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ABSTRACT

Time Series Classification (TSC) includes generation of classifier
models for discrete labeled time series data containing real-valued
measurements of different variables collected in a temporal order.
Over the last years, several TSC algorithms have been proposed
both in the traditional machine learning and deep learning domains
which have shown remarkable enhancement over the previously
published state-of-the-art methods. General emphasis has been
based on univariate TSC (UTSC), where a time series containing
measurements of a single variable is associated with a class label.
In contrast, the medical domain has been more focused on mutli-
variate TSC (MTSC) (where multiple variables are associated with
a label) considering the availability of popular publicly available
medical datasets such as PhysioNet [24] and MIMIC-III [13]. These
datasets are fairly complex having high missing rate and unequal
length time series. In comparison, UEA archive includes 8 medi-
cal datasets having equal length time series without any missing
values which makes the comparison of algorithms straightforward.
The direct (dimension independent) technique to MTSC is to apply
univariate classifiers on the dimensions individually. We compare
recent bespoke MTSC algorithms to the dimension independent
techniques on 8 datasets from UEA archive. The results show that
dimension independent techniques with/without the application
of Principal Component Analysis (PCA) have comparable or better
scores in some configurations.
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1 INTRODUCTION

Time Series Classification (TSC) is a type of supervised machine
learning where attributes of the input vector have ordered and
real-valued entries. This makes time series data different from what
the traditional algorithms are designed for: traditional algorithms
can miss temporal order if they are fed with such kind of data.
Over the last years, many TSC algorithms have been proposed
which have shown remarkable improvement over the previously
published methods [4, 22].

Over the years, the main emphasis has been on univariate time
series classification, where each series contains records of a single
variable and a class label. However, it is more common to notice
MTSC tasks, (especially in the medical domain) where time series
contains records of multiple variables and associated label. For ex-
ample, activity recognition, measurements based on EEG, ECG and
health monitoring are all multivariate by nature. Nevertheless, the
general focus in TSC field has been on the univariate case. For exam-
ple, sktime [17] which is a popular unified framework for machine
learning with time series, contains significantly more univariate
algorithms than the multivariate ones. The sktime framework is
designed to work with datasets from UCR [9] and UEA [3] archives
where the former is a resource for UTSC, and the latter is for MTSC.
The 2018 versions of archives contain 128 and 30 datasets respec-
tively. According to our findings, there are 22 medical datasets in
UCR archive and 14 medical datasets in UEA archive. Since, the
datasets both in UCR and UEA are equal length and do not have
missing values, making comparison of algorithms on them becomes
straightforward without additional processing.

Using sktime, we compare recent MTSC algorithms to the direct
dimension independent transformations of univariate classifiers for
8 medical datasets from UEA archive. More formally, two MTSC
algorithms are compared to five transformations. Moreover, we
apply PCA [28] on the same datasets to see the effect of feature-
reduction on the classification performance. PCA is a technique
that is used to explain the variance-covariance structure of a set of
features through linear combinations [28]. In both cases, the results
show that the dimension independent transformations demonstrate
comparable or similar classification performance on various con-
figurations.

2 RELATED WORK

One of the well-known applications of univariate time series classi-
fication is the usage of different distance measures. In this respect,
[2, 20] thoroughly reviewed different measures in the domain of
UTSC. Through kNN or SVM, these distance measures can be uti-
lized for TSC. The Python-based sktime library and its Java counter-
part tsml [6] provide a lot of distance measures and TSC algorithms
in this respect. Moreover, a lot of research has been carried out
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for multivariate time series classification using data from the UEA
archive [3-5, 22].

The closest to our paper is [22] which uses the approach to
build an ensemble of univariate classifiers over multiple dimensions
for MTSC. They compare the classification performance of the
ensemble classifier to deep learning models, traditional algorithms
using dynamic time warping (DTW) and combined methods on the
UEA archive of multivariate time series datasets [3].

In contrast, our paper is focused on medical datasets. Instead
of building an ensemble of univariate classifiers, we directly apply
univariate classifiers over dimensions, compare them to bespoke
MTSC algorithms and investigate an influence of PCA on classifica-
tion results. We not only assess the accuracy score, but also other
necessary metrics such as f1, recall and AUROC (AUC) score.

To the best of our knowledge, our paper is the pioneering one
which is focused on medical datasets from UEA archive using the
transformations of univariate classifiers for MTSC.

3 PRELIMINARIES

In this section, we present mathematical notations for a multivariate
(multidimensional) time series and briefly discuss background for
MTSC.

