Data Analytics with Graph
Algorithms

A Hands-on Tutorial with Neo4J

March 4t 2019

Lecturer: Dr. Lena Wiese

- 1 GEORG -AUGUST- “UNIVERSITAT .
(_%-:/ GOTTINGEN Dr. Lena Wiese

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Agenda

e Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gC _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Gz

Short CV Dr. Lena Wiese

University of Gottingen
(Group Leader Knowledge Engineering)
University of Salzburg
(Guest Lecturer)
University of Hildesheim
(Visiting Professor for Databases)
National Institute of Informatics, Tokyo
(funded by DAAD)
Robert Bosch India Ltd., Bangalore, India
TU Dortmund (Master/PhD)
Universidad Complutense, Madrid

Web: http://wiese.free.fr/

GEORG-AUGUST-UNIVERSITAT
GOTTINGEN

SQ-,

UNIVERSITAT
SALZBURG

_,elsitd
(\\\l Z‘,s/

3 %
o:/%
c w
211
2 &

RPREFBAREA W VATLFERAN
E B RPRIERT

&) BOSCH

/eResearch Alliance

http://wiese.free.fr/

Short CV Dr. Lena Wiese

<
x
Jaroslawl’ ly ;
sy Jehesk Ll e
Moscow i PN r:hx«lnhuvg o Xrasnoyarsk
% Chely K — Novosibirsk
Utyanovsk, Ll 5 ,M' A R ._'Uvm*_ >
Samara g t=r ~ JHarnaul
Joeonezh Sarsiay oy Netaia I
PM ‘mc e =3 RTINS Qaraghand 7
‘....12"""" caeen m' v H g “Oaginds
gogrd,
i, o 8B ol e, WAZAKHSTAN
% Ao e m, n.mu.l. —

W UNIVERSITAT "“""““"‘ '

,mum .,”(h k,.~
2 PNSALZBURG wi, e

Ankara mwmsmnuzsmsrm 3 T TAKLA MAKAN
TURKEY "tk l\;. . Ashgabat DESERT
. o i N S 5525 5D
- "hmﬁ rmn.m,m I "Utm‘ [l R v‘“‘ o) DY
.-"qt.m /' SYRIA | e - s o @, - ‘
fa Mediterrancan LS hetroy Damascus IRAQ -wm" S Jistit = ‘ r«tﬁ g}
*aTripoll g, 3 h‘“.“ s ,r-,v.hs« "W‘STM' Illnnb.l“,}
(nanghazi™ " Mexandrs, oy SKACL PP A mmmian -) ,.\hm IR I\ “ Kadatie?” - Lahors)
/) Cairg, " JORDAN AlBagrahy T2 ‘ 3,..«, Mulun 'Lu
1 fizab® 0\ VY 2 X, S | N
LIBYA L A "“"':V?" L e T
A 4) P,
EGYPT \ SAUDI MNW& = i T e ko
R T R'Yld’l v o e N
el e e 2 QATAR u!iffm,ymks Muscat n"‘"'\- I O Padist - Shopal
S5 A \ ARABIA ,BNIRI_\'IB&-‘,\ / -' . 2) mshedpur,
\ | R e {peddan 4 g
R A b e “Meces a jomAN /- N e Jagpur
Ly Port su NN (0 (§ { INDIA
v \\ 4 B },J / Mumbaly o) Py
i o g | S !
e SUDAN "2 N — == |,
Trr ﬂm.lumun‘ Kassala, Shs YR - ! \ Vl'.y"m. =
b CHAD Khartount o/ A { apan
Bamako - numm, Miamey = ‘,‘ 5 \;&;) e wm“,
ane N'Djamena " o
N o‘Mu;?- : e ¥ L Tl &‘pw M‘) ,<mmmm
P sy NIGERIA e f } o]
core ' 700 Abuja ; o { Abnbn W gy u\m , LR y
DIVOIRE | \ 2 s)
GHANA & o T EENTRAL gggm ! MJOP'IA (7 b f ,“,.,,,,' JLW"’
. ¢ o | Az / 2l R AR "~ SKI
CaiERO0n SR A REEURIC: o e SOMALIA ; % S ANKA

