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Short CV Dr. Lena Wiese

Teaching and Research: ADVANCED DATA
FOMlbe Eﬂﬁgtgky DIE-NUTID DATABASES
« NoSQL Databases SR

(in particular Graph Databases)

* Intelligent Data Management

(in particular, analytics of biomedical data
for example, patient similarity analysis,
disease prediction, etc.)

* Intelligent Information Systems
(ontologies, recommender systems, etc.)
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Graphs, graphs, graphs

There are lots of graphs in the real world:

 The Internet: a graph of web pages

* Social network: a graph of people

« Geographic Information System: a graph of
locations

« (Gene-Regulatory Network: a graph of genomic

 _

components

‘/ \O
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Graphs in Mathematics

Mathematical definition of a graph: G=(V,E)

V is a set of nodes
(also called ,vertices®)

E is a set of edges
(,links“/“relationships™)

EF=
Special case:

Self-loop p
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Direction of edges

An edge can be

eundirected: e={v,V,}
e can be traversed in both directions

Target node /

*directed: e=(v,V,) End node
e can be traversed in one direction @

o

Source node/
Start node

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Traversal and path

Traversal:
Go from one node to another by following an edge

Path:
A concatenation of nodes and edges that can be
traversed in the graph

Path p

_A
' ™~
7C Y] GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Exhaustive Graph Traversals

BFS: From the start node visit @ DFS: From the start node

all direct neighbors first before g choose one neighbor then
visiting a neighbor's neighbor visit the neighbor’s neighbor

Picture source: [1, page 18]

/1N /
o 6o g6

Breadth-first search Depth-first search
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Direction in graphs
Undirected Directed

J} A

.‘//.

Picture source:
[1, page 19]

Example: Example:
Mutual friendship relation One-way streets
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Cycles in graphs
Cyclic Acyclic

AR

Cycle: A path containing the same node as start and end node

Picture source:
[1, page 19]

Triangle: A cycle with three nodes
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Weights in graphs
Weighted Unweighted

2 8

Picture source:
[1, page 19]

Example ,shortest path®: Example ,shortest path®:

Find a path between two
nodes with minimum cost

Find a path with minimum
number of edges

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Edge count in graphs

Sparse Dense
Picture source:

; ; i i [1, page 19]

Only few edges exist Many edges exist

Complete graph:
All edges exist

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN



Quiz

What Is the edge count in a
complete undirected graph without self-loops?

Picture source:
[1, page 19]
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Answer

What Is the edge count in a
complete undirected graph without self-loops?

(|V|) 3 4 _ vidvl—1)
2

21 (v = 2)! 2

Example: |V|=6
()= =g =1s

2 2141 2
Picture source:
[1, page 19]
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Property Graph Model

Nodes have labels (e.g. Employee)
Edges have types (e.g. :HAS CEO)
Information is stored in name:value pairs (,,properties®)

% &
% % ?'\'b e
Q’) %, ¢ e \00
9, %, ’a‘ e,é
G\’s\
LOCATED IN

HAS CEO
start_date: 2008-01-20

N J
Y

Relationships can have
properties (name/value N ,
Nodes can have { name: Amy Peters pairs) v

properties date_of_birth: 1984-03-01

(name/value pairs) | employee_ID: 1 Nodes represent

objects (nouns)
Picture source: https://neo4j.com/developer/graph-database/
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Neo4J Graph Database

* Open source graph database written in Java

* Query language called Cypher
 Interface called Neo4J Browser

MATCH p=()-—>() RETURN p LIMIT 25

Database Information

Node Labels
$ MATCH p=()-->() RETURN p LIMIT 25

&
Relationship Types Sesen

=

Table

Text

C GEORG-AUGUST-UNIVERSITAT
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 Visualization of
guery results

« Support for
graph algorithms
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Create Nodes with Cypher
/ Add to favorites

CREATE (nodel:Human{name: 'Alice'}) ﬁ <§_> [>

N

Create a new node called nodel Run query
with label Human
and a name-property set to Alice Delete query text
Task 1.