Following the notations from [8], we specify a multivariate time
series with D variables (a.k.a, a D-dimensional time series) of length
Tas X = (x1,x2,...,x7)7 € RTXD, where Vt = {1,2,...,T},
x; € RP is a vector which represents the t-th measurements
(observations) of all variables and x;j is the observation of d-th
variable of x;. In this paper, we focus on time series classifica-
tion to predict a label I, € {1,...,L} for each of N multivariate
time series collected in a dataset D, where D = {(X,,)}]r:]=1 and
Xn = [xl(n),xé"), .. .,x;:) .

The extra complexity for MTSC is that differential patterns may
be dependent on the dimension interactions, not just correlation, or
the size of the data may conceal such patterns. With this in mind,
MTSC algorithms can be classified in the same manner as UTSC
algorithms; e.g. distance-based, shapelet-based, dictionary-based,
interval-based and deep neural networks. Distance based methods
are primarily focused on dynamic time warping (DTW) [11] or its
modifications. A straightforward method is 1-nearest neighbors
with DTW distance which is a popular benchmark. This can be
extended towards MTSC by adapting it over dimensions.

The interval-based methods that can be adapted for MTSC in-
clude forests of decision trees such as Time Series Forest (TSF) [10]
and Random Interval Spectral Forest (RISF) [16]. The effective dic-
tionary based methods that can be adapted for MTSC are Contract
Bag Of Symbolic Fourier Approximation Symbols (cBOSS) [19, 23]
and Word Extraction for time series classification (WEASEL) [22].
There is also a bespoke MTSC algorithm which is a combination of
WEASEL and Multivariate Unsupervised Symbols and dErivatives
(MUSE) called WEASEL+MUSE or simply MUSE [22]. Finally, a
bespoke shapelet-based method for MTSC is MrSEQL (Multiple
Representation Sequence Learner) [15] which utilizes the combina-
tion of linear models and a symbolic sequence learning algorithm.
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4 EMPIRICAL EVALUATION

We evaluate the performance of the classification on multivariate
time series data using several experimental configurations. We eval-
uate our models for different settings such as for different datasets,
PCA transformations of these datasets, different adaptations of
univariate classifiers and bespoke MTSC algorithms.

4.1 Datasets and Task Description

The UCR (University of California Riverside) archive was first re-
leased in 2002 with 16 datasets. It was gradually extended with
more datasets and the 2018 version of the UCR archive contains a
broader scope of cases, including variable length time series, but it
is still a resource for UTSC problems.

Like the univariate counterpart, the UEA archive was a result of
a partnership between the academic staff at the University of East
Anglia (UEA) and the University of California, Riverside (UCR) [3].
In comparison to UCR, it contains only multivariate time series
datasets. The 2018 version of the UEA archive has 30 datasets with
a broad scope of problems, dimensions (variables) and time series
lengths. That version contains the data which are formatted to be
of equal length, includes no missing values and provides train/test
splits.

In our study we explicitly selected datasets related to the medical
domain from the UEA archive. They are multivariate time series
datasets. The descriptions of the datasets are as follows:

Epilepsy [14] - The data were constructed with healthy partic-
ipants simulating the class activities. Data was collected from 6
participants using a 3D accelerometer on the dominant wrist whilst
conducting 4 different activities [3].

FingerMovements [7] - This dataset consists of 500 millisec-
onds intervals of EEG recordings, 130 milliseconds prior to the
moment a key is pressed by a subject. A single subject, sitting in
a normal position at keyboard was asked to type characters using
only the index and pinky fingers. [4]. There are two classes: left
and right.

HandMovementDirection [25] - The data set contains direc-
tionally modulated MEG activity that was recorded while subjects
performed wrist movements in four different directions. Brain ac-
tivity during wrist movements was recorded with MEG at 625 Hz
from two healthy, right-handed subjects.

Heartbeat [1] - This dataset is derived from the PhysioNet/CinC
Challenge 2016. Heart sound recordings were sourced from several
contributors around the world, collected in either a clinical or non-
clinical environment, from both healthy subjects and pathological
patients [3].

BasicMotions [12] - The dataset was created as part of a student
project where four students performed four activities while wear-
ing a smart watch. The watch collected 3D accelerometer and 3D
gyroscope data. The dataset contains four classes: walking, resting,
running and badminton [3].

