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Section 1. An integral packing:

Figure 1

The quarter nickel and dime in the above figure are placed so that they are mutually
tangent. This configuration is unique up to rigid motions. As far as I can tell there is no
official exact size for these coins but the diameters of 24, 21 and 18 millemeters are accurate
to the nearest mm and I assume henceforth that these are the actual diameters. Let C be
the unique (see below) circle which is tangent to the three coins as shown in Figure 2. It is a
small coincidence that its diameter is rational, as indicated.
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Figure 2

What is more remarkable is that if we continue to place circles in the resulting regions bounded
by three circles as described next, that all the diameters are rational. Since the circles become
very small so do their radii and it is more convenient to work with their curvatures; that is
the reciprocal of the radius. In fact in this example it is natural to scale everything further by
252, so for C a circle as above let a(C) be 252 times the curvature of C. In Figure 3 our three
tangent circles are displayed together with the unique outer mutually tangent circle. Their
a(C)’s are depicted inside the circle. Note that the outer circle has a negative sign indicating
that the other circles are in its interior (it is the only circle with a negative sign).
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Figure 3

At the next generation we place circles in each of the 4 lune regions obtaining the configuration
in Figure 4 with the curvatures a(C) as indicated.
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Figure 4

For the 3rd generation we fill in the 12 new lunes as in Figure 5.
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Figure 5

Continuing in this way adinfinitum yields the integral Apollonian packing P0 depicted in
Figure 6.
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Figure 6

My aim in this lecture is first to explain the elementary plane geometry behind the above
construction and then to discuss the diophantine properties of the integers appearing as
curvatures in integral apollonian packings such as P0. As with many problems in number
theory the basic questions here are easy to state but difficult to resolve. There are many
papers in the literature dealing with apollonian packings and their generalizations. However
the diophantine questions are quite recent and are raised in the lovely five author paper [G-L-
M-W-Y]. The developments that we discuss below are contained in the letter and preprints,
[Sa1], [K-O], [F], [F-S], [B-G-S] and [B-F] .

In Section 2 we review (with proofs) some theorems from Euclidian geometry that are
central to understanding the construction of P0. This requires no more than high school
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math. The proofs of the results in later sections involve some advanced concepts and so we
only outline these proofs in general terms. However the notions involved in the statements of
all the theorems are ones that are covered in basic undergraduate courses and it is my hope
that someone with this background can follow the discussion to the end. In Section 3 we
introduce the key object A which is the symmetry group of P0. It is a group of 4 × 4 integer
matrices which is deficient in a way that makes its study both interesting and challanging.
Section 4 deals with the basic analytic question of counting the number of circles in P0 when
ordered by their curvatures. Sections 5 and 6 are concerned with diophantine questions such
as which numbers are curvatures of circles in P0, a possible local to global principle and the
number of circles whose curvatures are prime numbers.

Section 2. Apollonius and Descartes′ Theorems

First some notation. P denotes an integral Apollonian packing and C a typical circle
in P . Denote by r(C) its radius and by a(C) = 1/r(C) its curvature. Let w(C) be the
generation n ≥ 1 at which C first appears in the packing. Thus there are 4.3n−1 circles at the
nth generation.

Apollonius’ Theorem:

Given three mutually tangent circles C1, C2, C3 there are exactly two circles C and C ′

tangent to all three.

Our proof is based on the use of motions of the plane that take circles to circles (we allow
a straight line as a circle with “infinite” radius) preserve tangencies and angles. Specifically
the operation of inversion in a circle E of radius r and center O as displayed in Figure 7 is
such an operation. The transformation takes p to q as shown and one checks it satisfies the
above properties.

Figure 7
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To prove Apollonius’ Theorem, let C1, C2, C3 be as shown in Figure 8 and let ξ be the point
of tangency between C1 and C2.

Figure 8

Invert Figure 8 in a circle E centered at ξ. Then C1 and C2 are mapped to circles through
infinity, that is parallel straight lines C̃1 and C̃2, while C3 is mapped to a circle C̃3 tangent
to both as indicated in Figure 9.
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Figure 9

In this configuration where C̃1 and C̃2 are parallel lines it is clear that there are exactly
two circles, C̃ ′ and C̃, which are mutually tangent to C̃1, C̃2 and C̃3. Hence by inverting again
Apollonius’ Theorem follows.

Descartes’ Theorem:

Given four mutually tangent circles whose curvatures are a1, a2, a3, a4 (with our sign con-
vention) then

F (a1, a2, a3, a4) = 0

where F is the quadratic form

F (a) = 2a2
1 + 2a2

2 + 2a2
3 + 2a2

4 − (a1 + a2 + a3 + a4)
2 .

Proof: Again we employ inversion.

We need a couple of formulae relating the radius of a circle and its inversion in E of radius k.

Figure 10
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Inverting C in E yields a circle of radius

k2r/(d2 − r2) (1)

where r is the radius of C and d the distance between the centers of C and E.

Figure 11

Inverting the straight line ℓ in E yields a circle of radius

k2/2b (2)

where b is the distance from the center of E to ℓ.

