
Secure Mediation of Join Queries by Processing Ciphertexts

Joachim Biskup, Christian Tsatedem∗ and Lena Wiese

Universität Dortmund
Fachbereich Informatik

44221 Dortmund
Germany

E-mail: {biskup,tsatedem,wiese}@ls6.cs.uni-dortmund.de

Abstract

In a secure mediated information system, confidentiality
is one of the main concerns when transmitting data from
datasources to clients via a mediator. We present three ap-
proaches that allow a mediator to compute a JOIN opera-
tion on encrypted relations; each approach uses a different
encryption scheme. We adapt these schemes to the mediator
architecture and provide a comprehensive description of the
resulting protocols. A first security analysis is also given.

Key words: secure mediation, confidentiality, credential
based access control, encrypted data processing, database as
a service, commutative encryption, homomorphic encryp-
tion

1. Introduction

One crucial task in collaborative environments is finding,
combining and filtering information from different (possi-
bly heterogeneous) datasources. Clients in search of in-
formation may be unsure which datasources hold the rel-
evant data and it is inconvenient for them to query several
datasources separately; in a dynamic system with changing
number or location of datasources this situation gets even
worse. To facilitate the search process for clients, a new
entity called mediator was introduced in such environments
(see e.g. [23]). In a mediated system, the client issues a
global query to the mediator, the mediator passes partial
queries to adequate datasources, retrieves their partial re-
sults and returns a global result combined from the partial
results to the client (see Figure 1 for a basic mediated sys-
tem). Moreover, a hierarchy of mediators is possible: a me-
diator can also serve as a datasource for other mediators.

∗C.T.’s current affiliation is Fraunhofer SCAI, 53754 Sankt-Augustin.

partial query 1

partial result 1
partial query n

Source 1
MediatorClient

global

query

result

global

...

Source n
partial result n

Figure 1. A basic mediated information sys-
tem

A mediated system offers several benefits for clients as
well as datasources. The mediator takes the burden of

• soliciting sufficient access control information (e.g.
credentials) from the clients and passing relevant sub-
sets of it to the datasources

• splitting the global query into partial queries

• choosing and contacting the relevant datasources

• generating the global result and returning it to the
client

In an intra-enterprise setting a mediator might be one
trusted, centralized entity. However, mediation offers a
lot more in an inter-enterprise setting: In a dynamic envi-
ronment with several loosely coupled participants (clients,
datasources and mediators) that do not trust each other, con-
tract based confederations can be built. That is, clients can
dynamically sign up for a mediation service and media-
tors can flexibly contract several datasources to supply their
data.
Primarily in this dynamic inter-enterprise setting (but pos-
sibly also in the intra-enterprise setting), there are some
serious security concerns like for example confidentiality
and integrity of data, reliability and availability of services
or anonymity of participants. This led to systems for se-
cure mediation like the multimedia mediator (MMM) sys-
tem (see [3]); other secure mediation systems are for exam-
ple Hermes [5] and Chaos [17].

In this paper we focus on the confidentiality of the data sent
from the datasources via the mediator to the client in the
MMM system. Obviously we face the problem that the un-
trusted mediator should generate the global result from the
partial results without learning anything about the data it
processes. A previous solution to this problem was mobile
code (see [4]): The mediator sends the client an executable
that computes the global result from the partial results (af-
ter decryption of the partial results). In this approach, the
client is left with the task of executing the mobile code and
it gives rise to additional security threats like for example
malicious code. Thus, the optimal solution would be to let
the mediator compute an encrypted global result from the
encrypted partial results. In this paper we present a first step
toward this computation on encrypted data: We extend the
MMM with a mechanism to compute a JOIN operation over
encrypted relations that yields an appropriately encrypted
joined relation as the result.
This paper is organized as follows: First of all, we briefly
describe the MMM system in Section 2. In the follow-
ing Sections 3 to 5 we present three different encryption
schemes, incorporate them into the MMM system and de-
scribe a JOIN operation on encrypted relations for each
scheme; a first, rudimentary comparison of the schemes
is given in Section 6. In Section 7 we relate our work to
general approaches for computation on encrypted data. We
conclude the paper with suggestions for future work.

2. The Multimedia Mediator

In the MMM system datasources execute access control
based on a set of credentials. Therefore, before sending a
query, each client has to have an appropriate set of creden-
tials issued by a trusted certification authority. Each cre-
dential links properties of the client to one of his public en-
cryption keys but in general does not contain details on his
identity; the client keeps other certificates linking his iden-
tity to each public key in a safe place to enable identification
in case it is needed – for example in a legal dispute. This
acquisition of credentials is part of the preparatory phase of
the MMM protocol as thoroughly described in [3].

Now, the client can start the request phase: When issu-
ing a global query to a mediator, the client attaches a set
of credentials to the query. The mediator splits the global
query into partial queries; SQL queries for instance can
be transformed into a so-called “algebra tree” (with rela-
tional operators in the inner nodes of the tree and partial
queries at the leaves) by using the “SQL2Algebra” library;
see [4] for a description. With each partial query, the me-
diator forwards a subset of the credentials to an appropriate
datasource. Datasources base their access control decisions
only on the properties presented in the credentials. If the
presented credentials suffice to grant data access, the data-

p: properties
id: client’s identity

Certification

partial query q

partial result R

id
k p

k pub

p

pub

p
k

pub

1

n

1

n

Mediator

SQL2-
Algebra

..