SelfRegulationSCP1 [26] - It is obtained from the dataset Ia of
BCIII competition which consists of “Self-regulation of Slow Cortical
Potentials”. The dataset is provided by University of Tuebingen. The
data were taken from a healthy subject. The subject was asked to
move a cursor up and down on a computer screen, while his cortical
potentials were taken.
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SelfRegulationSCP2 [27] - It is obtained from the dataset Ib of
BCI II competition which consists of “Self-regulation of Slow Cortical
Potentials”. The dataset is provided by University of Tuebingen. The
data were taken from an artificially ventilated ALS patient. The
subject was asked to move a cursor up and down on a computer
screen, while his cortical potentials were taken.

EyesOpenShut [29] - The problem is to detect whether a per-
son’s eyes are open or shut based on a 1 second reading of an EEG
This is a reformulation of the data on the UCI archive!.

Characteristic properties of the datasets are given in Table 1.

Table 1: Properties of the datasets. Train refers to train set
size, Test to test set size, Dim to the number of dimensions
(variables), Len to the length of time series (number of time
steps), #class. to the number of classes (labels) and Type to
the type of the dataset (HAR - Human Acitivity Recognition,
EEG - Electroencephalogram).

Dataset Train |Test|Dim| Len |#class.| Type
Epilepsy 137 [138] 3 [207| 4 | HAR
FingerMovements 316 [100| 28 | 50 2 EEG
HandMovementDirection| 160 | 74 | 10 | 400 | 4 EEG
Heartbeat 204 [205| 61 |405| 2 |AUDIO
BasicMotions 40 | 40 | 6 | 100 4 HAR
SelfRegulationSCP1 268 [293| 6 896 | 2 EEG
SelfRegulationSCP2 200 | 180 | 7 |1152] 2 EEG
EyesOpenShut 56 | 42 | 14 | 128 | 2 EEG

We discarded 6 other medical datasets: EigenWorms, MotorIm-
agery and FaceDetection, AtrialFibrillation, StandWalkJump, ERing.
They either have big train/test size and length which makes TSC
algorithms (especially MTSC algorithms) run very slowly or have
small train/test size which are not relevant for PCA transformation.

We performed either binary or multiclass classification on these
datasets and reported the results of different metrics. The class
imbalance of the datasets are given in Table 2. Imbalances are in
the acceptable range, therefore, we did not apply any resampling
or any imbalanced learning strategy.

Table 2: Class imbalance of the datasets.

Dataset Training set imbalance
Epilepsy 24.82% - 27.01% - 26.28% - 21.9%
FingerMovements 50.32% - 49.68%
HandMovementDirection 25% - 25% - 25% - 25%
Heartbeat 27.94% - 72.06%
BasicMotions 25% - 25% - 25% - 25%
SelfRegulationSCP1 50.37% - 49.63%
SelfRegulationSCP2 50% - 50%
EyesOpenShut 58.93% - 41.07%

Ihttps://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
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4.2 Machine Learning Approaches

In our experiments, we used the column ensembling strategy from
sktime library through ColumnEnsembleClassifier class. This
strategy enables univariate classifiers to be applied to the mul-
tivariate time series data where in reality, each dimension of a
multivariate time series is a univariate time series. The main point
here is that a multivariate time series is split into several univariate
ones and a classifier is applied to each of the dimensions (variables,
columns) independently, then predictions are aggregated. We call
such univariate classifiers as dimension independent classifiers or
adapted classifiers for MTSC. Such classifiers can also be called
adaptations or transformations for short.

We tested the following univariate classifiers in our experiments
which are adapted for MTSC:

TimeSeriesForest (TSF) - Implementation of Deng’s Time Se-
ries Forest using intervals. Number of trees in the forest is 100.

ContractableBOSS (cBOSS) - dictionary based cBOSS classifier
based on Symbolic Fourier Approximation (SFA) transform [19, 23].
In SFA, a time series is approximated using the truncated Fourier
transform. This classifier improves the ensemble structure of the
original BOSS algorithm.

WEASEL (W-EL) - dictionary based classifier based on SFA
transform, BOSS and linear regression.

KNeighborsTimeSeriesClassifier (kNN) - KNN time series
classification built on sklearn [21] KNeighborsClassifier. We ex-
plicitly used 1-nearest neighbors with DTW distance which is a
well-known benchmark for TSC tasks.

RandomlntervalSpectralForest (RISF) - Implementation of
Deng’s Time Series Forest, with minor changes. It is still an interval-
based tree classifier. As compared to TSF, it uses a single interval
for each tree, and utilizes spectral features rather than summary
statistics. Selected number of trees in the forest is 100.

