
Data Analytics with Graph
Algorithms

–
A Hands-on Tutorial with Neo4J

March 4th 2019

Lecturer: Dr. Lena Wiese

Dr. Lena Wiese

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Short CV Dr. Lena Wiese

Neo4J Tutorial @ BTW 2019

• University of Göttingen

(Group Leader Knowledge Engineering)

• University of Salzburg

(Guest Lecturer)

• University of Hildesheim

(Visiting Professor for Databases)

• National Institute of Informatics, Tokyo

(funded by DAAD)

• Robert Bosch India Ltd., Bangalore, India

• TU Dortmund (Master/PhD)

• Universidad Complutense, Madrid

• Web: http://wiese.free.fr/

http://wiese.free.fr/

Short CV Dr. Lena Wiese

Neo4J Tutorial @ BTW 2019

Short CV Dr. Lena Wiese

Neo4J Tutorial @ BTW 2019

Teaching and Research:

• NoSQL Databases

(in particular Graph Databases)

• Intelligent Data Management

(in particular, analytics of biomedical data

for example, patient similarity analysis,

disease prediction, etc.)

• Intelligent Information Systems

(ontologies, recommender systems, etc.)

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Graphs, graphs, graphs

Neo4J Tutorial @ BTW 2019

There are lots of graphs in the real world:

• The Internet: a graph of web pages

• Social network: a graph of people

• Geographic Information System: a graph of

locations

• Gene-Regulatory Network: a graph of genomic

components

Graphs in Mathematics

Mathematical definition of a graph: G=(V,E)

V is a set of nodes

(also called „vertices“)

V=

E is a set of edges

(„links“/“relationships“)

E=

Special case:
Self-loop

Neo4J Tutorial @ BTW 2019

Direction of edges

An edge can be

•undirected: e={v1,v2}
• can be traversed in both directions

•directed: e=(v1,v2)
• can be traversed in one direction

Neo4J Tutorial @ BTW 2019

v2

v1

v2

v1
Source node /

Start node

Target node /

End node

Traversal and path

Neo4J Tutorial @ BTW 2019

v2v1
Start node of p

End node of p

Traversal:

Go from one node to another by following an edge

Path:

A concatenation of nodes and edges that can be

traversed in the graph

v3
v4

Path p

Exhaustive Graph Traversals

Neo4J Tutorial @ BTW 2019

Picture source: [1, page 18]

BFS: From the start node visit

all direct neighbors first before

visiting a neighbor‘s neighbor

DFS: From the start node

choose one neighbor then

visit the neighbor‘s neighbor

Direction in graphs

Neo4J Tutorial @ BTW 2019

Example:

Mutual friendship relation

Example:

One-way streets

Picture source:

[1, page 19]

Cycles in graphs

Neo4J Tutorial @ BTW 2019

Cycle: A path containing the same node as start and end node

Triangle: A cycle with three nodes

Picture source:

[1, page 19]

Weights in graphs

Neo4J Tutorial @ BTW 2019

Example „shortest path“:

Find a path between two

nodes with minimum cost

Example „shortest path“:

Find a path with minimum

number of edges

Picture source:

[1, page 19]

Edge count in graphs

Neo4J Tutorial @ BTW 2019

Only few edges exist

Complete graph:

All edges exist

Picture source:

[1, page 19]

Many edges exist

Quiz

Neo4J Tutorial @ BTW 2019

Picture source:

[1, page 19]

What is the edge count in a

complete undirected graph without self-loops?

Answer

Neo4J Tutorial @ BTW 2019

Picture source:

[1, page 19]

What is the edge count in a

complete undirected graph without self-loops?

|𝑽|
2

=
|𝑽|!

2! 𝑽 − 2 !
=

|𝑽| 𝑽 − 1

2

Example: |𝑽|=6
6
2

=
6!

2!4!
=

6·5

2
= 15

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Property Graph Model

Neo4J Tutorial @ BTW 2019

Picture source: https://neo4j.com/developer/graph-database/

Nodes have labels (e.g. Employee)

Edges have types (e.g. :HAS_CEO)

Information is stored in name:value pairs („properties“)

Neo4J Graph Database

Neo4J Tutorial @ BTW 2019

• Open source graph database written in Java

• Query language called Cypher

• Interface called Neo4J Browser

• Visualization of

query results

• Support for

graph algorithms

Create Nodes with Cypher

Neo4J Tutorial @ BTW 2019

Create a new node called node1

with label Human

and a name-property set to Alice

Add to favorites

Delete query text

Run query

Task 1:

Create a new node called node2

with label Human

and a name-property set to Bob

Task 2:

Find all nodes matching the label Human

and return them

Create Edges with Cypher

Neo4J Tutorial @ BTW 2019

Find two nodes matching the label Human

and create a new edge with type :LOVES

and an until-property set to forever

Task 3:

Create a new edge pointing from Bob to Alice

Task 4:

Find all paths p with edges of

type :LOVES and return them

MERGE

Neo4J Tutorial @ BTW 2019

Avoid duplicates:

If node / edge does not exist: CREATE it as new

If node / edge exists: MATCH and return the node / edge

Deletion with Cypher

Neo4J Tutorial @ BTW 2019

Or delete edge by ID

Delete edge between two nodes with certain properties

Graph schema with Cypher

Neo4J Tutorial @ BTW 2019

Show schema information (all types and labels)

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Graph Algorithms

Neo4J Tutorial @ BTW 2019

Pathfinding: Find one or more optimal paths in a graph

Picture source: [1, page 15]

Centrality: Find one or more nodes with an optimal score

Community

Detection:

Find densely

connected

subgraphs

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

• Rank of a page depends on the in-links to a page

• PageRank is transitive

• PageRank of a node is influenced by the

neighbors’ PageRank

• In each iteration a node distributes its rank to its

neighbors along its out-links

Reference: Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking:

Bringing order to the web. Stanford InfoLab

Google‘s PageRank score represents the

importance of web pages in the Internet

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

B
A

D

C

Step 1: Sum up the ranks of your in-links

Rank(D)=

Rank(A)+Rank(B)+Rank(C)

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

B
A

D

C

Step 2: Distribute your rank among your out-links

(divide by amount of out-links)

E

F

Rank(F)=½ Rank(D)

Rank(E)=½ Rank(D)

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

Note: A few in-links from very important pages raise your

PageRank more than many in-links from unimportant pages.

Random surfer model:

• A web surfer randomly follows out-links of pages

• Uniform probability distribution: if a page has m out-

links, each link is followed with probability ൗ1 m

• The higher the PageRank, the higher the likelihood

that a random surfer will be at this page at an

arbitrary point of time

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

Example: start with equal PageRank for all pages,

then iterate for a certain number of rounds

Picture source:

[1, page 35]

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

Picture source:

[1, page 35]

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

Problem Cases:

• Dead end: a node that has no out-link

• Rank sink: a group of nodes that have in-links from other

nodes but out-links just among themselves (e.g. loops)

• Disconnected subgraphs: subgraphs

without links between each other

These problem cases disturb the distribution of PageRank

Solution:

• add a constant rank source to each page

• corresponds to random jumps (instead of following links)

B

A C

B

A D

C

Centrality: PageRank

Neo4J Tutorial @ BTW 2019

The final formula:

Rank(𝒖)= 𝒅 ∙ σ𝒗𝝐 𝑰𝒏 𝒖
Rank(𝒗)
𝑶𝒖𝒕 𝒗

+ (𝟏 − 𝒅)

Damping factor

(reduces the likelihood of

following a link by

random surfer)

v has an

in-link to u Rank of v divided by

amount of out-links

(for random surfer)

rank source for

each page (for

random jumps)

Possibly: Normalization of ranks so that all ranks sum up to 1

Graph Algorithms in Cypher

Neo4J Tutorial @ BTW 2019

• Two options:

1. Streaming of result

CALL algo.<name>.stream

• Immediately outputs the result

2. Writing result into a property

CALL algo.<name>

• Properties can be queried in a second query

• Clause YIELD defines which statistics to print out

PageRank in Cypher

Neo4J Tutorial @ BTW 2019

Task 5: Create sample graph of 8 web pages (see

https://neo4j.com/docs/graph-algorithms/current/ PageRank)

https://neo4j.com/docs/graph-algorithms/current/

PageRank in Cypher

Neo4J Tutorial @ BTW 2019

Task 6:

• Run PageRank with

20 iterations

• Increase the amount of iterations and observe the effect on

the PageRank

• Which page is the most important one?

• Optional: Write the PageRank

into a node property called pagerank

and display the page rank for each node

Centrality: Degree

Neo4J Tutorial @ BTW 2019

Centrality: Degree

Neo4J Tutorial @ BTW 2019

Task 7:

• Create sample graph of 6 users with a :FOLLOW relationship

(see https://neo4j.com/docs/graph-algorithms/current/

The Strongly Connected Components algorithm)

Degree centrality is the amount of

in-links and out-links of each node

https://neo4j.com/docs/graph-algorithms/current/

Centrality: Degree

Neo4J Tutorial @ BTW 2019

Task 8:

• For each user return the

amount of out-links and the

amount of in-links

• Which user has the highest degree centrality?