GEORG-AUGUST-UNIVERSITAT
GOTTINGEN

Neo4J Tutorial @ BTW 2019

L4 uhikhapatnams

v, S Shita

IR Y
< _UES*K Chamgehun, il
60

Sherang

uu-nmnu """"}“’ KPATABRAREA B VAFLHRAN

":J,"':'"‘llf‘o e @Iﬁﬁ%ﬁnf_’ﬁ

Mat
Bay of "*""'\"1 k

Bengal

/eResearch Alliance

Short CV Dr. Lena Wiese

Teaching and Research: ADVANCED DATA
FOMlbe Eﬂﬁgtgky DIE-NUTID DATABASES
« NoSQL Databases SR

(in particular Graph Databases)

* Intelligent Data Management

(in particular, analytics of biomedical data
for example, patient similarity analysis,
disease prediction, etc.)

* Intelligent Information Systems
(ontologies, recommender systems, etc.)

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Agenda

« Short CV of speaker
* Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Graphs, graphs, graphs

There are lots of graphs in the real world:

 The Internet: a graph of web pages

* Social network: a graph of people

« Geographic Information System: a graph of
locations

« (Gene-Regulatory Network: a graph of genomic

 _

components

‘/ \O

7C_ /| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
AT GOTTINGEN

7237

R

Graphs in Mathematics

Mathematical definition of a graph: G=(V,E)

V is a set of nodes
(also called ,vertices®)

E is a set of edges
(,links“/“relationships™)

EF=
Special case:

Self-loop p

| GEORG-AUGUST-UNIVERSITAT
GOTTINGEN

f

.

\

7

o

/eResearch Alliance

Direction of edges

An edge can be

eundirected: e={v,V,}
e can be traversed in both directions

Target node /

*directed: e=(v,V,) End node
e can be traversed in one direction @

o

Source node/
Start node

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

7237

Traversal and path

Traversal:
Go from one node to another by following an edge

Path:
A concatenation of nodes and edges that can be
traversed in the graph

Path p

_A
' ™~
7C Y] GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
VAT GOTTINGEN

End node of p

Start node of p

TR

Exhaustive Graph Traversals

BFS: From the start node visit @ DFS: From the start node

all direct neighbors first before g choose one neighbor then
visiting a neighbor's neighbor visit the neighbor’s neighbor

Picture source: [1, page 18]

/1N /
o 6o g6

Breadth-first search Depth-first search

7C Y| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
o/ GOTTINGEN

R

Direction in graphs
Undirected Directed

J} A

.‘//.

Picture source:
[1, page 19]

Example: Example:
Mutual friendship relation One-way streets

, GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
k, GOTTINGEN

TR

Cycles in graphs
Cyclic Acyclic

AR

Cycle: A path containing the same node as start and end node

Picture source:
[1, page 19]

Triangle: A cycle with three nodes

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Weights in graphs
Weighted Unweighted

2 8

Picture source:
[1, page 19]

Example ,shortest path®: Example ,shortest path®:

Find a path between two
nodes with minimum cost

Find a path with minimum
number of edges

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Edge count in graphs

Sparse Dense
Picture source:

; ; i i [1, page 19]

Only few edges exist Many edges exist

Complete graph:
All edges exist

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Quiz

What Is the edge count in a
complete undirected graph without self-loops?

Picture source:
[1, page 19]

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Answer

What Is the edge count in a
complete undirected graph without self-loops?

(|V|) 3 4 _ vidvl—1)
2

21 (v = 2)! 2

Example: |V|=6
()= =g =1s

2 2141 2
Picture source:
[1, page 19]
! GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance

WA/ GOTTINGEN

R

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Property Graph Model

Nodes have labels (e.g. Employee)
Edges have types (e.g. :HAS CEO)
Information is stored in name:value pairs (,,properties®)