In our experiments we also tested two bespoke multivariate
classifiers:

MrSEQLClassifier (MrSEQL) - is a classifier which trains linear
classification models (logistic regression) with features extracted
from multiple symbolic representations of time series (SAX, SFA).
For MTSC, MrSEQL extracts features from each dimension of the
data independently.

MUSE (MUSE) - multivariate dictionary based classifier based
on SFA transform and dictionaries. It is a multivariate extension of
WEASEL.

All classifiers are run with user-provided and/or default parame-
ters and random seed of 1 for reproducibility.

5 INTERPRETATION OF RESULTS

Results are generated for different classifiers and datasets. In Table 1,
various properties of the datasets are given. In terms of properties,
datasets range from long (SelfRegulationSCP2) to short (Finger-
Movements) in length, from small (BasicMotions, EyesOpenShut)
to moderate (the rest of the datasets) on the number of samples
and by the number of classes (either binary or multiclass) and
types of the datasets. This span of the properties provides certain
configurations to test the classifiers.

The sktime is sklearn compatible, therefore, all scores are ob-
tained using average parameter with the value of “macro”, AUC
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Table 3: Performance of classifiers in Epilepsy, FingerMovements, HandMovementDirection and Heartbeat datasets.

Epilepsy FingerMovements HandMovementDirection Heartbeat
Class. | Acc. | F1 | AUC | Rec. |Acc.| F1 AUC | Rec. | Acc. F1 AUC | Rec. | Acc. F1 AUC | Rec.
TSF ]0.8985|0.8980(0.9840| 0.9 |0.52|0.5198 | 0.5548 | 0.5206 |0.3918|0.3694|0.6581|0.3821| 0.7219 | 0.5442 | 0.6330 | 0.5539
RISF  |0.95650.9569[0.9982]0.9588| 0.51 | 0.5059 | 0.5046 | 0.5120 | 0.2162 | 0.1942 | 0.4770 | 0.1952 |0.7658 | 0.5665 | 0.6847 | 0.5789
kNN {0.7028|0.6963|0.7984|0.6977 | 0.59|0.5849 | 0.5880|0.5880 | 0.2432 | 0.2447 | 0.5023 | 0.2535 | 0.6926 | 0.4511 | 0.4959 | 0.4959
c¢BOSS [0.9710(0.9718{0.9998|0.9729| 0.5 | 0.4949 | 0.4993 | 0.5022 | 0.2702 | 0.2537 | 0.5011 | 0.3023 | 0.7073 | 0.4142 | 0.4916 | 0.4898
W-EL [0.9710{0.9718|0.9948|0.9729| 0.55 | 0.5488 | 0.5554 | 0.5492 | 0.2837 | 0.2574 | 0.4834 | 0.2619 | 0.7170 | 0.5871 | 0.6896 | 0.5829
MrSEQL{0.9927{0.9921| 1.0 [0.9926(0.56 | 0.5592 | 0.5682 | 0.5610 | 0.1486 | 0.1401 | 0.4841 | 0.1428 | 0.7317 | 0.4842 [0.7910 | 0.5283
MUSE 1.0 1.0 1.0 1.0 |0.57|0.5689 | 0.5850 | 0.5712 | 0.2432 | 0.2142 | 0.5736 | 0.2511 | 0.7365 |0.5957| 0.7715 | 0.5910

Table 4: Performance of classifiers in BasicMotions, SelfRegulationSCP1, SelfRegulationSCP2 and EyesOpenShut datasets.

BasicMotions SelfRegulationSCP1 SelfRegulationSCP2 EyesOpenShut

Class. | Acc.| F1 | AUC |Rec.| Acc. F1 AUC | Rec. | Acc. F1 AUC | Rec. | Acc. F1 AUC | Rec.