• Optional: Return the total amount of links of each node

Degree centrality is the amount of

in-links and out-links of each node

Centrality: Betweenness

Neo4J Tutorial @ BTW 2019

Centrality: Betweenness

Neo4J Tutorial @ BTW 2019

Nodes with high betweenness centrality ensure crucial

connections in the graph: „Bridge“ between different subgraphs

Betweenness centrality is the fraction

of shortest paths going through a node

Betweenness centrality

for node v
Sum over all node pairs s,t (different from v)

The amount of

shortest paths

between s and t

going through v

The total amount

of shortest paths

between s and t

Centrality: Betweenness

Neo4J Tutorial @ BTW 2019

For all these paths:

Only one shortest path (and only through Alice)

𝝈𝒔𝒕 𝑨𝒍𝒊𝒄𝒆 = 𝟏 and 𝝈𝒔𝒕 = 𝟏

Hence 𝑪𝑩(𝑨𝒍𝒊𝒄𝒆)=4

Let v = Alice

Shortest paths via Alice:

1. Michael-Charles

2. Mark-Charles

3. Doug-Charles

4. Bridget-Charles

Centrality: Betweenness

Neo4J Tutorial @ BTW 2019

Task 9:

• For each user return the betweenness centrality along the

:FOLLOW relationship

• Optional: remove the edges between Michael and Bridget

and observe the effect on the betweenness centrality

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Graph Algorithms

Neo4J Tutorial @ BTW 2019

Pathfinding: Find one or more optimal paths in a graph

Picture source: [1, page 15]

Centrality: Find one or more nodes with an optimal score

Community

Detection:

Find densely

connected

subgraphs

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

• Minimum Spanning Tree:

• If a graph has |V| nodes, then a spanning

tree has |V|-1 edges

• The tree has a root node (with no incoming

edges)

• From the root node we can reach all other

nodes in the graph with minimal total cost

by using the edges of the spanning tree

Use case:

Distribute information from the root node to all other nodes for

example in communication networks or social networks

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

• Prim‘s algorithm

• Maintain a list of unvisited nodes

• Start with the root node

• From the unvisited nodes select the one

that can be connected to the tree nodes

with minimal cost

• Repeat until all nodes are visited

For undirected graphs:

We ignore direction of edges (traversal in both directions)

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

Task 10:

• Create sample graph of 6 locations with a :ROAD

relationship (see https://neo4j.com/docs/graph-

algorithms/current/ The Shortest Path algorithm)

• Optional: Display the cost of each road on the edge

https://neo4j.com/docs/graph-algorithms/current/

Pathfinding:
Minimum Weight Spanning Tree

Neo4J Tutorial @ BTW 2019

Task 11:

• Choose location D as the root node and compute a minimum

spanning tree by creating new edges of type :MINST

• Optional: use another

location as the root node

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

• Shortest Path with minimum cost:

• Provide a start and an end node

• Find the minimum-cost path between

these two nodes

• In unweighted graph: edge cost 1

• Example:

• Start node A and end node F

• One minimum-cost shortest path:

A – C – D – E – F

50 + 40 + 30 + 40 = 160
Use case:

Travel route planning

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

• Dijkstra‘s algorithm:

• Maintain a list of unvisited nodes

• For each node maintain its distance to

the start node (initially: ∞)

• Start with the start node and set its

distance to 0

• For all unvisited neighbor nodes: set

their distance to be the edge cost to the

start node

• Remove the start node from the list of

unvisited nodes

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

• Dijkstra‘s algorithm (continued):

• Select one unvisited node with currently

smallest distance

• Make it the current node

• For all unvisited neighbors of the

current node:

• Sum up the edge cost to the neighbor and the

distance of the current node

• If smaller than current distance of the

neighbor: update distance (shorter path found)

• Remove current node from list of unvisited nodes

• Repeat until end node is visited

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

Pathfinding: Shortest Path

Neo4J Tutorial @ BTW 2019

Task 12:

• Choose location A as the start node and location F as the

start node and compute the shortest path

• Optional: use other locations as start and end nodes

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

Graph Algorithms

Neo4J Tutorial @ BTW 2019

Pathfinding: Find one or more optimal paths in a graph

Picture source: [1, page 15]

Centrality: Find one or more nodes with an optimal score

Community

Detection:

Find densely

connected

subgraphs

Community Detection

Neo4J Tutorial @ BTW 2019

• More communication between the nodes of a

community than to other nodes of the graph

• Communities may be overlapping

Community: Densely connected subgraph

Soccer Club

Spanish Class

Community Detection:
Strongly Connected Components

Neo4J Tutorial @ BTW 2019

Community Detection:
Strongly Connected Components

Neo4J Tutorial @ BTW 2019

• Strongly Connected Components:

• Apply to directed graphs

• Two nodes A, B are in the same strongly

connected component if there is a path from

A to B and a path from B to A

Community Detection:
Strongly Connected Components

Neo4J Tutorial @ BTW 2019

• Example:

• Charles has no out-links and is a component on

his own

• Michael, Alice and Bridget can all reach each

other

• Mark and Doug can reach each other

Community Detection:
Strongly Connected Components

Neo4J Tutorial @ BTW 2019

Task 13:

• For User nodes and the

:FOLLOW relationship

compute the strongly

connected components

• Optional: add a :FOLLOW edge from Charles to Alice

and observe the effect

Community Detection:
Weakly Connected Components

Neo4J Tutorial @ BTW 2019

Community Detection:
Weakly Connected Components

Neo4J Tutorial @ BTW 2019

• Weakly Connected Components:

• We interpret the graph as undirected

• Two nodes A, B are in the same weakly

connected component if there is a path from

A to B or a path from B to A

Community Detection:
Weakly Connected Components

Neo4J Tutorial @ BTW 2019

• Example

• New :FRIEND relationship

• Charles, Alice and Bridget are weakly

connected

• Michael, Mark and Doug are weakly

connected

Community Detection:
Weakly Connected Components

Neo4J Tutorial @ BTW 2019

Task 14:

• Add the :FRIEND relationship to the graph

(see https://neo4j.com/docs/graph-algorithms/current/

The Connected Components algorithm)

https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Weakly Connected Components

Neo4J Tutorial @ BTW 2019

Task 15:

• Find the weakly connected components according to

the :FRIEND relationship

• Optional: add a :FRIEND edge from Michael to Alice and

observe the effect

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

• Triplet: 3 connected nodes

• Open triplet

• Closed triplet = triangle

• The older a community, the more triangles are present:

• if A and B are friends and B and C are friends

• high probability that A and C become friends, too

B

A

C

B

A

C

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

• Example:

• Michael participates in 3 triangles

• Alice participates in no triangle

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Task 16:

• Create a new graph with 6 persons and a :KNOWS

relationship

(see https://neo4j.com/docs/graph-algorithms/current/

The Triangle Counting / Clustering Coefficient

algorithm)

https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Task 17:

• Return all triangles in the graph

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Local clustering coefficient:

• For a node v, count the edges among its neighbors

• Divide by the amount of edges in a complete graph

among its neigbors

• Example: a person in a social network who is good at

connecting his/her friends has a high coefficient

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Local clustering coefficient for undirected graph:

• Recall our quiz from the beginning (edge count in

complete undirected graph)

• If a node v has k neighbors, the complete graph

among the neighbors has Τc=(k · (k−1)) 2 edges

• Let the actual edge count among the neighbors be r

• LCC(v) = ൗr c

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Picture source: Luis Casillas Santillán/Alonso Castillo Pérez

http://www.revistascientificas.udg.mx/index.php/REC/article/viewFile/5091/4754/16111

Community Detection:
Triangle Counting

Neo4J Tutorial @ BTW 2019

Task 18:

• Compute the amount of triangles and the local clustering

coefficient for each node

• Which person has the best-connected friends in the graph?

Agenda

• Short CV of speaker

• Graph Theory Basics

• The Neo4J Database

• Graph Algorithms
• Centralities

• Path Finding

• Community Detection

Neo4J Tutorial @ BTW 2019

References

1. Mark Needham & Amy E. Hodler: A
Comprehensive Guide to Graph Algorithms in
Neo4j. Neo4j.com, 2018.

2. Anand Rajaraman, Jure Leskovec & Jeffrey D.
Ullman: Mining of Massive Datasets. Mmds.org,
2014.

3. Lena Wiese: Advanced Data Management for
SQL, NoSQL, Cloud and Distributed Databases.
De Gruyter Graduate, 2015.

Neo4J Tutorial @ BTW 2019

Extra exercises

„In this guide we’ll learn how to use the Neo4j Graph Algorithms
package using a Game of Thrones dataset.”

Neo4J Tutorial @ BTW 2019