Source 1

.

global

p

q

pubk

scheme

partial query q

result
global
encr. partial result R

Source n

scheme

pubk

query

Client

k : client’s public key

Authority

pub

scheme

Figure 2. A credential-based MMM system

sources evaluate the partial queries. In case the credentials
do not allow full data access, the partial results might be fil-
tered in order to return only those records for which access
permissions exist. See Figure 2 for a schematic credential-
based MMM system (for simplicity with just one credential
shown).

Finally, the delivery phase begins: With one of the three
encryption schemes we present in the following, each data-
source encrypts its partial result in such a way that the medi-
ator can compute the JOIN over the encrypted partial results
and thus the generation of an encrypted global result is pos-
sible. The public keys in the credentials can be used by the
datasources to send information (basically encrypted par-
tial results and additional data necessary for the decryption
step at client side) securely via the mediator to the client.
This information is best encrypted with a hybrid encryp-
tion scheme; that is, the information is encrypted with a
newly generated symmetric session key and the session key
is encrypted with the public keys of the client. We denote
as encrypt(. . .) and decrypt(. . .) the according hybrid en-
cryption and decryption functions.

In this paper we confine ourselves to queries q that can
be split into one JOIN operation and two partial queries q1

and q2 over two relations R1 and R2 managed by data-
sources S1 and S2, respectively. To keep things simple,
we assume that the partial queries are just “select *”-
queries although more complex queries could be executed
by the datasources.
In the MMM system, the mediator combines the heteroge-
neous database schemas of the datasources into one homo-
geneous global schema (via a so-called embedding; see [2]).
That is why the mediator can identify the sets A1 and A2 of
attributes (of relations R1 and R2, respectively) that have
to be considered in the JOIN operation. In this paper, we
assume that there is just one join attribute Ajoin common to
R1 and R2; that is, A1 = A2 = {Ajoin}. If a distinction
is necessary, we qualify the join attribute with the relation
names: R1.Ajoin and R2.Ajoin. Listing 1 shows the ba-
sic request phase for a JOIN query. The delivery phases of
our new protocols vary according to the encryption scheme

2

1. The client sends query q requiring the JOIN of the
relations R1 and R2 with a set of credentials CR to
the mediator.

2. The mediator localizes the appropriate datasources
S1 and S2 and decomposes q into partial queries
q1 =“select * from R1” and q2 =“select
* from R2”. The mediator also selects appropri-
ate subsets CR1 and CR2 of credentials, which are
required to execute the queries q1 and q2.

3. For i ∈ {1, 2}, let Ai be the set of join attributes
of Ri (for simplicity, Ai = {Ajoin}). The mediator
sends the triple 〈qi, CRi,Ai〉 to Si.

4. Si checks the credentials CRi. If authorization is
granted, query qi is executed with Ri as the result.

Listing 1. Basic MMM request phase

used; they are presented in the following sections.
We finally assume that all parties in our protocols are

semi-honest (see for instance [6]; also called honest-but-
curious, see e.g. [1]). That is, each party exactly acts as
specified in the protocol, but possibly tries to gain informa-
tion about the other parties’ inputs.

3. The Database-as-a-Service Model

The first approach for computation with encrypted data
we consider is the work of Hacıgümüş et al. [13]. Their
work is based on the fact that in the database-as-a-service
model (DAS model) – where data is stored at a service
provider site – the data owner does not trust the provider.
In their approach, the data owner outsources his data in
encrypted form to the service provider. For a relation of
the schema R(A1, A2, ..., An), the encrypted relation has
the schema RS(Etuple, AS

1 , AS
2 , ..., AS

n). The attribute
Etuple stores encrypted representations of tuples t =
〈a1, ..., an〉 of R, where ai is an element of the domain
dom(Ai) of attribute Ai; encryption is done by the data
owner with a standard encryption scheme. Each attribute
AS

i in RS is called the index of the attribute Ai in R; these
values are used for processing the encrypted data. The in-
dex values for an attribute Ai are defined by first dividing
the active domain domactive(Ai) into partitions and then
assigning a unique identifier to each partition; these identi-
fiers can for example be computed with a collision free hash
function that uses properties of the partition. The identifiers
are used as the index values. When encrypting a relation,
for a tuple with value ai of attribute Ai, in the encrypted tu-
ple the attribute AS

i contains the index value of the partition

that contains ai.
A decryption function is also defined; we denote it
as decryptDAS(. . .). For an encrypted tuple tS =
〈etuple, aS

1 , ..., aS
n〉, the function decrypts etuple (accord-

ing to the standard encryption scheme) and drops all index
values aS

i with i = 1...n.
When querying the data, the service provider is able to

evaluate the query at least partially and thus returns a super-
set of the result to the client. That is why in the DAS model
there is a query translator, which splits a query q into

1. a server query qS over encrypted data using the index
values to be run at the service provider site

2. a client query qC for post-processing results of the
server query at the data owner site

For details refer to the article by Hacıgümüş et al. [13].

3.1. Secure Mediation with the DAS Model

We will now adapt the DAS approach to the MMM sys-
tem for secure mediation of JOIN queries; that is, we com-
bine the basic protocol for secure mediation with the DAS
encryption scheme.

First of all, there are a number of differences between the
DAS model and the mediation system:

• There is one more layer (the mediator) in the mediation
system; the mediator executes the server query qS on
the encrypted partial results of the datasources.

• The datasources are the data owners and encrypt their
partial results according to the DAS approach.