Create a new node called node?2
with label Human
and a name-property set to Bob

Task 2:
Find all nodes matching the label Human
and return them

MATCH (n:Human) RETURN n

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Create Edges with Cypher

MATCH (nodel:Human{name: 'Alice'}) MATCH (node2:Human{name: 'Bob'})
CREATE (nodel)-[:LOVES{until: 'forever'}]->(node2)

Find two nodes matching the label Human
and create a new edge with type :LOVES
and an until-property set to forever

Task 3:

Create a new edge pointing from Bob to Alice

Task 4:

Find all paths p with edges of MATCH p=()-[r:LOVESI->() RETURN p

type :LOVES and return them

| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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MERGE

Avoid duplicates:
If node / edge does not exist: CREATE it as new

If node / edge exists: MATCH and return the node / edge

MERGE (nodel:Human{name:'Alice'})

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN



Deletion with Cypher

Delete edge between two nodes with certain properties

MATCH (n1:Human)-[e:LOVES]->(n2:Human) WHERE n1.name='Alice' AND n2.name='Bob'
DELETE e

Or delete edge by ID

MATCH ()-[e:LOVESI->() WHERE id(e)=14 DELETE e

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Graph schema with Cypher

Show schema information (all types and labels)

CALL db.schema
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Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]
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Centrality: PageRank
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Centrality: PageRank

Google‘s PageRank score represents the

Importance of web pages in the Internet

« Rank of a page depends on the in-links to a page

« PageRank is transitive
« PageRank of a node is influenced by the

neighbors’ PageRank

* In each iteration a node distributes its rank to its
neighbors along its out-links

Reference: Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Centrality: PageRank

Step 1: Sum up the ranks of your in-links

— .
. Rank(D)=

./ \. Rank(A)+Rank(B)+Rank(C)

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Centrality: PageRank

Step 2: Distribute your rank among your out-links
(divide by amount of out-links)

\\ /. Rank(E)=%: Rank(D)
Rank(F)=% Rank(D)
/ \

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Centrality: PageRank

Random surfer model:
« A web surfer randomly follows out-links of pages

« Uniform probability distribution: if a page has m out-
links, each link is followed with probability 1/m

* The higher the PageRank, the higher the likelihood
that a random surfer will be at this page at an
arbitrary point of time

Note: A few in-links from very important pages raise your

PageRank more than many in-links from unimportant pages.

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN
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Centrality: PageRank

Example: start with equal PageRank for all pages,
then iterate for a certain number of rounds

Step 1 Step 2
Node Value = 1/n (n = Total # of Nodes) Link Value = Node Value / # of Its Out-Links

0.17 0.17
0.33

€
0.33

Picture source:
[1, page 35]
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Picture source:

Centrality: PageRank 11, page 35]

Step 1 Step 2
Node Value = 1/n (n = Total # of Nodes) Link Value = Node Value / # of Its Out-Links

Pass 0 0.17 0.17
0.33
€ €
@ 0.33 Q

Node Value = Sum of Prior In-Link Values Link Value = Node Value / # of Its Out-Links
0.50

Pass 1
¥ o ——&)

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Centrality: PageRank
Problem Cases:
 Dead end: a node that has no out-linko /VO

- Rank sink: a group of nodes that have in-links from other
nodes but out-links just among themselves (e.g. loops)

~ /f
e

 Disconnected subgraphs: subgraphs
without links between each other

These problem cases disturb the distribution of PageRank
Solution:

e add a constant rank source to each page
 corresponds to random jumps (instead of following links)

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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rank source for

Centrality: PageRank each page (for

random jumps)

The final formula:

Rank '
RANK(W)= d * T putr gyt + (1~ @)

VA \

Damping factor n-link to o 01j[v 15“\”??'0I IE)y
amount of out-links

(reduces the likelihood of (for random surfer)

following a link by

random surfer)

Possibly: Normalization of ranks so that all ranks sum up to 1

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Graph Algorithms in Cypher

* Two options:
1. Streaming of result CALL algo.pageRank.stream

CALL algo.<name>.stream
* Immediately outputs the result

2. Writing result into a property  CALL algo.pageRank
CALL algo.<name>
» Properties can be queried in a second query

write: true,writeProperty:"pagerank™

« Clause YIELD defines which statistics to print out
YIELD nodeld, score

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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PageRank in Cypher

Task 5: Create sample graph of 8 web pages (see
https://neo4j.com/docs/graph-algorithms/current/ =+ PageRank)