% &
% % ?'\'b e
Q’) %, ¢ e \00
9, %, ’a‘ e,é
G\’s\
LOCATED IN

HAS CEO
start_date: 2008-01-20

N J
Y

Relationships can have
properties (name/value N ,
Nodes can have { name: Amy Peters pairs) v

properties date_of_birth: 1984-03-01

(name/value pairs) | employee_ID: 1 Nodes represent

objects (nouns)
Picture source: https://neo4j.com/developer/graph-database/

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN
C

Neo4J Graph Database

* Open source graph database written in Java

* Query language called Cypher
 Interface called Neo4J Browser

MATCH p=()-—>() RETURN p LIMIT 25

Database Information

Node Labels
$ MATCH p=()-->() RETURN p LIMIT 25

&
Relationship Types Sesen

=

Table

Text

C GEORG-AUGUST-UNIVERSITAT
~7 GOTTINGEN
SR

 Visualization of
guery results

« Support for
graph algorithms

/eResearch Alliance

Create Nodes with Cypher
/ Add to favorites

CREATE (nodel:Human{name: 'Alice'}) ﬁ <§_> [>

N

Create a new node called nodel Run query
with label Human
and a name-property set to Alice Delete query text
Task 1.

Create a new node called node?2
with label Human
and a name-property set to Bob

Task 2:
Find all nodes matching the label Human
and return them

MATCH (n:Human) RETURN n

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

)

Create Edges with Cypher

MATCH (nodel:Human{name: 'Alice'}) MATCH (node2:Human{name: 'Bob'})
CREATE (nodel)-[:LOVES{until: 'forever'}]->(node2)

Find two nodes matching the label Human
and create a new edge with type :LOVES
and an until-property set to forever

Task 3:

Create a new edge pointing from Bob to Alice

Task 4:

Find all paths p with edges of MATCH p=()-[r:LOVESI->() RETURN p

type :LOVES and return them

| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
“ A/ GOTTINGEN

;;;;

MERGE

Avoid duplicates:
If node / edge does not exist: CREATE it as new

If node / edge exists: MATCH and return the node / edge

MERGE (nodel:Human{name:'Alice'})

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Deletion with Cypher

Delete edge between two nodes with certain properties

MATCH (n1:Human)-[e:LOVES]->(n2:Human) WHERE n1.name='Alice' AND n2.name='Bob'
DELETE e

Or delete edge by ID

MATCH ()-[e:LOVESI->() WHERE id(e)=14 DELETE e

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
(_ g Z/ GOTTINGEN

)

Graph schema with Cypher

Show schema information (all types and labels)

CALL db.schema

7C 1 GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
o/ ./ GOTTINGEN

R

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gC _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
« Centralities
 Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Centrality: PageRank

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN
C

Centrality: PageRank

Google‘s PageRank score represents the

Importance of web pages in the Internet

« Rank of a page depends on the in-links to a page

« PageRank is transitive
« PageRank of a node is influenced by the

neighbors’ PageRank

* In each iteration a node distributes its rank to its
neighbors along its out-links

Reference: Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking:
Bringing order to the web. Stanford InfoLab

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

7237

Centrality: PageRank

Step 1: Sum up the ranks of your in-links

— .
. Rank(D)=

./ \. Rank(A)+Rank(B)+Rank(C)

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Centrality: PageRank

Step 2: Distribute your rank among your out-links
(divide by amount of out-links)

\\ /. Rank(E)=%: Rank(D)
Rank(F)=% Rank(D)
/ \

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Centrality: PageRank

Random surfer model:
« A web surfer randomly follows out-links of pages

« Uniform probability distribution: if a page has m out-
links, each link is followed with probability 1/m

* The higher the PageRank, the higher the likelihood
that a random surfer will be at this page at an
arbitrary point of time

Note: A few in-links from very important pages raise your

PageRank more than many in-links from unimportant pages.