• The client is not the data owner; he is merely query-
ing the data and has to have a means of decrypting the
client server result and executing the client query qC

on it to retrieve the global result.

With the DAS approach, a total computation of the natu-
ral join over encrypted relations cannot be achieved, as the
client still has to execute the client query. However, this ap-
proach allows the mediator to partially evaluate the global
query over encrypted relations. This leads to the question
which participant should split the global query into server
query and client query. In principle, it is possible to place
the DAS query translator in any layer of the mediation sys-
tem. We call the resulting settings mediator setting (query
translator with the mediator), source setting (query trans-
lator with one of the datasources) and client setting (query
translator with the client). In this article we only describe
the client setting.

We now briefly describe the delivery phase of the MMM
protocol with DAS encryption; in Listing 2 this phase is
listed step by step.

3

1. Si partitions the active domain domactive(Ajoin) of
the join attribute and maps each partition to an index
value in ITableRi.Ajoin .

2. Si encrypts Ri according to the DAS approach us-
ing the public keys from CRi and the index table
ITableRi.Ajoin with RS

i as the resulting encrypted
relation. Si encrypts ITableRi.Ajoin using the pub-
lic keys from CRi; we call the resulting encrypted
table encrypt(ITableRi.Ajoin).

3. Si sends 〈RS
i , encrypt(ITableRi.Ajoin

)〉 to the me-
diator.

4. The mediator sends encrypt(ITableR1.Ajoin) and
encrypt(ITableR2.Ajoin) to the client.

5. The client decrypts encrypt(ITableR1.Ajoin
) and

encrypt(ITableR2.Ajoin). He translates q into
qS and qC according to the DAS approach us-
ing ITableR1.Ajoin

and ITableR2.Ajoin
. The client

sends qS to the mediator.

6. The mediator computes qS on RS
1 and RS

2 with RC

as the result. The mediator sends RC to the client.

7. The client decrypts RC using his private keys accord-
ing to the DAS approach and executes qC on the de-
crypted relation.

Listing 2. DAS delivery phase (client setting)

A datasource Si encrypts its partial result on tuple level
(that is, row-wise) using the public keys of the client with
a hybrid encryption scheme; in other words, each tuple
t is encrypted to encrypt(t). Index values only have to
be computed for the join attribute; that is, only the do-
main domactive(Ri.Ajoin) has to be partitioned. The map-
ping from partitions to index values is represented in a so-
called “index table” ITableRi.Ajoin . From the encrypted
tuples and the index values, datasource Si builds a par-
tial result RS

i encrypted in DAS-like manner (that is, con-
sisting of tuples of the form tS = 〈etuple, aS

join〉 where
etuple = encrypt(t) and aS

join is the appropriate index
value). Additionally, Si encrypts the index table such that
only the client can decrypt it (that is, preferably with the
same session key as used for the partial result). Finally, Si

sends its encrypted partial result RS
i and its encrypted index

table encrypt(ITableRi.Ajoin) to the mediator.
The query translator needs both index tables to generate

the server query qS and the client query qC from a client’s
global query q. That is why in the client setting – with
the query translator at client side – the mediator forwards

the encrypted index tables of both datasources to the client.
The client decrypts the index tables and the query translator
generates the server query and the client query based on the
index values (we denote RC the result of the server query):

RC := qS(RS
1 , RS

2) = σCondS
(RS

1 ×RS
2)

where (for i ∈ {1, 2}) for all partitions pi and their index
values index(pi) in ITableRi.Ajoin such that p1 ∩ p2 6= ∅
CondS =∨
p1,p2

(RS
1 .Ajoin = index(p1) ∧RS

2 .Ajoin = index(p2)).

and

qC(decryptDAS(RC)) = σCondC
(decryptDAS(RC))

where
CondC = (R1.A

S
join = R2.A

S
join)

That is, the server query generates a superset of the global
result by combining encrypted tuples of RS

1 and RS
2 whose

values of Ajoin belong to overlapping partitions in the two
index tables.

Afterwards, the client sends the server query qS to the
mediator; the mediator applies it to the encrypted partial
results RS

1 and RS
2 and sends the encrypted result RC to

the client. Since the mediator computes the server query on
the encrypted partial results, the plaintexts are kept secret.
Finally, the client decrypts RC and applies the client query
to it in order to get the global result.

4. Commutative Encryption

In this section we describe the approach for encrypted
data processing by Agrawal et al. (see [1]). The authors
consider two participants in the computation: a sender and
a receiver. Both participants have an input relation and the
receiver is to execute a relational operation on the input re-
lations in such a way that he learns only those data from
the sender’s input relation that form part of the resulting re-
lation – but without learning other data from the sender’s
input relation. The authors use a commutative encryption
scheme and present interactive protocols for the operations
intersection and join on encrypted relations. In these pro-
tocols, as additional information both receiver and sender
learn the cardinality of the other participant’s input relation.

In the following we define the commutative encryption
function according to [1]. A commutative encryption func-
tion is a polynomial-time computable function

fe : domf −→ domf

(where e is an adequate key and domf an adequate domain)
with the following properties (the notation ∈r means “cho-
sen uniformly at random from”):

4

1. [Commutativity] For all keys e1 and e2

fe1 ◦ fe2 = fe2 ◦ fe1 .

2. [Bijectivity] Each fe is a bijection.

3. [Invertibility] The inverse f−1
e is polynomial-time

computable given e.

4. [Secrecy] The distribution of 〈x, fe(x), y, fe(y)〉
is indistinguishable from the distribution of
〈x, fe(x), y, z〉, where x, y, z ∈r domf and e is
a random key.