TSF 1.0 | 1.0 | 1.0 | 1.0 |0.7185|0.7041 | 0.9297 | 0.7185 | 0.4944 | 0.4909 | 0.4958 | 0.4944 | 0.4523 | 0.4367 | 0.5306 | 0.4523
RISF 1.0 1.0 1.0 1.0 | 0.6666 | 0.6426 | 0.8881 | 0.6666 |0.5222|0.5221|0.5676|0.5222|0.5714|0.5178|0.5748|0.5714
kNN 0.5 [0.4538|0.6666| 0.5 |0.6814 | 0.6754 | 0.8088 | 0.6814 | 0.4888 | 0.4848 | 0.4888 | 0.4888 | 0.4523 | 0.4445 | 0.4523 | 0.4523
cBOSS | 1.0 | 1.0 | 1.0 | 1.0 |0.6444 | 0.6140 | 0.9278 | 0.6444 | 0.4722 | 0.4722 | 0.4807 | 0.4722 | 0.5 |0.3713|0.6122| 0.5
W-EL ]0.925|0.9236| 0.98 |0.925|0.7703 | 0.7624 | 0.9538 | 0.7703 | 0.5055 | 0.5048 | 0.5307 | 0.5055 | 0.4761 | 0.4296 | 0.5623 | 0.4761
MrSEQL| 0.95 [0.9494|0.9975| 0.95 | 0.8777 | 0.8716 | 0.9938 | 0.8777 | 0.5055 | 0.4973 | 0.4612 | 0.5055 | 0.5 |0.3333|0.5056 | 0.5
MUSE | 1.0 | 1.0 | 1.0 | 1.0 |0.9703|0.9705|0.9982(0.9703| 0.5166 | 0.4276 | 0.5350 | 0.5166 | 0.5 |0.4631|0.5374| 0.5

score is additionally obtained using multi_class parameter being
“ovo” (one vs. one).

We report the results obtained from the datasets in Table 3 and
Table 4.

On the Epilepsy dataset, MUSE outperforms all other classifiers.
For this dataset, MrSEQL performs closest to MUSE. The dimension
independent classifier closest to MUSE in terms of performance
is cBOSS. Overall, every classifier has high performance in this
dataset, since this dataset is fairly straightforward having only
three dimensions (variables).

In comparison to Epilepsy, bespoke MTSC algorithms do not out-
perform all dimension independent classifiers in FingerMovements
dataset. Despite of the fact that, FingerMovements dataset is the
second among the datasets in terms of dimensions (28), dimension
independent kNN (1NN) with DTW distance performs better than
any other dimension independent approaches and bespoke MTSC
algorithms. In this dataset, the closest in performance to 1NN is
MUSE.

On the HandMovementDirection dataset, the adapted TSF clas-
sifier outperforms all others and no other classifier comes closer to
it. The number of dimensions in HandMovementDirection dataset
is 10 and length of the dataset (400) is moderate and bigger than
the length of Epilepsy dataset.

However, on the Heartbeat dataset which has highest number of
dimensions (61) and the length similar to HandMovementDirection
dataset, different classifiers performed the highest on different met-
rics. It is not possible to tell which classifier is the optimal for this
dataset. On this dataset, MUSE has the highest F1 and Recall scores,
and the second highest Accuracy and AUC scores. But, there are
dimension independent classifiers (RISF, WEASEL) which perform
similarly to MUSE as well. Note that, type of this dataset is AUDIO.

In Table 4, the results for the last 4 datasets are reported. Basic-
Motions dataset has smallest train/test size. It is the second among
the datasets in terms of dimensions (6) and the length (100). There-
fore, multiple dimension independent classifiers and bespoke MTSC
algorithm MUSE have the same scores. Since the type of the dataset
is HAR, we notice a similar phenomenon as we noticed on the
Epilepsy dataset.

SelfRegulationSCP1 and SelfRegulationSCP2 are also EEG datasets
and they have highest length among the datasets we examine. In
the former dataset, MUSE significantly outperforms all other classi-
fiers. On the latter dataset, RISF outperforms all others, while MUSE
becomes the closest to RISF. SelfRegulationSCP2 is the dataset with
the highest length, therefore, the performance of RISF as a dimen-
sion independent classifier is significant here.

EyesOpenShut is the last EEG dataset with the second small-
est train/test size and the third smallest length (128). Here, RISF
significantly outperforms all other classifiers including MUSE.

The results obtained from FingerMovements, HandMovement-
Direction, SelfRegulationSCP2 and EyesOpenShut datasets demon-
strate the effectiveness of dimension independent approaches in
higher dimensional and long multivariate time series data; espe-
cially the EEG data.