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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https://neo4j.com/docs/graph-algorithms/current/

PageRank in Cypher

-r€i£;L( ES' CALL algo.pageRank.stream("Page", "LINKS",

Run PageRank with {iterations:20})
. . YIELD nodeld, score
20 Iterations
Increase the amount of iterations and observe the effect on

the PageRank Q
Which page is the most important one? O %Q

K-

oy
ﬁ“ =

if.-lnr&

Optional: Write the PageRank R SEARS
into a node property called pagerank Q Q’“”’ Q
and display the page rank for each node Q

CALL algo.pageRank('Page', 'LINKS',
{iterations:20, dampingFactor:0.85, write: true,writeProperty:"pagerank”})

GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Centrality: Degree
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Centrality: Degree

Degree centrality is the amount of

In-links and out-links of each node

Task 7:
* Create sample graph of 6 users with a :FOLLOW relationship
(see https://neod4j.com/docs/graph-algorithms/current/

=) The Strongly Connected Components algorithm)

ﬁ}uﬂ..

.'. '\-\,H_
o FOLUN =
Charles %
%% i :
Bridget

Neo4J Tutorial @ BTW 2019

w@

r-‘mu::w
CLL Oy —

E

/eResearch Alliance

GEORG-AUGUST-UNIVERSITAT
\, GOTTINGEN
( 2317


https://neo4j.com/docs/graph-algorithms/current/

Centrality: Degree

Degree centrality is the amount of

In-links and out-links of each node

Task 8:
MATCH (u:User)
 For each user return the SETURN w.id A% name.
amount of out-links and the size((u)-[:FOLLOWI->()) AS follows,

amount Of in |inks size((u)<-[:FOLLOWI-()) AS followers

« Which user has the highest degree centrality?

« Optional: Return the total amount of links of each node

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Centrality: Betweenness
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Centrality: Betweenness

Betweenness centrality is the fraction
of shortest paths going through a node

The amount of
shortest paths
between s and t
going through v

The total amount
of shortest paths
between s and t

Betweenness centrality
for node v

Sum over all node pairs s,t (different from v)
Nodes with high betweenness centrality ensure crucial
connections in the graph: ,Bridge” between different subgraphs

| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Centrality: Betweenness

Let v = Alice
O (’U) — O—St(v) Shortest paths via Alice:
B o O st 1. Michael-Charles
sAEVALEV S 2. Mark-Charles

3. Doug-Charles
4. Bridget-Charles

For all these paths:
Only one shortest path (and only through Alice)

o, (Alice) =1and o, =1
Hence CB(Alice):4

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Centrality: Betweenness

Task 9:
* For each user return the betweenness centrality along the
'FOLLOW relationship

CALL algo.betweenness.stream( 'User', 'FOLLOW',{direction: 'out'})
YIELD nodeld, centrality

MATCH (user:User) WHERE id{user) = nodeld

RETURN user.id AS user,centrality

ORDER BY centrality DESC;

« Optional: remove the edges between Michael and Bridget
and observe the effect on the betweenness centrality

gC ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]
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Pathfinding:
Minimum Weight Spanning Tree

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN



Pathfinding:
Minimum Weight Spanning Tree

 Minimum Spanning Tree:

« If a graph has |V| nodes, then a spanning
tree has |V|-1 edges O O

e The tree has a root node (with no incoming O
edges) O

* From the root node we can reach all other
nodes in the graph with minimal total cost
by using the edges of the spanning tree

Use case:
Distribute information from the root node to all other nodes for

example in communication networks or social networks
@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Pathfinding:
Minimum Weight Spanning Tree

00
* Prim'‘s algorithm s 4

« Maintain a list of unvisited nodes o ) 0

 Start with the root node .

