the bounds
using the availability distance defined above; this is the bounding step of B&B.
The lower bound lbv is the number of variables that are assigned in Iv a value
distinct from the value in the original interpretation I; the upper bound ubv is
lbv plus the number of variables that are still undefined in Iv; if the final inter-
pretation I ′decision can be found in this branch, it has at least distance lbv and
at most distance ubv from I: lbv ≤ distPdecision

(I, I ′decision) ≤ ubv. Initially, the
bounds are lbr = 0 and ubr = depthmax; ubglobal is initialized to depthmax, too
(see line 1.2.).
During BCP the bounds are accordingly adjusted (see lines 3.2.1.2. and 3.2.1.3.).
After BCP in the root node r, the global upper bound can already be decre-

4. SIMP(Iv,Cv,ubv): Simplification of a set of clauses Cv given interpretation Iv

4.1. initialize set of clauses Creturn := ∅
4.2. foreach clause c in Cv

4.2.1. foreach literal l in c:
4.2.1.1. if (Iv |= l) {Subsumption: CONTINUE (ignore c)}
4.2.1.2. else if (Iv 6|= l) {Resolution: remove l from c}

4.2.2. if (c empty clause) { RETURN (Iv not satisfying)}
4.2.3. else {add c to Creturn}

4.3. if (Creturn == ∅ and ubglobal > ubv) {ubglobal := ubv}
4.4. return Creturn

Listing 4. Simplification of clauses

mented (see line 3.3.); every satisfying assignment I ′decision has to satisfy the
unit clauses in the root node. Subsequently, ubglobal may only be adjusted when
a complete and satisfying interpretation Iv is found and ubv < ubglobal (see
line 4.3.).
During splitting in an arbitrary node v, in the left child node only the upper
bound has to be decremented, while in the right child node only the lower bound
has to be incremented (see lines 2.3. and 2.6.).
For the pruning of B&B to take place, there are two possible conditions:

1. [bad lower bound] the local lower bound of node v is worse than the
current global upper bound: lbv > ubglobal; we have already found a better
solution and we are not able to expand Iv to an interpretation for all decision
variables with minimal distance

2. [unsatisfiability] while constructing Iv we encountered an inconsistency:
we are not able to expand Iv to an interpretation for all decision variables
that satisfies Cdecision

The lower bound condition is checked in lines 2.4., 2.7. and 3.2.2. after new
lower bounds have been calculated. The unsatisfiability condition is checked in
line 4.2.2. during simplification: if an empty clause is generated, the current
interpretation is not satisfying.

In the subsumption step it may happen that variables “disappear” from the
clauses: there are no clauses left that contain the variables. Thus, it may be
the case that in the final interpretation I ′decision there are still some undefined
variables (they are often referred to as “don’t care variables”). However, these
variables had no influence on the satisfiability of the clauses; these variables are
removed from Pdecision and thus are assigned the same truth value as in the
original interpretation.

Having found I ′decision satisfying Cdecision and having minimal distance to I,
we can construct our inference-proof database db′ as follows:

for all A ∈ Pdecision : A ∈ db′ iff I ′decision(A) = 1
for all A ∈ P \ Pdecision : A ∈ db′ iff A ∈ db (that is I(A) = 1)

If ||Pdecision|| � ||P||, it may be more efficient to just maintain a small separate
database dbdecision, in this special case including possibly negated entries:

for all A ∈ Pdecision

{
A ∈ dbdecision iff I ′decision(A) = 1
¬A ∈ dbdecision iff I ′decision(A) = 0

dbdecision returns the truth values for all variables from Pdecision. The original
database db returns the truth values of variables from P \ Pdecision.

4.2 Some Remarks on Further Techniques

There exist several adaptations of the basic DLL-algorithm to non-CNF for-
mulas. For example, Ganai et al. [13] introduce hybrid SAT for boolean circuits
where only newly added (“learned”) clauses are in CNF. Propagation in circuits is
supported by a lookup table and “watched literals” (see also [21]). Giunchiglia et
al. [14] apply renaming of subformulas by adding new variables (thus construct-
ing an equisatisfiable formula in CNF for a non-CNF input formula) but propose
to split only on the original (“independent”) variables. Thiffault et al. [17] repre-
sent the non-CNF input formula as a directed acyclic graph and base propagation
on “watch children” and “don’t care watch parents”. With such techniques our
B&B-algorithm can be extended to accept non-CNF formulas. Moreover, a vast
number of optimization techniques and splitting heuristics have been proposed
for the basic DLL-algorithm; for example, subsumption removal [20], reduction
of the number of clauses [10] or elimination of variables [16]. Such techniques
can be employed to speed up the search process.