The secrecy property means that given a plaintext x and its
corresponding ciphertext fe(x), for a new value y, it is not
possible to distinguish fe(y) and a random value z in poly-
nomial time. In [1], this property is used to prove the secu-
rity of the protocols. To guarantee this property, the input
parameters x and y of f have to be random values. For
this purpose, the encryption function f is not executed on
the original data in the input relation but on hash values
of the same. The authors assume that the hash function is
ideal, that is, computed by a random oracle. The hash func-
tion (written as h) maps values of the join attribute to val-
ues in an adequate domain domf . As an example domain,
Agrawal et al. mention the set of quadratic residues modulo
a safe prime and show that exponentiation can be used as a
commutative encryption function. For details refer to [1].

4.1. Secure Mediation with Commutative
Encryption

We now extend the basic MMM protocol with a mecha-
nism for computing the JOIN operation on encrypted rela-
tions with the help of commutative encryption. Again we
can see some differences between the two architectures. In
the MMM system with commutative encryption

• there is not one distinguished receiver; instead the re-
ceiver’s responsibilities are distributed between client,
mediator and datasources

• unlike the original approach, datasources do not en-
crypt their partial results with a newly generated key
(see [1]) before sending them to the mediator; instead
they use our hybrid encryption scheme encrypt so that
only the client can decrypt the data

• the mediator now identifies the exact set of those tuples
of the partial results that form the global result

For the relations R1 and R2 we define Tupi(a) to be the set
of those tuples t in which the join attribute has value a:

Tupi(a) := {t ∈ Ri | t[Ajoin] = a}

1. Si chooses a secret key ei of a commutative encryp-
tion scheme; for each a ∈ domactive(Ri.Ajoin), it
encrypts a’s hash value with ei: fei(h(a)).

2. For each a ∈ domactive(Ri.Ajoin), Si encrypts the
set Tupi(a) of tuples with the appropriate public
keys of the client. The resulting ciphertexts are called
encrypt(Tupi(a)).

3. Si sends the (arbitrarily ordered) set of mes-
sages Mi := {〈fei(h(a)), encrypt(Tupi(a))〉|a ∈
domactive(Ri.Ajoin)} to the mediator.

4. The mediator sends the set of messages M1 to S2 and
the set of messages M2 to S1.

5. For each message 〈fe2(h(a)), encrypt(Tup2(a))〉,
S1 computes fe1(fe2(h(a))) and sends the set of
all messages 〈fe1(fe2(h(a))), encrypt(Tup2(a))〉
to the mediator.

6. For each message 〈fe1(h(a)), encrypt(Tup1(a))〉,
S2 computes fe2(fe1(h(a))) and sends the set of
all messages 〈fe2(fe1(h(a))), encrypt(Tup1(a))〉
to the mediator.

7. The mediator now checks for messages that have
an identical first component, that is, messages
where fe1(fe2(h(a))) = fe2(fe1(h(a))); if this is
the case, the mediator combines the second com-
ponents of all such messages to result messages
〈encrypt(Tup1(a)), encrypt(Tup2(a))〉 and sends
the set of all result messages as the encrypted global
result to the client.

8. The client decrypts all messages
〈encrypt(Tup1(a)), encrypt(Tup2(a))〉 with
his private keys; he then constructs tuples from the
sets Tup1(a) and Tup2(a). These tuples form the
global result.

Listing 3. Commutative encryption delivery
phase

When starting the delivery phase, each datasource first
of all generates a new secret key ei for the commutative
encryption function f . With the ideal hash function, it
computes the hash values h(a) of all elements of its ac-
tive domain of the join attribute – that is, all elements
a ∈ domactive(Ri.Ajoin). Then, it computes the commu-
tative encryption fei(h(a)) of each hash value. Next, for all
values a each datasource encrypts its set Tupi(a) with the

5

appropriate public keys presented in the client’s credentials
(that is, with our hybrid encryption function encrypt). Via
the mediator, the messages 〈fei(h(a)), encrypt(Tupi(a))〉
are exchanged between the datasources.1 Each datasource
commutatively encrypts the hash values again – so that in
the end the hash values are encrypted with both keys e1 and
e2. These messages are returned to the mediator.
We assume that both datasources use the same ideal hash
function h and thus identical inputs (from both datasources)
yield identical hash values, whereas distinct inputs yield
distinct hash values. From the commutativity and bijec-
tivity properties of the commutative encryption function
f we conclude that if a value a is included in both ac-
tive domains, the twofold application of f on h(a) re-
turns identical ciphertexts independent of the order of ap-
plication of the keys e1 and e2. Therefore the mediator
can identify the messages that belong to identical values
of the join attribute. It combines the corresponding en-
crypted sets of tuples in a set of result messages of the form
〈encrypt(Tup1(a)), encrypt(Tup2(a))〉 and returns it to
the client. The client can now decrypt the tuple sets with
his private keys; he then just has to construct tuples from
the sets (that is, executing a crossproduct operation on each
pair of corresponding tuple sets) and combine them in a re-
sult relation. In Listing 3 we present our protocol of the
delivery phase with commutative encryption.

5. Efficient Private Matching

We now describe the approach called private matching
(PM) presented by Freedman et al. in [12]. In the PM
model, two parties – the sender and the chooser – each have
a set of input values. The chooser is to compute the inter-
section of these sets (that is, their private matching) without
learning values of the sender’s input set that are not con-
tained in the intersection. The authors employ homomor-
phic encryption to ensure confidentiality of these data.