 From the unvisited nodes select the one
that can be connected to the tree nodes
with minimal cost

* Repeat until all nodes are visited

For undirected graphs:
We ignore direction of edges (traversal in both directions)

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Pathfinding:
Minimum Weight Spanning Tree
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Pathfinding:
Minimum Weight Spanning Tree

4'.'|

‘k

« Optional: Display the cost of each road on the edge

Task 10:

» Create sample graph of 6 locations with a :ROAD
relationship (see https://neo4|.com/docs/graph-
algorithms/current/ =» The Shortest Path algorithm)

/| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019
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https://neo4j.com/docs/graph-algorithms/current/

Pathfinding:
Minimum Weight Spanning Tree

Task 11:
* Choose location D as the root node and compute a minimum
spanning tree by creating new edges of type :MINST

MATCH (n:Loc {name:"D"})

CALL algo.spanningTree.minimum('Loc', 'ROAD', 'cost', id(n),
{write:true, writeProperty:"MINST"})

YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount

RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount

« Optional: use another
location as the root node

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
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Pathfinding: Shortest Path
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Pathfinding: Shortest Path

e Shortest Path with minimum cost:
* Provide a start and an end node
* Find the minimum-cost path between
these two nodes
* In unweighted graph: edge cost 1

I i °
% & =

« Example:
« Start node A and end node F
* One minimum-cost shortest path:
A-C-D-E-F

50 + 40 + 30 + 40 = 160 Use case:

Travel route planning

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Pathfinding: Shortest Path

* Dijkstra‘s algorithm:

 Maintain a list of unvisited nodes O . O
* For each node maintain its distance to .
the start node (initially: «) 1/ O
» Start with the start node and set its O
distance to O
* For all unvisited neighbor nodes: set
their distance to be the edge cost to the
start node
 Remove the start node from the list of
unvisited nodes

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Pathfinding: Shortest Path

- Dijkstra‘s algorithm (continued): Q ) O
» Select one unvisited node with currently W) e
smallest distance - Q
« Make it the current node b
» For all unvisited neighbors of the Q Q

current node:
« Sum up the edge cost to the neighbor and the
distance of the current node
 If smaller than current distance of the
neighbor: update distance (shorter path found)
« Remove current node from list of unvisited nodes
* Repeat until end node is visited

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
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Pathfinding: Shortest Path

e 09 09
‘?:,f:-» “’“‘kg,» ‘?< ) »

09" @@ Qﬁ“ﬂ
> “?: ) “?: ) %g

& &
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Pathfinding: Shortest Path

Task 12:
 Choose location A as the start node and location F as the
start node and compute the shortest path

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.shortestPath.stream(start, end, 'cost')
YIELD nodeld, cost

RETURN algo.getNodeById(nodeId).name AS name, cost

« Optional: use other locations as start and end nodes
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Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection
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Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]
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Community Detection

Community: Densely connected subgraph

« More communication between the nodes of a
community than to other nodes of the graph

- Communities may be overlapping Spanish Class

Soccer Club
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Community Detection:
Strongly Connected Components
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Community Detection:
Strongly Connected Components

« Strongly Connected Components:
* Apply to directed graphs
« Two nodes A, B are in the same strongly
connected component if there is a path from
A to B and a path from B to A
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Community Detection:
Strongly Connected Components

« Example:
« Charles has no out-links and is a component on
his own
 Michael, Alice and Bridget can all reach each
other

- Mark and Doug can reach each other

. FULLEH.‘
- ?&Dﬂ
Charles FoLE
%%?ﬁp :
Bridget
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Community Detection:
Strongly Connected Components

. CALL algo.scc.stream("User","FOLLOW")
Task 13:
YIELD nodeld, partition
« For User nodes and the MATCH (u:User) WHERE id(u) = nodeId
. . " RETURN u.id AS name, partition
'FOLLOW relationship

compute the strongly
connected components

oo

o
i ';,Ei!"'}

.Pc.ucrﬂ e...ﬁ
e~ O
v %3%.

* Optional: add a :FOLLOW edge from Charles to Alice
and observe the effect
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Community Detection:
Weakly Connected Components
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Community Detection:
Weakly Connected Components

 Weakly Connected Components:
* We Interpret the graph as undirected
« Two nodes A, B are in the same weakly
connected component if there is a path from
A to B or a path from B to A

=0 &Q - - @®
'®
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Community Detection:
Weakly Connected Components

« Example
 New :FRIEND relationship
* Charles, Alice and Bridget are weakly
connected
* Michael, Mark and Doug are weakly
connected
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Community Detection:

Weakly Connected Components

Task 14:

* Add the :FRIEND relationship to the graph
(see https://neo4dj.com/docs/graph-algorithms/current/