6 PRINCIPAL COMPONENT ANALYSIS

To further examine the dimension independence, time series length
and their influence on the classification performance, we applied
Prinicipal Component Analysis (PCA) to the datasets. To do this, we
use sktime.transformations.panel.pca.PCATransformer class
that applies PCA on univariate time series data. It provides a sim-
ple wrapper around sklearn.decomposition.PCA class. In the
context of sktime library, there is no PCA transformer that can
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apply transformation directly on the multivariate time series data.
Therefore, we apply PCA transformation in each dimension of the
multivariate time series data independently and then combine trans-
formed data back to multivariate time series data. In general, when
PCA is applied on some dataset, the following inequality has to be
satisfied:

0 < numComponents < min(numSamples, numFeatures) (1)

where numSamples is the number of instances and numFeatures is
the number of features/attributes in a dataset. For the (univariate)
time series data, numSamples is the number of time series in the
dataset and numFeatures is the length of the time series (assuming
the fact that all time series are equal length). Since, the used datasets
have predefined train and test splits, numSamples in the train and
test splits are different. However, the length of the series is the same
for train and test splits. Since, we apply PCA for each dimension of
the multivariate time series independently, the Eq. (1) is formulated
as follows:

0 < numComponents < min(trainSize, testSize, tsLength) (2)

where trainSize is the train set size, testSize is the test set size and
tsLength is the length of a time series.

Number of principal components

Figure 1: Epilepsy dataset: optimal number of principal com-
ponents under 1% variance is 35.

Variance [%]

Number of principal components

Figure 2: FingerMovements dataset: optimal number of prin-
cipal components under 1% variance is 20.
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Figure 3: HandMovementDirection dataset: optimal number
of principal components under 1% variance is 25.

Variance [%)]

0 50 100 150 200

Number of principal components

Figure 4: Heartbeat dataset: optimal number of principal
components under 1% variance is 35.

varlance [%]

Number of principal components

Figure 5: BasicMotions dataset: optimal number of principal
components under 1% variance is 25.

PCA performs best with standardized data. We fit standardization
transformer sklearn.preprocessing.StandardScaler with mean
of 0 and variance of 1 on the train set. Then, we transform train
and test sets with the fitted transformer. This is a straightforward
way, if there are train and test splits in the dataset.

The next step is the selection of fixed number of components for
our PCA transformer which transforms each dimension of the mul-
tivariate time series into a fixed length series. Then, obtained series
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Number of principal components

Figure 6: SelfRegulationSCP1 dataset: optimal number of
principal components under 1% variance is 20.

s0 100 150

Number of principal components

Figure 7: SelfRegulationSCP2 dataset: optimal number of
principal components under 1% variance is 25.

Number of principal components

Figure 8: EyesOpenShut dataset: optimal number of princi-
pal components under 1% variance is 25.

are combined back to the multivariate time series and classification
is performed once again.

To find the fixed number of principal components, we utilize
“explained variance ratio”. The explained variance ratio returns the
variance caused by each of the principal components. The number
of principal components to keep in a feature set depends on various
conditions such as storage capacity, training time, performance and
so on. A common rule of thumb is to take number of components
that contribute to significant variance and ignore the components
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with diminishing variance values. A straightforward way for this
is to plot the variance against principal components and ignore the
principal components with diminishing values. For our datasets,
we defined this as a spot where the variance drops below 1%. The
number which determines this spot is chosen for all dimensions of
multivariate time series data. In this case, the length of time series
for every dataset becomes equal to the corresponding number. We
provide “Variance - Number of principal components” plots in Fig-
ure 1 - Figure 8. At the end, we fit a separate PCA transformer for
each dimension of the multivariate time series data in the standard-
ized train set. Then, we use fitted PCA transformers to transform
the data in the standardized train and test sets. After PCA trans-
formation, Epilepsy, FingerMovements, HandMovementDirection,
Heartbeat, BasicMotions, SelfRegulationSCP1, SelfRegulationSCP2
and EyesOpenShut datasets have a length of 35, 20, 25, 35, 25, 20,
25, 25, respectively.

The classification results on the PCA transformed data are given
in Table 5 and Table 6. These tables can be directly compared to
Table 3 and Table 4 respectively.

For the Epilepsy dataset, the length is dropped from 207 to 35. In
terms of performance, we notice a significant drop in classification
results with respect to Table 3. However, the dimension independent
INN classifier with DTW distance still has better scores.

On the FingerMovements dataset, there is no significant drop
in the length after PCA transformation. The length of the time
series in the dataset is dropped from 50 to 20. We notice that cBoss
outperforms all others and has comparable performance to the
winner classifier INN in Table 3.

For the HandMovementDirection dataset, the length of the dataset
is dropped from 400 to 25. However, a winner classifier is not
changed; it is still TSF. Its scores are also comparable to the TSF of
Table 3. The scores of the other classifiers are comparable to the
counterparts in Table 3 as well.