Homomorphic encryption schemes allow for efficiently
performing operations like addition on encrypted data. In
the following, we denote E an additively homomorphic en-
cryption function. More precisely, E is a semantically se-
cure public key encryption function with the following two
properties:

• Given two ciphertexts E(a) and E(b), there is a way
to efficiently compute the encrypted sum E(a + b).

• Given a constant γ and a ciphertext E(a), there is a
way to efficiently compute E(γ · a).

1In real life implementations, the mediator should refrain from sending
the encrypted tuples to the opposite datasource for performance as well as
security reasons. Instead, the mediator could use ID values of fixed length
that replace an encrypted tuple set in the messages and is later on used to
map the encrypted hash value to the corresponding tuple set. For sake of
simplicity, we abstract from that for now.

The elliptic curve variant of ElGamal (see [10]) and the
Paillier cryptosystem (see [20]) satisfy these demands; see
also [21] for a detailed analysis of homomorphic cryptosys-
tems.
These properties allow for obtaining the encrypted result
of an evaluation of a polynomial at an unencrypted point
with only the encryptions of its coefficients given. In other
words, for a polynomial P (x) =

∑n
k=0 ckxk and an unen-

crypted input value a such that b = P (a) one can efficiently
compute

E(b) = E(P (a)) = E(
n∑

k=0

ckak)

– even if only the encryptions E(ck) of the coefficients are
known. Furthermore, for a constant value γ one can effi-
ciently compute E(γ ·

∑n
k=0 ckak + a).

Evaluation of an encrypted polynomial is employed in
the PM approach in the following way. The chooser – hav-
ing input set A = {a1, . . . , an} – generates a polynomial:

P (x) := (a1 − x) · (a2 − x) · . . . · (an − x) =
n∑

k=0

ckxk

That is, the roots of P are the chooser’s input values:
P (ai) = 0 for i = 1 . . . n. Coefficients ck of P are com-
puted to achieve a sum-representation of the polynomial.
The chooser then generates a public homomorphic key and
encrypts each coefficient ck. The encrypted coefficients
E(ck) are sent to the sender.
Let the sender’s input set be A′ = {a′1, . . . , a′m}; for l =
1 . . .m, the sender generates a random value rl and com-
putes (based on the homomorphic properties as described
above):

E(rl · P (a′l) + a′l) (1)

These m values are returned to the chooser who decrypts
them with his private key. For the values contained in the
intersection a ∈ A ∩ B (that is, a subset of the roots of
the polynomial), the decryption step yields a itself, because
for those values E(rl · P (a) + a) = E(a); for values not
contained in the intersection, the decryption step yields a
random value. Thus, by picking those decrypted values that
are also contained in A, the chooser can identify the inter-
section set.
The sender can also concatenate his a′l-value with pay-
load data (in [12] denoted py) and send it to the chooser:
Instead of computing Equation (1), the sender computes
E(rl ·P (a′l) + (a′l||py)); the chooser can only retrieve py if
the corresponding a′l-value is in the intersection.

5.1. Secure Mediation with the PM Model

We now adapt the PM model to the MMM system. First
of all, we note that homomorphic encryption is a form of

6

public key encryption. That is why we decided that the
client (of the mediator system) should be the only one to
generate a public-private homomorphic key pair. The public
homomorphic key is distributed in the MMM system with
the client’s credentials as described in Section 2; the private
key is kept secret by the client.

The datasources each build a polynomial with their input
values as the roots; that is

• for all ak ∈ domactive(R1.Ajoin) (with k = 1 . . . n),
S1 builds the polynomial

P1(x) := (a1−x) · (a2−x) · ... · (an−x) =
n∑

k=0

ckxk

and computes the coefficients ck

• for all a′l ∈ domactive(R2.Ajoin) (with l = 1 . . .m),
S2 builds the polynomial

P2(x) := (a′1−x) · (a′2−x) · ... · (a′m−x) =
m∑

l=0

dlx
l

and computes the coefficients dl

Using the client’s public homomorphic key, the datasources
can encrypt their coefficients with encryption scheme E and
send them to the mediator; that is, S1 sends all E(ck) and
S2 sends all E(dl).

The mediator sends the encrypted coefficients to the op-
posite datasource. The datasources evaluate the encrypted
polynomial of the opposite datasource for each of their in-
put values: as described above they multiply the polyno-
mial with a fresh random number and add their current in-
put value concatenated with payload data; the payload data
are those tuples of the input relation that have the current
input value as the value of the join attribute. As in Section
4.1 we denote Tupi(a) the set of all tuples of relation Ri

that have value a in the join attribute. That is,

• for all ak ∈ domactive(R1.Ajoin) (with k = 1 . . . n),
S1 computes

ek := E(rk · P2(ak) + (ak||Tup1(ak)))

• for all a′l ∈ domactive(R2.Ajoin) (with l = 1 . . .m),
S2 computes

e′l := E(r′l · P1(a′l) + (a′l||Tup2(a′l)))

The encrypted2 values ek and e′l are sent to the client
2As tuple sets can be of large size, we could face length restrictions

when using asymmetric encryption. To avoid this, instead of encrypting
the tuple sets as payload data in the polynomial, the hybrid encryption ap-
proach can be taken further. For each tuple set, the datasources generate a
separate session key; the session key and an ID value are encrypted in the
polynomial whereas each tuple set is encrypted with its corresponding ses-
sion key and mapped to the ID value in a table. This table is sent separately
to the mediator and forwarded to the client; the client can only decrypt the
session keys of those tuple sets that form part of the global result.

via the mediator. The client decrypts all ek to either a ran-
dom value or a value of the form (ak||Tup1(ak)); analo-
gously, the client decrypts all e′l to either a random value or
a value of the form (a′l||Tup2(a′l)). The client now iden-
tifies those value pairs where ak = a′l and – as in Sec-
tion 4.1 – computes the crossproduct of corresponding tuple
sets Tup1(ak) and Tup2(a′l); the resulting tuples form the
global result. Listing 4 shows our protocol with homomor-
phic encryption.