Now let C1, C2, C3, C4 be our four mutually tangent circles as shown in Figure 12. Let E
be a circle centered at ξ = (x0, y0) the point of tangency of C1 and C2. Inverting in E we
arrive at the configuration C̃1, C̃2, C̃3, C̃4 as shown (after further translation and rotation).
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Figure 12
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Applying (1) and (2) above we find that

r(C3) = k2

x2
0 −2x0 + y20

, r(C4) = k2

x2
0 +2x0 + y20

r(C2) = k2

2(y0−1)
and r(C1) = k2

2(y0 + 1)

where k is the radius of E. Substituting a(Ci) = 1/r(Ci) in the Descartes form F and
doing some algebraic manipulation yields F (a1, a2, a3, a4) = 0 (see Coxeter [C] for a further
discussion). This proof of Descartes’ Theorem is a little unsatisfying in that it requires some
calculation at the end but it is conceptually simple. That is the proof is no more than inversion
and keeping track of the quantities under this transformation.

We can now complete our discussion of the packing P0 or any other integral packing.
Firstly according to Apollonius’ Theorem the placement of each circle in each lune region
is unique once we have a starting configuration of three mutually tangent circles C1, C2, C3.
Thus these circles determine the entire packing. Now suppose that these starting circles have
curvatures a1, a2, a3, then according to Descartes’ Theorem if C and C ′ are the two circles
tangent to C1, C2, C3 then their curvatures a4 and a′4 satisfy

F (a1, a2, a3, a4) = 0
and

F (a1, a2, a3, a
′

4) = 0 .







(3)

Thus a4 and a′4 are roots of the same quadratic equation and using the quadratic formula one
finds that

a4 + a′4 = 2a1 + 2a2 + 2a3

and
a4, a

′

4 = a1 + a2 + a3 ± 2
√
△

where

(4)

△ = a1a2 + a1a3 + a2a3 . (5)

So for our three coins with curvatures 21,24 and 28 in Figure 3 we have that △ = 1764 =
(42)2. Hence a4 and a′4 are integers and this is the small coincindence that leads to P0 being
an integral packing. Indeed for a general packing with starting curvatures a1, a2, a3; a4 and
a′4 involve a1, a2, a3 and

√
△. Now starting with these four circle C1, C2, C3, C4 we get all

future circles in the packing by taking three circles at a time and using the existing fourth
mutually tangent circle, to produce another such in the packing. In doing so we don’t need to
extract any further square roots. Thus the curvatures of the entire packing P are expressed
as sums of the quantities a1, a2, a3,

√
△, with integer coefficients. In particular when a1, a2, a3

are integers and △ is a perfect square, the packing is an integral packing. In terms of the
radii r1, r2, r3 which we assume are rational numbers the further radii of circles in the packing
lie in the field of rationals adjoin

√

(r1 + r2 + r3) r1r2r3.
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Section 3. The Apollonian Group

A deeper study of an Apollonian packing is facilitated by introducing the symmetry group
A which is called the Apollonian group. Given 4 mutually tangent circles in a packing whose
curvatures are (a1, a2, a3, a4) ∈ R4 we get 4 new such configurations by taking the 4 subsets
of 3 of the four original circles and in each case introducing a new circle in the packing using
Apollonius’ Theorem. So if C1, C2, C3, C4 is our starting configuration and we take the subset
C1, C2, C3 and generate C ′

4 from C4, we get a new configuration C1, C2, C3, C
′

4 in the packing
with C ′

4 being the new circle in the corresponding lune region. According to (4) the new
4-tuple of curvatures is a′ = (a1, a2, a3, a

′

4) where in matrix notation

a′ = aS4 (6)

and

S4 =









1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1









(7)

Taking the other subsets of C1, C2, C3, C4 yields

a′ = aSj j = 1, 2, 3

with

S1 =









−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1









, S2 =









1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1









, S3 =









1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1









(8)

Note that Sj have integer entries and that

S2
j = I . (9)

Definition: The Apollonian group A is the subgroup of the 4 × 4 integer matrices of determi-
nant ± 1 (GL4(Z)) generated by S1, S2, S3, S4.

The transformations Sj as well as those generated by them, switch the roots of one coor-
dinate as in equation (3). So the group A arises from Galois symmetries and it also acts as a
symmetry of the packing. Indeed according to our discussion above the 4-tuples of curvatures
of mutually tangent circles in a packing P are the orbits Oa = a ·A of A, where a is any such
tuple in the packing. If a is integral then so is any x in Oa and if a is primitive (that is its
coordinates have no common factor) then so is every x ∈ Oa.

We assume that our packing P like P0, is integral primitive and bounded (as in Figure 6).
In this case any x ∈ Oa is a primitive integral point, which by Descartes’ Theorem lies on the
cone V given by

V = {x : F (x) = 0} . (10)
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It is clear and one can check it directly, that

F (xSj) = F (x) for x ∈ R
4 and j = 1, 2, 3, 4. (11)

Hence
F (xγ) = F (x) for any x and γ ∈ A . (12)

Let OF be the orthogonal group of F , that is

OF = {g ∈ GL4 : F (xg) = F (x)} . (13)

OF is an “algebraic group” in that it is defined by algebraic (in this instance quadratic) equa-
tions in (xij)i=1,...,4

j=1,...4
.