=»> The Connected Components algorithm)

MERGE
RN MERGE
2 % 5 MERGE
o %%
“ MERGE
MERGE
Mark
@ ot MERGE
o
- ;ﬁ- ﬁ_,.\,,}5:-‘;ﬂl
%@%% \,4.-- MERGE
B T S o, MERGE
% W 3 3 MERGE
k%o 2
5
e,
G‘:I”
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(nAlice:User {id:'Alice'})
(nBridget:User {id: 'Bridget'})
(nCharles:User {id: 'Charles'})
(nDoug:User {id: 'Doug'})
(nMark:User {id: 'Mark'})
(nMichael:User {id: 'Michzael'})

(nAlice)-[:FRIEND]->(nBridget)
(nAlice)-[:FRIEND]->(nCharles)
(nMark)-[:FRIEND]->(nDoug)

(nMark)-[:FRIEND]1->(nMichael);
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https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Weakly Connected Components

Task 15:
* Find the weakly connected components according to
the :FRIEND relationship

CALL algo.unionFind.stream('User', 'FRIEND', {3})
YIELD nodeld,setId
RETURN algo.getNodeById(nodeId).id AS user, setld

« Optional: add a :FRIEND edge from Michael to Alice and
observe the effect
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Community Detection:
Triangle Counting
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Community Detection:
Triangle Counting

* Triplet: 3 connected nodes

 _

* Open triplet

L

o  _

« Closed triplet = triangle 0 |
L

* The older a community, the more triangles are present:

« If A and B are friends and B and C are friends
 high probability that A and C become friends, too
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Community Detection:
Triangle Counting

 Example:
* Michael participates in 3 triangles
« Alice participates in no triangle

-0
- S
fn Michael ~ g
\ ©
e
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Community Detection:
Triangle Counting

Task 16:

* Create a new graph with 6 persons and a :KNOWS
relationship

(see https://neo4j.com/docs/graph-algorithms/current/
=» The Triangle Counting / Clustering Coefficient

algorithm) e
~©

- .
~©®

%

7C_Y/| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN



https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Triangle Counting

Task 17:
« Return all triangles in the graph

CALL algo.triangle.stream('Person’, "KNOWS")
YIELD nodeA,nodeB, nodeC

RETURN algo.getNodeById(nodeA).id AS nodeA, algo.getNodeById(nodeB).id AS nodeB,

alpo.getNodeById(nodeC).1id AS nodeC
0-0
“ﬁﬁ kS o
I

‘lII"““”“ﬁm”“
A M Michee B -
':f-% | m% .- -e

4

e

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN




Community Detection:
Triangle Counting

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Local clustering coefficient:
* For a node v, count the edges among its neighbors

« Divide by the amount of edges in a complete graph
among its neigbors

« Example: a person in a social network who is good at
connecting his/her friends has a high coefficient

/eResearch Alliance
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Community Detection:
Triangle Counting

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Local clustering coefficient for undirected graph:

* Recall our quiz from the beginning (edge count in
complete undirected graph)

« If a node v has k neighbors, the complete graph
among the neighbors has c=(k - (k=1))/2 edges

« Let the actual edge count among the neighbors be r

» LCC(v) = /¢
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Community Detection:
Triangle Counting

(a) No pairs formed among (b) One pair formed among (c) Three pairs formed among
neighbors: C =0 neighbors: C=1/3 neighbors: C=3/3

Picture source: Luis Casillas Santillan/Alonso Castillo Pérez
http://www.revistascientificas.udg.mx/index.php/REC/article/viewFile/5091/4754/16111
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Community Detection:

Triangle Counting

Task 18:
« Compute the amount of triangles and the local clustering
coefficient for each node

©-
o ©

GhaT

o

CALL algo.triangleCount.stream( 'Person’, "KNOWS')

YIELD nodeId, triangles, coefficient

RETURN algo.getNodeById(nodeld).id AS name, triangles, coefficient
ORDER BY coefficient DESC

« Which person has the best-connected friends in the graph?
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Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection
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Extra exercises

,In this guide we’ll learn how to use the Neo4j Graph Algorithms
package using a Game of Thrones dataset.”

:play https://guides.neo4j.com/sandbox/graph-algorithms/
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