For the Heartbeat dataset, TSF reaches the highest values in
three metrics, shows slightly lower value only in Recall metric. The
scores of all classifiers are still comparable to Table 3 considering
the fact that the length of the dataset is dropped from 405 to 35.

Similar to the Epilepsy dataset, we observe a significant drop in
the classification performance for BasicMotions dataset in Table 6.
Note that, the length of the BasicMotions dataset is dropped from
100 to 25.

Since, SelfRegulationSCP1 and SelfRegulationsSCP2 were the
longest datasets, their lengths are substantially dropped from 896
to 20 and 1152 to 25, respectively. For the former dataset, there is
also remarkable drop in the classification performance. However,
for the latter dataset, we even observe overall performance increase
in all classifiers and specifically for WEASEL in Accuracy, F1 and
Recall metrics which is notable with respect to Table 4.

Another dataset where we see a performance increase is Eye-
sOpenShut dataset where the length is dropped from 128 to 25
after PCA transformation. On this dataset, WEASEL outperforms
all other classifiers and the winner classifier from Table 4.

Overall, we observed significant performance drops in three
datasets (Epilepsy, BasicMotions, SelfRegulationSCP1), comparable
or almost comparable performance in three datasets (FingerMove-
ments, HandMovementDirection, Hearbeat) and performance in-
crease in two datasets (SelfRegulationsSCP2, EyesOpenShut) with
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Table 5: Performance of classifiers in Epilepsy, FingerMovements, HandMovementDirection and Heartbeat datasets after ap-

plying PCA.
Epilepsy FingerMovements HandMovementDirection Heartbeat
Class. | Acc. F1 AUC | Rec. |Acc.| F1 AUC | Rec. | Acc. F1 AUC | Rec. | Acc. F1 AUC | Rec.
TSF 0.5652 | 0.5314 | 0.8098 | 0.5587 | 0.56 | 0.5598 | 0.5350 | 0.5606 |0.3783(0.3675|0.5895(0.3821|0.7219|0.4192|0.5701| 0.5
RISF | 0.6231|0.5765 |0.8437 | 0.6078 | 0.49 | 0.4812 | 0.4989 | 0.4927 | 0.1756 | 0.1728 | 0.5116 | 0.1880 | 0.7219 | 0.4192 | 0.4831 | 0.5
kNN ]0.6956|0.6897 | 0.7956 |0.6935| 0.57 | 0.5696 | 0.5708 | 0.5708 | 0.2972 | 0.2850 | 0.5253 | 0.2880 | 0.6146 | 0.5004 | 0.5011 | 0.5011
cBOSS |0.4275 | 0.4134 | 0.7010 | 0.4160 |0.580.5738|0.5750|0.5778| 0.2027 | 0.1811 | 0.4505 | 0.2178 | 0.7219 | 0.4192 | 0.4139 | 0.5
W-EL |0.4275 | 0.4246 | 0.6934 | 0.4227 | 0.45 | 0.4486 | 0.4725 | 0.4511 | 0.2702 | 0.2697 | 0.5669 | 0.2857 | 0.7024 | 0.4804 | 0.5529 |0.5134
MrSEQL| 0.5724 | 0.5669 | 0.7641 | 0.5662 | 0.46 | 0.4591 | 0.4853 | 0.4609 | 0.2567 | 0.2655 | 0.5260 | 0.3059 | 0.7219 | 0.4192 | 0.4632 | 0.5
MUSE | 0.5072 | 0.4743 | 0.7284 | 0.4915 | 0.43 | 0.4294 | 0.4385 | 0.4307 | 0.3378 | 0.3415 | 0.5855 | 0.3642 | 0.7219 | 0.4192 | 0.5124 | 0.5

Table 6: Performance of classifiers in BasicMotions, SelfRegulationSCP1, SelfRegulationSCP2 and EyesOpenShut datasets after