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

7247

Centrality: PageRank

Example: start with equal PageRank for all pages,
then iterate for a certain number of rounds

Step 1 Step 2
Node Value = 1/n (n = Total # of Nodes) Link Value = Node Value / # of Its Out-Links

0.17 0.17
0.33

€
0.33

Picture source:
[1, page 35]

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Picture source:

Centrality: PageRank 11, page 35]

Step 1 Step 2
Node Value = 1/n (n = Total # of Nodes) Link Value = Node Value / # of Its Out-Links

Pass 0 0.17 0.17
0.33
€ €
@ 0.33 Q

Node Value = Sum of Prior In-Link Values Link Value = Node Value / # of Its Out-Links
0.50

Pass 1
¥ o ——&)

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

0.17 0.17

Centrality: PageRank
Problem Cases:
 Dead end: a node that has no out-linko /VO

- Rank sink: a group of nodes that have in-links from other
nodes but out-links just among themselves (e.g. loops)

~ /f
e

 Disconnected subgraphs: subgraphs
without links between each other

These problem cases disturb the distribution of PageRank
Solution:

e add a constant rank source to each page
 corresponds to random jumps (instead of following links)

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

7247

rank source for

Centrality: PageRank each page (for

random jumps)

The final formula:

Rank '
RANK(W)= d * T putr gyt + (1~ @)

VA \

Damping factor n-link to o 01j[v 15“\”??'0I IE)y
amount of out-links

(reduces the likelihood of (for random surfer)

following a link by

random surfer)

Possibly: Normalization of ranks so that all ranks sum up to 1

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

7247

Graph Algorithms in Cypher

* Two options:
1. Streaming of result CALL algo.pageRank.stream

CALL algo.<name>.stream
* Immediately outputs the result

2. Writing result into a property CALL algo.pageRank
CALL algo.<name>
» Properties can be queried in a second query

write: true,writeProperty:"pagerank™

« Clause YIELD defines which statistics to print out
YIELD nodeld, score

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
(_ g Z/ GOTTINGEN

)

PageRank in Cypher

Task 5: Create sample graph of 8 web pages (see
https://neo4j.com/docs/graph-algorithms/current/ =+ PageRank)

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

https://neo4j.com/docs/graph-algorithms/current/

PageRank in Cypher

-r€i£;L(ES' CALL algo.pageRank.stream("Page", "LINKS",

Run PageRank with {iterations:20})
. . YIELD nodeld, score
20 Iterations
Increase the amount of iterations and observe the effect on

the PageRank Q
Which page is the most important one? O %Q

K-

oy
ﬁ“ =

if.-lnr&

Optional: Write the PageRank R SEARS
into a node property called pagerank Q Q’“”’ Q
and display the page rank for each node Q

CALL algo.pageRank('Page', 'LINKS',
{iterations:20, dampingFactor:0.85, write: true,writeProperty:"pagerank”})

GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
GOTTINGEN

Centrality: Degree

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN
C

Centrality: Degree

Degree centrality is the amount of

In-links and out-links of each node

Task 7:
* Create sample graph of 6 users with a :FOLLOW relationship
(see https://neod4j.com/docs/graph-algorithms/current/

=) The Strongly Connected Components algorithm)

ﬁ}uﬂ..

.'. '\-\,H_
o FOLUN =
Charles %
%% i :
Bridget

Neo4J Tutorial @ BTW 2019

w@

r-‘mu::w
CLL Oy —

E

/eResearch Alliance

GEORG-AUGUST-UNIVERSITAT
\, GOTTINGEN
(2317

https://neo4j.com/docs/graph-algorithms/current/

Centrality: Degree

Degree centrality is the amount of

In-links and out-links of each node

Task 8:
MATCH (u:User)
 For each user return the SETURN w.id A% name.
amount of out-links and the size((u)-[:FOLLOWI->()) AS follows,

amount Of in |inks size((u)<-[:FOLLOWI-()) AS followers

« Which user has the highest degree centrality?

« Optional: Return the total amount of links of each node

@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

7237

Centrality: Betweenness

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN
C

Centrality: Betweenness

Betweenness centrality is the fraction
of shortest paths going through a node

The amount of
shortest paths
between s and t
going through v

The total amount
of shortest paths
between s and t

Betweenness centrality
for node v

Sum over all node pairs s,t (different from v)
Nodes with high betweenness centrality ensure crucial
connections in the graph: ,Bridge” between different subgraphs

| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
“ A/ GOTTINGEN

::::

Centrality: Betweenness

Let v = Alice
O (’U) — O—St(v) Shortest paths via Alice:
B o O st 1. Michael-Charles
sAEVALEV S 2. Mark-Charles