1. Alteration to preparatory and query phase: we as-
sume that the client has one public key for the homo-
morphic encryption scheme E; this key is distributed
with the client’s credentials.

2. Let P1(x) =
∑n

k=0 ckxk be a polynomial, whose
roots are all elements in domactive(R1.Ajoin). S1

computes coefficients ck, encrypts them with E – us-
ing the client’s public key – and sends E(ck) to the
mediator.

3. Let P2(x) =
∑m

l=0 dlx
l be a polynomial, whose

roots are all elements in domactive(R2.Ajoin). S2

computes coefficients dl, encrypts them with E and
sends E(dl) to the mediator.

4. The mediator forwards the encrypted coefficients to
the opposite datasource.

5. For each ak ∈ domactive(R1.Ajoin), S1 generates a
new random number rk and computes
ek := E(rk · P2(ak) + (ak||Tup1(ak))).
S1 returns all ek-values to the mediator.

6. For each a′l ∈ domactive(R2.Ajoin), S2 generates a
new random number r′l and computes
e′l := E(r′l · P1(a′l) + (a′l||Tup2(a′l))).
S2 returns all e′l-values to the mediator.

7. The mediator sends the n + m encrypted values to
the client.

8. The client decrypts the values with his private key.
He then checks for decrypted values of the form
(ak||Tup1(ak)) and (a′l||Tup2(a′l)) where ak =
a′l. The corresponding tuple sets Tup1(ak) and
Tup2(a′l) are then combined into the final result.

Listing 4. Homomorphic encryption delivery
phase

7

6. Analysis and Comparison

In this section, we analyze some security aspects of the
three different protocols for the delivery phase and compare
them based on some key points. However, we do not give
a comprehensive cryptanalytic comparison of the protocols;
as for the cryptographic strength of the presented technolo-
gies we rely on the security proofs as stated by the authors
in the respective articles. We also assume that their crypto-
graphic assumptions (for example random oracle model or
large domains) are respected in our protocols.

Our main concern is confidentiality of the transmitted
data. First of all, we note again that only those data records
are included in the datasources’ partial results for which ac-
cess permissions could be established based on the client’s
credentials. That is, even if the client receives a superset
of the global result (as in the DAS approach), he never re-
ceives data he is not allowed to read. In the commutative
approach, the client only receives the exact global result;
whereas in the PM approach the client receives encrypted
values of both partial results but he is only able to decipher
and combine those values that form the exact global result.
See Table 1 for an overview of the disclosed information.

In all three approaches the partial results are encrypted
in such a way that only the client can decrypt them and read
the actual data records: in the DAS approach we use our
hybrid encryption function (encrypt) to encrypt the partial
results tuple-wise, in the commutative approach we encrypt
sets of tuples with encrypt, and in the PM approach tuple
sets are included in the result of a polynomial evaluation
encrypted with the client’s public homomorphic key.
However, although the mediator cannot decrypt the partial
results, in some approaches he is able to infer some extra
information about the partial results as well as the global
result. We look at this in detail for each approach (see also
Table 1):

• In the DAS approach, it is crucial to encrypt the in-
dex table and let the query translator reside on client
side. Otherwise the mediator would know the parti-
tion ranges and thus be able to approximate the join at-
tribute value for each tuple. While in our protocol the
mediator does not know the partition ranges, he still
learns the sizes of the partial results (counted in num-
ber of tuples) as they are encrypted tuple-wise. After
execution of the server query, the mediator also knows
the size of the server query result RC which is an up-
per bound of the size of the global result.
One important point in the DAS approach is how the
attribute domains are partitioned and indexed. Small
partitions with only a few values are more efficient
(less post-processing is necessary) but can leak con-
fidential information (see [15] and [8] for an analysis).
This is even worse when the domain of the attribute is

small (for example just the two values yes and no).

• In the commutative approach, the client receives an
encrypted hash value from each datasource for each
value in the active domain of the join attribute; that is,
the mediator learns |domactive(Ri.Ajoin)|. As he is
able to identify how many values are common to both
datasources, he also learns |domactive(R1.Ajoin) ∩
domactive(R2.Ajoin)| which is a lower bound of the
size of global result.

• In the PM approach, the mediator knows the degree of
the polynomial (and thus the number of roots) from the
number of encrypted coefficients he receives; thus he
knows |domactive(Ri.Ajoin)|.

Table 1. Extra information disclosed to client
and mediator

Client Mediator
Database- superset of
as-a-Service global result, |Ri| and |RC |

index tables
Commutative (only exact |domactive(Ri.Ajoin)|
Encryption global result) and size of intersection
Private |domactive(Ri.Ajoin)|
Matching

We also note that in the commutative approach and in the
PM approach the datasources each learn the size of the ac-
tive domain of the join attribute of the opposite datasource:
In the commutative approach the number of encrypted hash
values equals the number of distinct values in the active do-
main while in the PM approach this is the case for the degree
of the polynomial.