Our availability distance may not be the only optimization criterion; the
bounding can easily be extended by other measures to guide the search and
determine the quality of a solution. Equally, a preference relation on propositions
can be employed so that lying for a lower-ranked proposition is preferred to lying
for a higher-ranked proposition.

Lastly, let us note that in our algorithm pure literals cannot be removed, that
is, the DLL-“affirmative-negative rule” cannot be applied: setting pure literals to
true may lead to an interpretation that does not have minimal distance. Anyway,
detection of pure literals is expensive (see for example [21]) and often omitted
in SAT-solver implementations.

4.3 An Example Run

Let us come back to our example. We consider db, prior and pot sec1. The set
prior∪Neg(pot sec1) is a set of CNF-formulas and we have as a set of clauses
(clauses are written with square brackets):

Cdecision = {[¬brokenArm, lowWorkCpcty], [¬brokenLeg, highCosts],
[¬cancer, highCosts], [¬cancer, lowWorkCpcty], [¬lowWorkCpcty]}.

Figure 2 shows the tree created by our algorithm. We need just one splitting
step; all other assignments are determined by BCP.

root r"!

J
JJ

BCP(1): Ir(lowWorkCpcty) = 0

BCP(2): Ir(cancer) = 0

Ir(brokenArm) = 0
lbr = 3, ubglobal = ubr = 5

rleft"!
Irleft(brokenLeg) = 1

BCP: Irleft(highCosts) = 1
lbrleft = 3

ubglobal = ubrleft = 3
rright"!

Irright(brokenLeg) = 0
lbrright = 4

lbrright > ubglobal: PRUNE

� splitvar(r) = brokenLeg

Fig. 2. An example run

In root r we have two BCP steps: the first one on {[¬lowWorkCpcty]} and
the second one on {[¬cancer], [¬brokenArm]}. This yields the interpretation
Ir(cancer) = Ir(brokenArm) = Ir(lowWorkCpcty) = 0 and from this we com-
pute the bounds lbr = 3 and ubglobal = ubr = 5.
Next we split on splitvar(r) = brokenLeg: we construct the child nodes rleft

and rright and begin with Irleft
(brokenLeg) = 1 (best-first search). We have

lbrleft
= 3 and ubrleft

= 4 and simplification produces the new unit clause
[highCosts]. BCP on this clause results in lbrleft

= 3 and ubrleft
= 3; we

have found a complete and satisfying interpretation in this branch and we set
ubglobal = ubrleft

= 3.
We now treat rright and set Irright

(brokenLeg) = 0, lbrright
= 4 and ubrright

= 5.
We find that lbrright

> ubglobal and this branch is pruned.
Thus, the optimal solution is I ′(brokenLeg) = I ′(highCosts) = 1 on the one
hand and I ′(cancer) = I ′(brokenArm) = I ′(lowWorkCpcty) = 0 on the other
hand; the transformed database is db′ = {brokenLeg, highCosts} with distance
3 to the original database.

5 Conclusion and Future Work

We presented an algorithm to preprocess an inference-proof database based on
a user’s a priori knowledge and a specification of secret information. While the
worst-case runtime is exponential, there is a good chance to find an acceptable (or
even optimal) solution in a smaller amount of time. Even if we stop the algorithm
prematurely and accept a suboptimal solution, it is a solution that is definitely
inference-proof; it might only be suboptimal with respect to availability: there
may be more lies in the database than necessary.

Future work shall investigate how this approach can be adapted to other CQE
parameters, namely, the unknown policy case, refusal as a restriction method
and incomplete databases. Furthermore, this method shall be expanded to other
logics (for example first-order logic). In a wider setting, we want to connect CQE
to other established research areas, for example linear or constraint programming
[12] and theory merging [8]. Moreover, a comparison of the CQE system to
existing approaches for general purpose databases (see e.g. [11]) has already
been initiated.

One of the fundamental problems inherent to every inference control system
still remains: It is difficult – if not impossible – to appropriately model the user’s
knowledge in the system. Apart from that, there are other interesting questions
regarding the user’s knowledge in the approach presented here. For example, if
there is one transformed database db′1 for a fixed prior1, is it possible to reuse
(parts of) db′1 to construct a db′2 for a different prior2? Similarly, if we allow the
user’s knowledge to change at runtime due to input from external sources, is it
possible to adjust db′ to the new situation? These topics will be covered in the
near future.