3. Doug-Charles
4. Bridget-Charles

For all these paths:
Only one shortest path (and only through Alice)

o, (Alice) =1and o, =1
Hence CB(Alice):4

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Centrality: Betweenness

Task 9:
* For each user return the betweenness centrality along the
'FOLLOW relationship

CALL algo.betweenness.stream('User', 'FOLLOW',{direction: 'out'})
YIELD nodeld, centrality

MATCH (user:User) WHERE id{user) = nodeld

RETURN user.id AS user,centrality

ORDER BY centrality DESC;

« Optional: remove the edges between Michael and Bridget
and observe the effect on the betweenness centrality

gC ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
« Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Pathfinding:
Minimum Weight Spanning Tree

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Pathfinding:
Minimum Weight Spanning Tree

 Minimum Spanning Tree:

« If a graph has |V| nodes, then a spanning
tree has |V|-1 edges O O

e The tree has a root node (with no incoming O
edges) O

* From the root node we can reach all other
nodes in the graph with minimal total cost
by using the edges of the spanning tree

Use case:
Distribute information from the root node to all other nodes for

example in communication networks or social networks
@ GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Pathfinding:
Minimum Weight Spanning Tree

00
* Prim'‘s algorithm s 4

« Maintain a list of unvisited nodes o) 0

 Start with the root node .

 From the unvisited nodes select the one
that can be connected to the tree nodes
with minimal cost

* Repeat until all nodes are visited

For undirected graphs:
We ignore direction of edges (traversal in both directions)

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

R

Pathfinding:
Minimum Weight Spanning Tree

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Pathfinding:
Minimum Weight Spanning Tree

4'.'|

‘k

« Optional: Display the cost of each road on the edge

Task 10:

» Create sample graph of 6 locations with a :ROAD
relationship (see https://neo4|.com/docs/graph-
algorithms/current/ =» The Shortest Path algorithm)

/| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019

C_A /eResearch Alliance
“/\f GOTTINGEN
C

https://neo4j.com/docs/graph-algorithms/current/

Pathfinding:
Minimum Weight Spanning Tree

Task 11:
* Choose location D as the root node and compute a minimum
spanning tree by creating new edges of type :MINST

MATCH (n:Loc {name:"D"})

CALL algo.spanningTree.minimum('Loc', 'ROAD', 'cost', id(n),
{write:true, writeProperty:"MINST"})

YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount

RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount

« Optional: use another
location as the root node

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Pathfinding: Shortest Path

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Pathfinding: Shortest Path

e Shortest Path with minimum cost:
* Provide a start and an end node
* Find the minimum-cost path between
these two nodes
* In unweighted graph: edge cost 1

I i °
% & =

« Example:
« Start node A and end node F
* One minimum-cost shortest path:
A-C-D-E-F

50 + 40 + 30 + 40 = 160 Use case:

Travel route planning

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

)

Pathfinding: Shortest Path

* Dijkstra‘s algorithm:

 Maintain a list of unvisited nodes O . O
* For each node maintain its distance to .
the start node (initially: «) 1/ O
» Start with the start node and set its O
distance to O
* For all unvisited neighbor nodes: set
their distance to be the edge cost to the
start node
 Remove the start node from the list of
unvisited nodes

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Pathfinding: Shortest Path

- Dijkstra‘s algorithm (continued): Q) O
» Select one unvisited node with currently W) e
smallest distance - Q
« Make it the current node b
» For all unvisited neighbors of the Q Q

current node:
« Sum up the edge cost to the neighbor and the
distance of the current node
 If smaller than current distance of the
neighbor: update distance (shorter path found)
« Remove current node from list of unvisited nodes
* Repeat until end node is visited

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Pathfinding: Shortest Path

e 09 09
‘?:,f:-» “’“‘kg,» ‘?<) »

09" @@ Qﬁ“ﬂ
> “?:) “?:) %g

& &
GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Eﬂ' E.F-i

Pathfinding: Shortest Path

Task 12:
 Choose location A as the start node and location F as the
start node and compute the shortest path

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.shortestPath.stream(start, end, 'cost')
YIELD nodeld, cost

RETURN algo.getNodeById(nodeId).name AS name, cost

« Optional: use other locations as start and end nodes

gc ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gC _; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