In addition to credentials and hybrid encryption already
used in the MMM system, the following cryptographic
primitives have to be applied in the three protocols: in the
DAS approach we employ a collision-free hash function to
compute index values for the partitions, in the commutative
approach we need an ideal hash function (computed by a
random oracle) known to both datasources and secret keys
for both datasources in order to encrypt hash values com-
mutatively, and in the PM approach we rely on secure eval-
uations of a homomorphically encrypted polynomial that is
masked by different random numbers. See Table 2 for an
overview.

Whereas confidentiality of data is guaranteed in all three
approaches, from the computational point of view there are
some differences:

• In the DAS approach, the client has to interact twice
with the mediator: In a first step, he sends the global

8

Table 2. Applied cryptographic primitives
Database- hashfunction
as-a-Service
Commutative hashfunction and
Encryption commutative encryption
Private homomorphic encryption
Matching and random numbers

query and in a second step he retrieves the index tables
and generates the client and the server query. He re-
ceives more data records than necessary and has to ex-
ecute the client query to retrieve the global result. For
the datasources, the DAS approach is the most conve-
nient one, as they only have to send data once.

• In the commutative approach, the client receives the
exact tuple sets of both datasources that form the
global result; he has to decrypt them and combine them
to full tuples of the global result. The datasources only
do a small extra computation to encrypt their hash val-
ues and the hash values of the other datasource; how-
ever, they have to interact twice with the mediator.

• In the PM approach, the client retrieves all the tuples
of the encrypted partial results. The datasources have
to interact twice with the mediator and have to evaluate
the encrypted polynomial for all their input values (this
is quite expensive, although Freedman et al. show in
[12] how the polynomial can be evaluated efficiently).

Based on these performance considerations, the commuta-
tive approach seems to be the most efficient one to be em-
ployed in a secure mediation system; a prototypical web
based system for commutative encryption has thus been im-
plemented at our department.

7. Related Work

Several other approaches cover the topics of secure
multi-party computation and querying encrypted databases
and seem to be promising for secure mediation. Özsoyoglu
et al. (see [19]) for example study different encryption tech-
niques (such as order preserving or multiple encryption) for
databases and their respective query transformations. An-
other approach we have not investigated so far is “encryp-
tion with subkeys” by Davida et al. (see [11]).

While in this article we only cover join queries, Yang et
al. (see [24]) analyze selection queries over a table in an
outsourced database. Unlike the DAS model, they encrypt
each attribute value (that is, each table cell) separately. Each
encrypted value also has a “checksum” that is necessary for
query execution on the encrypted table. Furthermore, the
server returns the exact set of encrypted values that satisfy

the condition of the query. Therefore the client does not
need to post-process the results of the server as in the DAS
model. The authors also propose a solution using metadata
that enhance the efficiency of query evaluation.

As another form of queries, aggregation queries over en-
crypted data are treated in [14] and [9]. However, the en-
cryption scheme used by Hacıgümüş et al. in [14] was
shown to be insecure by Mykletun et al. in [18]; as an alter-
native, they propose another approach for processing aggre-
gation queries without using this encryption scheme. Ad-
ditionally they propose a variant of the DAS model (called
“mixed DAS model”) where only sensitive attributes are en-
crypted and the other attributes are not encrypted.

Approaches for secure multi-party computation include
for example the work of Kissner et al. (see [16]); they use
homomorphic encryption in a multi-party setting to com-
pute the intersection or the union of multisets.
In [22] the authors consider a two-party computation of the
scalar product and analyze the level of information infer-
ence using information theory; they show that in order to
solve the scalar product problem without a third party at
least half of the private information must be disclosed.

Finally we mention that database query processing of en-
crypted data has also been studied in more restricted archi-
tectures. For example, Carminati et al. (see [7]) employ the
DAS approach to treat XPath expressions in a third-party
architecture that only distinguishes between the owner and
the publisher of information.

8. Conclusion and Future Work

In this paper, we presented three protocols that extend
the basic delivery phase of the Multimedia Mediator with
mechanisms to execute join queries over encrypted data
records. All three protocols combine the notion of secure
mediation with querying encrypted databases and secure
multi-party computation. In contrast to pure multi-party
computation approaches, responsibilities (like for example,
ownership of data) are distributed between the participants.
However, we showed that all three considered approaches
can be employed in the secure mediation setting.

So far we only considered one join attribute; it would
be interesting to analyze whether our three protocols can
be easily adapted to work with more than just one join at-
tribute. Moreover, in a mediator hierarchy one mediator can
act as a datasource for other mediators. Therefore, the case
in which several join queries are executed successively has
to be considered. Inclusion of other relational operations is
a demanding field of further research as well.

9. Acknowledgments

We thank Frank Müller for valuable discussions.

9

References

[1] R. Agrawal, A. V. Evfimievski, and R. Srikant. Information
sharing across private databases. In A. Y. Halevy, Z. G. Ives,
and A. Doan, editors, ACM SIGMOD International Confer-
ence on Management of Data, Proceedings, pages 86–97.
ACM, 2003.

[2] C. Altenschmidt and J. Biskup. Explicit representation of
constrained schema mappings for mediated data integration.
In S. Bhalla, editor, Databases in Networked Information
Systems, Proceedings, volume 2544 of Lecture Notes in
Computer Science, pages 103–132. Springer, 2002.