applying PCA.
BasicMotions SelfRegulationSCP1 SelfRegulationSCP2 EyesOpenShut
Class. | Acc.| F1 | AUC | Rec. | Acc. F1 | AUC | Rec. | Acc. F1 AUC | Rec. | Acc. F1 AUC | Rec.
TSF |0.375|0.3188 |0.6704| 0.375 | 0.5563 | 0.5498 | 0.6028 | 0.5567 {0.5333 | 0.5333 | 0.5465 |0.5333| 0.4285 | 0.3571 | 0.4410 | 0.4285
RISF | 0.45 | 0.4159 |0.7354|0.4499| 0.4334 | 0.4278 | 0.4313| 0.4337 | 0.55 | 0.5498 [ 0.5174 | 0.55 | 0.4523 | 0.3943 | 0.4297 | 0.4523
kNN | 0.7 |0.6992| 0.8 0.7 |0.6587[0.6575|0.6589(0.6589|0.5388| 0.5377 | 0.5388 |0.5388 | 0.5238 | 0.5238 | 0.5238 | 0.5238
c¢BOSS |0.275| 0.2347 | 0.52 | 0.275 | 0.4539 | 0.3867 | 0.4716 | 0.4550 |0.4888 | 0.4623 |0.5467 | 0.4888| 0.4285 | 0.3571 | 0.3786 | 0.4285
W-EL | 0.4 |0.3727 |0.6383| 0.4 |0.4709 | 0.4707 |0.4441|0.4709 | 0.55 [0.5499| 0.5390 | 0.55 [0.6190|0.5961|0.5804|0.6190
MrSEQL|0.625| 0.6166 |0.7766|0.6249 | 0.5494 | 0.5365 |0.5872| 0.55 0.5 |0.4977 10.5214| 0.5 |0.5238 | 0.4166 | 0.4671 | 0.5238
MUSE [0.375] 0.3794 |0.6183| 0.375 | 0.6552 | 0.6422 | 0.8 |0.6559 |0.4944| 0.4943 | 0.4707 |0.4944| 0.4285| 0.3 0.297 | 0.4285

respect to Table 3 and Table 4. Another observation is that only
dimension independent classifiers performed better on PCA trans-
formed datasets.

7 DISCUSSION

Our results for original datasets in Table 3 and Table 4 show that
even if MUSE performs better on HAR datasets (Epilepsy, BasicMo-
tions), dimension independent approaches are better on EEG based
datasets (FingerMovements, HandMovementDirection, SelfRegula-
tionSCP2, EyesOpenShut) despite of the fact they are straightfor-
ward adaptations of univariate classifiers for MTSC. One exception
here is the AUDIO type Heartbeat dataset and the HAR type Basic-
Motions dataset where there is no clear winner among classifiers we
examined. Another exception is the EEG type SelfRegulationSCP1
dataset, where MUSE was the clear winner.

For PCA transformed datasets in Table 5 and Table 6, only di-
mension independent approaches were winners. With respect to
Table 3 and Table 4, we observed drops in classification perfor-
mance for 3 datasets (Epilepsy, BasicMotions, SelfRegulationSCP1),
comparable results for the other three (FingerMovements, Hand-
MovementDirection, Hearbeat) and performance increase in two
datasets (SelfRegulationSCP2, EyesOpenShut). There can be two
reasons: i) our method to select the number of principal components
(using plots) might be too straightforward,; ii) since, a separate PCA
transformer picks the principal components for each dimension
independently, it might be possible that every transformer picks
different principal components (by explained variance ratio) in each
dimension discarding the correlation between the dimensions of
the multivariate time series.

The paper [22] also proposed ensemble of univariate classifiers
for UTSC called HIVE-COTE. Our findings show that HIVE-COTE
is not combinable with ColumnEnsembleClassifier to apply it for
MTSC. Therefore, we discarded HIVE-COTE in our experiments.

8 CONCLUSION

In this paper, we examined different adapted univariate classifiers
for MTSC and compared them to bespoke MTSC algorithms on 8
medical datasets from the UEA archive.

For the original datasets, the dimension independent techniques
outperformed MTSC algorithms on four of the examined datasets,
the state-of-the-art bespoke MTSC algorithm (MUSE) performed
better on two datasets, where on the remaining two datasets, there
was no clear winner. For the PCA transformed datasets, only di-
mension independent techniques were winners.

As our future work, it will be interesting to determine in more
detail how different dimensions (variables) are correlated (e.g. by
fine-tuning the Principal Component Analysis) and whether this
correlation has an effect on the classification performance of di-
mension independent techniques.

A further important aspect of future work will be making trained
models interpretable or explainable. In this manner, it will be possi-
ble to detect which variables (dimensions), time intervals or slices
in a series are important for a classifier, or which time slices con-
tribute to one class or the other. For example, SHapley Additive
exPlanations (SHAP) [18] can be one of the methods for explain-
ability.
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8.1 Code Availability

For the sake of reproducing the results obtained in this work, our
source code is published in ipynb files in a public repository?>.
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