Graph Algorithms

Centrality: Find one or more nodes with an optimal score
Pathfinding: Find one or more optimal paths in a graph

Community

Detection: Finds the shortest
Find densely pathfinding I svaiabity and quaity
connected

subgraphs

Community
Detection

Evaluates how a
group is clustered
or partitioned

Determines the
importance of distinct
nodes in the network

Picture source: [1, page 15]

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Community Detection

Community: Densely connected subgraph

« More communication between the nodes of a
community than to other nodes of the graph

- Communities may be overlapping Spanish Class

Soccer Club

| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
“ A/ GOTTINGEN

;;;;

Community Detection:
Strongly Connected Components

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Community Detection:
Strongly Connected Components

« Strongly Connected Components:
* Apply to directed graphs
« Two nodes A, B are in the same strongly
connected component if there is a path from
A to B and a path from B to A

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Community Detection:
Strongly Connected Components

« Example:
« Charles has no out-links and is a component on
his own
 Michael, Alice and Bridget can all reach each
other

- Mark and Doug can reach each other

. FULLEH.‘
- ?&Dﬂ
Charles FoLE
%%?ﬁp :
Bridget

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

E

Community Detection:
Strongly Connected Components

. CALL algo.scc.stream("User","FOLLOW")
Task 13:
YIELD nodeld, partition
« For User nodes and the MATCH (u:User) WHERE id(u) = nodeId
. . " RETURN u.id AS name, partition
'FOLLOW relationship

compute the strongly
connected components

oo

o
i ';,Ei!"'}

.Pc.ucrﬂ e...ﬁ
e~ O
v %3%.

* Optional: add a :FOLLOW edge from Charles to Alice
and observe the effect

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

FOLL gy
CLL O

E

Community Detection:
Weakly Connected Components

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Community Detection:
Weakly Connected Components

 Weakly Connected Components:
* We Interpret the graph as undirected
« Two nodes A, B are in the same weakly
connected component if there is a path from
A to B or a path from B to A

=0 &Q - - @®
'®

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
(g zl GOTTINGEN

)

Community Detection:
Weakly Connected Components

« Example
 New :FRIEND relationship
* Charles, Alice and Bridget are weakly
connected
* Michael, Mark and Doug are weakly
connected

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Community Detection:

Weakly Connected Components

Task 14:

* Add the :FRIEND relationship to the graph
(see https://neo4dj.com/docs/graph-algorithms/current/

=»> The Connected Components algorithm)

MERGE
RN MERGE
2 % 5 MERGE
o %%
“ MERGE
MERGE
Mark
@ ot MERGE
o
- ;ﬁ- ﬁ_,.\,,}5:-‘;ﬂl
%@%% \,4.-- MERGE
B T S o, MERGE
% W 3 3 MERGE
k%o 2
5
e,
G‘:I”

| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019
oA/ GOTTINGEN

;;;;

(nAlice:User {id:'Alice'})
(nBridget:User {id: 'Bridget'})
(nCharles:User {id: 'Charles'})
(nDoug:User {id: 'Doug'})
(nMark:User {id: 'Mark'})
(nMichael:User {id: 'Michzael'})

(nAlice)-[:FRIEND]->(nBridget)
(nAlice)-[:FRIEND]->(nCharles)
(nMark)-[:FRIEND]->(nDoug)

(nMark)-[:FRIEND]1->(nMichael);

/eResearch Alliance

https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Weakly Connected Components

Task 15:
* Find the weakly connected components according to
the :FRIEND relationship

CALL algo.unionFind.stream('User', 'FRIEND', {3})
YIELD nodeld,setId
RETURN algo.getNodeById(nodeId).id AS user, setld

« Optional: add a :FRIEND edge from Michael to Alice and
observe the effect

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

)

Community Detection:
Triangle Counting

‘ GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
\ GOTTINGEN

Community Detection:
Triangle Counting

* Triplet: 3 connected nodes

 _

* Open triplet

L

o _

« Closed triplet = triangle 0 |
L

* The older a community, the more triangles are present:

« If A and B are friends and B and C are friends
 high probability that A and C become friends, too