[3] C. Altenschmidt, J. Biskup, U. Flegel, and Y. Karabulut.
Secure mediation: Requirements, design, and architecture.
Journal of Computer Security, 11(3):365–398, June 2003.

[4] J. Biskup, B. Sprick, and L. Wiese. Secure mediation with
mobile code. In S. Jajodia and D. Wijesekera, editors,
Data and Applications Security XIX, Proceedings, volume
3654 of Lecture Notes in Computer Science, pages 267–280.
Springer, 2005.

[5] K. S. Candan, S. Jajodia, and V. S. Subrahmanian. Secure
mediated databases. In S. Y. W. Su, editor, 12th Interna-
tional Conference on Data Engineering, Proceedings, pages
28–37. IEEE Computer Society, 1996.

[6] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adap-
tively secure multi-party computation. In Symposium on the
Theory of Computing, Proceedings, pages 639–648. ACM,
1996.

[7] B. Carminati, E. Ferrari, and E. Bertino. Securing XML
data in third-party distribution systems. In O. Herzog, H.-J.
Schek, N. Fuhr, A. Chowdhury, and W. Teiken, editors, Con-
ference on Information and Knowledge Management, Pro-
ceedings, pages 99–106. ACM, 2005.

[8] A. Ceselli, E. Damiani, S. D. C. di Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati. Modeling and assessing in-
ference exposure in encrypted databases. ACM Transactions
on Information and System Security, 8(1):119–152, 2005.

[9] S. S. Chung and G. Özsoyoglu. Anti-tamper databases: Pro-
cessing aggregate queries over encrypted databases. In R. S.
Barga and X. Zhou, editors, International Conference on
Data Engineering – Workshops, Proceedings, page 98. IEEE
Computer Society, 2006.

[10] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure
and optimally efficient multi-authority election scheme. In
W. Fumy, editor, EUROCRYPT, Proceedings, volume 1233
of Lecture Notes in Computer Science, pages 103–118.
Springer, 1997.

[11] G. I. Davida, D. L. Wells, and J. B. Kam. A database encryp-
tion system with subkeys. ACM Transactions on Database
Systems, 6(2):312–328, 1981.

[12] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient pri-
vate matching and set intersection. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology – EUROCRYPT,
Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2004.

[13] H. Hacıgümüş, B. R. Iyer, C. Li, and S. Mehrotra. Executing
SQL over encrypted data in the database-service-provider
model. In M. J. Franklin, B. Moon, and A. Ailamaki, editors,

ACM SIGMOD International Conference on Management of
Data, Proceedings, pages 216–227. ACM, 2002.

[14] H. Hacıgümüş, B. R. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted relational
databases. In Y.-J. Lee, J. Li, K.-Y. Whang, and D. Lee,
editors, Database Systems for Advances Applications, Pro-
ceedings, volume 2973 of Lecture Notes in Computer Sci-
ence, pages 125–136. Springer, 2004.

[15] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving
index for range queries. In M. A. Nascimento, M. T.
Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, editors, International Conference on Very Large
Data Bases, Proceedings, pages 720–731. Morgan Kauf-
mann, 2004.

[16] L. Kissner and D. X. Song. Privacy-preserving set op-
erations. In V. Shoup, editor, Advances in Cryptology –
CRYPTO, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 241–257. Springer, 2005.

[17] D. Liu, K. H. Law, and G. Wiederhold. Chaos: An active
security mediation system. In B. Wangler and L. Bergman,
editors, Conference on Advanced Information Systems En-
gineering, Proceedings, volume 1789 of Lecture Notes in
Computer Science, pages 232–246. Springer, 2000.

[18] E. Mykletun and G. Tsudik. Aggregation queries in the
database-as-a-service model. In E. Damiani and P. Liu, ed-
itors, Data and Applications Security XX, Proceedings, vol-
ume 4127 of Lecture Notes in Computer Science, pages 89–
103. Springer, 2006.

[19] G. Özsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper
databases: Querying encrypted databases. In S. D. C.
di Vimercati, I. Ray, and I. Ray, editors, Data and Applica-
tions Security XVII, Proceedings, pages 133–146. Kluwer,
2003.

[20] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In J. Stern, editor, Advances
in Cryptology – EUROCRYPT, Proceedings, volume 1592
of Lecture Notes in Computer Science, pages 223–238.
Springer, 1999.

[21] D. K. Rappe. Homomorphic Cryptosystems and
their Applications. PhD dissertation, University
of Dortmund, Department of Mathematics, Aug.
2004. Cryptology ePrint Archive, Report 2006/001,
http://eprint.iacr.org/2006/001.

[22] D.-W. Wang, C.-J. Liau, Y.-T. Chiang, and T.-S. Hsu. Infor-
mation theoretical analysis of two-party secret computation.
In E. Damiani and P. Liu, editors, Data and Applications
Security XX, Proceedings, volume 4127 of Lecture Notes in
Computer Science, pages 310–317. Springer, 2006.

[23] G. Wiederhold and M. R. Genesereth. The conceptual basis
for mediation services. IEEE Expert Intelligent Systems and
their Applications, 12(5):38–47, Sept./Oct. 1997.

[24] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving
queries on encrypted data. In D. Gollmann, J. Meier, and
A. Sabelfeld, editors, European Symposium on Research in
Computer Security, Proceedings, volume 4189 of Lecture
Notes in Computer Science, pages 479–495. Springer, 2006.

10