Acknowledgements

This work was funded by the German Research Council (DFG) under a grant for
the Research Training Group (Graduiertenkolleg) “Mathematical and Engineer-
ing Methods for Secure Data Transfer and Information Mediation” organized at
Ruhr-Universität Bochum, Universität Dortmund, Universität Essen and Fern-
universität Hagen.

References

1. Joachim Biskup and Piero A. Bonatti. Lying versus refusal for known potential
secrets. Data & Knowledge Engineering, 38(2):199–222, 2001.

2. Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for enforcing
confidentiality in complete information systems. International Journal of Informa-
tion Security, 3(1):14–27, 2004.

3. Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known
policies by combining lying and refusal. Annals of Mathematics and Artificial
Intelligence, 40(1-2):37–62, 2004.

4. Joachim Biskup and Torben Weibert. Refusal in incomplete databases. In Csilla
Farkas and Pierangela Samarati, editors, 18th Annual IFIP WG 11.3 Conference
on Data and Applications Security, Proceedings, pages 143–157. Kluwer, 2004.

5. LiWu Chang and Ira S. Moskowitz. A study of inference problems in distributed
databases. In Ehud Gudes and Sujeet Shenoi, editors, 16th Annual IFIP WG
11.3 Conference on Data and Applications Security, Proceedings, pages 191–204.
Kluwer, 2002.

6. Martin Davis, George Logemann, and Donald W. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

7. Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

8. James P. Delgrande and Torsten Schaub. Two approaches to merging knowledge
bases. In José Júlio Alferes and João Alexandre Leite, editors, 9th European Con-
ference on Logics in Artificial Intelligence, Proceedings, volume 3229 of Lecture
Notes in Computer Science, pages 426–438. Springer, 2004.

9. Josep Domingo-Ferrer, editor. Inference Control in Statistical Databases, From
Theory to Practice, volume 2316 of Lecture Notes in Computer Science. Springer,
2002.

10. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In Fahiem Bacchus and Toby Walsh, editors, 8th International
Conference on Theory and Applications of Satisfiability Testing, Proceedings, vol-
ume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

11. Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD
Explorations, 4(2):6–11, 2002.

12. Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

13. Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and Sharad Ma-
lik. Combining strengths of circuit-based and CNF-based algorithms for a high-
performance SAT solver. In 39th Design Automation Conference, Proceedings,
pages 747–750. ACM, 2002.

14. Enrico Giunchiglia and Roberto Sebastiani. Applying the Davis-Putnam procedure
to non-clausal formulas. In Evelina Lamma and Paola Mello, editors, 6th Congress
of the Italian Association for Artificial Intelligence, Proceedings, volume 1792 of
Lecture Notes in Computer Science, pages 84–94. Springer, 2000.

15. John Hale and Sujeet Shenoi. Analyzing fd inference in relational databases. Data
& Knowledge Engineering, 18(2):167–183, 1996.

16. Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. Niver: Non increasing variable
elimination resolution for preprocessing SAT instances. In 7th International Con-
ference on Theory and Applications of Satisfiability Testing, Online Proceedings,
2004.

17. Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal formu-
las with DPLL search. In 7th International Conference on Theory and Applications
of Satisfiability Testing, Online Proceedings, 2004.

18. Lingyu Wang, Yingjiu Li, Duminda Wijesekera, and Sushil Jajodia. Precisely
answering multi-dimensional range queries without privacy breaches. In Einar
Snekkenes and Dieter Gollmann, editors, 8th European Symposium on Research
in Computer Security, Proceedings, volume 2808 of Lecture Notes in Computer
Science, pages 100–115. Springer, 2003.

19. Xiaochun Yang and Chen Li. Secure XML publishing without information leakage
in the presence of data inference. In Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
30th International Conference on Very Large Data Bases, Proceedings, pages 96–
107. Morgan Kaufmann, 2004.

20. Lintao Zhang. On subsumption removal and on-the-fly CNF simplification. In
Fahiem Bacchus and Toby Walsh, editors, 8th International Conference on The-
ory and Applications of Satisfiability Testing, Proceedings, volume 3569 of Lecture
Notes in Computer Science, pages 482–489. Springer, 2005.

21. Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability
solvers. In Andrei Voronkov, editor, 18th International Conference on Automated
Deduction, Proceedings, volume 2392 of Lecture Notes in Computer Science, pages
295–313. Springer, 2002.