~ N GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

7247

Community Detection:
Triangle Counting

 Example:
* Michael participates in 3 triangles
« Alice participates in no triangle

-0
- S
fn Michael ~ g
\ ©
e

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Community Detection:
Triangle Counting

Task 16:

* Create a new graph with 6 persons and a :KNOWS
relationship

(see https://neo4j.com/docs/graph-algorithms/current/
=» The Triangle Counting / Clustering Coefficient

algorithm) e
~©

- .
~©®

%

7C_Y/| GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

https://neo4j.com/docs/graph-algorithms/current/

Community Detection:
Triangle Counting

Task 17:
« Return all triangles in the graph

CALL algo.triangle.stream('Person’, "KNOWS")
YIELD nodeA,nodeB, nodeC

RETURN algo.getNodeById(nodeA).id AS nodeA, algo.getNodeById(nodeB).id AS nodeB,

alpo.getNodeById(nodeC).1id AS nodeC
0-0
“ﬁﬁ kS o
I

‘lII"““”“ﬁm”“
A M Michee B -
':f-% | m% .- -e

4

e

GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
GOTTINGEN

Community Detection:
Triangle Counting

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Local clustering coefficient:
* For a node v, count the edges among its neighbors

« Divide by the amount of edges in a complete graph
among its neigbors

« Example: a person in a social network who is good at
connecting his/her friends has a high coefficient

/eResearch Alliance

GEORG-AUGUST-UNIVERSITAT
A/ GOTTINGEN
(1 231

Community Detection:
Triangle Counting

The local clustering coefficient of a node determines

how well connected the node‘s neighbors are

Local clustering coefficient for undirected graph:

* Recall our quiz from the beginning (edge count in
complete undirected graph)

« If a node v has k neighbors, the complete graph
among the neighbors has c=(k - (k=1))/2 edges

« Let the actual edge count among the neighbors be r

» LCC(v) = /¢

GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
~7 GOTTINGEN

7247

Community Detection:
Triangle Counting

(a) No pairs formed among (b) One pair formed among (c) Three pairs formed among
neighbors: C =0 neighbors: C=1/3 neighbors: C=3/3

Picture source: Luis Casillas Santillan/Alonso Castillo Pérez
http://www.revistascientificas.udg.mx/index.php/REC/article/viewFile/5091/4754/16111

G‘ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
C

~7 GOTTINGEN

Community Detection:

Triangle Counting

Task 18:
« Compute the amount of triangles and the local clustering
coefficient for each node

©-
o ©

GhaT

o

CALL algo.triangleCount.stream('Person’, "KNOWS')

YIELD nodeId, triangles, coefficient

RETURN algo.getNodeById(nodeld).id AS name, triangles, coefficient
ORDER BY coefficient DESC

« Which person has the best-connected friends in the graph?

C /| GEORG-AUGUST-UNIVERSITAT /eResearch Alliance
(g Z/ GOTTINGEN

)

Agenda

« Short CV of speaker
« Graph Theory Basics
* The Neo4J Database

* Graph Algorithms
 Centralities
 Path Finding
« Community Detection

gc _2 GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

GOTTINGEN

References

1. Mark Needham & Amy E. Hodler: A
Comprehensive Guide to Graph Algorithms in
Neo4j. Neo4dj.com, 2018.

2. Anand Rajaraman, Jure Leskovec & Jeffrey D.
Ullman: Mining of Massive Datasets. Mmds.org, :
2014.

3. Lena Wiese: Advanced Data Management for Q;‘{,‘;%CEE:’ERT‘:
SQL, NoSQL, Cloud and Distributed Databases. P E
De Gruyter Graduate, 2015.

G\ ; GEORG-AUGUST-UNIVERSITAT /eResearch Alliance

~7 GOTTINGEN

7237

Extra exercises

,In this guide we’ll learn how to use the Neo4j Graph Algorithms
package using a Game of Thrones dataset.”

:play https://guides.neo4j.com/sandbox/graph-algorithms/

7C] GEORG-AUGUST-UNIVERSITAT Neo4J Tutorial @ BTW 2019 /eResearch Alliance
o/ GOTTINGEN