Explicitly it is given by:
X SX t = S , (13′)

where S is the matrix of F , that is

F (x) = xSxt .

From (12) we have that
A ≤ OF (Z) (14)

where OF (Z) consists of the matrices in OF whose entries are integers.

This brings us to the heart of the matter, at least as far diophantine properties of an
integral packing. The group OF (Z) is a much studied and well understood group. It is
an “arithmetic” group and as such is central in the arithmetic theory of quadratic forms
(for example in connection with understanding which integers are represented by an integral
quadratic form) and also in automorphic forms. It is also big as is demonstrated by the orbit
of a primitive integral point x ∈ V prim(Z) under OF (Z) being all of V prim(Z). The salient
features of the Apollonian group A are

(i) A is small; it is of infinite index in OF (Z).

(ii) A is not too small, it is Zariski dense in OF .

(i) makes the diophantine analysis of an integral packing nonstandard in that the
familiar arithmetic tools don’t apply.

(ii) says that A is large in the algebraic geometric sense that any polynomial in the
variables xij i, j = 1, 2, 3, 4 of 4 × 4 matrices which vanishes on A must also vanish
on the complex points of OF . It is a modest condition on A and it plays a critical
role in understanding what A looks like when reduced in arithmetic modulo q, for
q > 1.
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An instructive of way of seeing (i) is to consider the orbits of A on V prime(Z). These
correspond to the different integral primitive Apollonian packings and there are infinitely
many of them. In [G-L-M-W-Y] it is shown how to use A to find a point v in each orbit aA
called a “root quadruple” which is a reduced element. The definition of reduced being that
v = (a1, a2, a3, a4), is in V prime(Z) and satisfies a1+a2+a3+a4 > 0, a1 ≤ 0 ≤ a2 ≤ a3 ≤ a4 and
a1 + a2 + a3 ≥ a4. For example for P0, the reduced v is (−11, 21, 24, 28). There are infinitely
many root quadruples, in fact one can count their number asymptotically when ordered by
the euclidian norm, see [Sa1].

Section 4. Counting Circles in a Packing

In order to investigate the diophantine properties of a packing P we need to count the
circles in P . There are at least two useful ways to order the circles:

(α) By the size of the curvature, let

NP (x) := |{C ∈ P : a(C) ≤ x}| .

(β) Combinatorially by the generation w(c). There are 4.3n−1 circles at generation n; what
is their typical curvature?

The answer to these lie in noncommutative harmonic analysis. As to the first, let δ(P ) be
the exponent of convergence of the series

∑

C∈P

r(C)s . (15)

That is for s > δ the series converges while for s < δ it diverges. Clearly δ is at most 2 since

π
∑

C∈P

r(C)2 is finite (it is the area of the circle enclosing P ). On the other hand
∑

C∈P

r(C) is

infinite, see [We] for an elegant proof and hence 1 ≤ δ(P ) ≤ 2. Also δ doesn’t depend on P
since any two packings are equivalent by a Mobius transformation, that is a motion of the
complex plane C by a conformal (angle preserving) transformation z → (αz + β)(γz + δ)−1,
αδ−βγ = 1. So δ = δ(A) is an invariant of the Apollonian group and it is known to have many
equivalent definitions. It can be estimated, [Mc] gives δ = 1.30568 . . . . Using elementary
methods Boyd [Bo] shows that

lim
x→∞

logNP (x)

log x
= δ . (16)

Very recently Kontorovich and Oh [K-O] have determined the asymptotics for NP (x). Their
method uses ergodic properties of flows on A\OF (R) and in particular the Lax-Phillips
spectral theory for the Laplacian on the infinite volume hyperbolic three manifold
X = A\OF (R)/K whereK is a maximal compact subgroup ofOF (R), as well as the Patterson-
Sullivan theory for the base eigenfunction on X.
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Theorem [K-O]: There is a positive, b = b(P ) such that

NP (x) ∼ bxδ , as x→ ∞ .

Numerical calculations [F-S] indicate that b(P0) = 0.0458 . . ..

As far as (β) goes the theory of random products of matrices, in this case Sj1Sj2 · · ·Sjm
with jk ∈ {1, 2, 3, 4} and jk 6= jk+1 for any k, of Furstenberg and in particular the positivity
of the Lyapunov exponent γ associated with such products, dictates the distribution of the
numbers log a(C) with w(C) = m. In fact there is a central limit theorem [L] which asserts
that this distribution has mean γm and variance of size

√
m as m tends to infinity. Here

γ = γ(A) ∼= 0.9149 . . . according to Fuchs [F] who has done some numerical simulation.

Section 5. Diophantine Analysis

Which integers occur as curvatures of circles C in an integral packing P ? According to
the theorem in the last section, the number of a(C)’s less than x with C ∈ P (counted with
multiplicities) is about xδ, hence one might expect that a positive proportion of all numbers
occur as curvatures. This was conjectured in [G-L-M-W-Y]. An approach to this conjecture
using the subgroups B1, B2, B3, B4 with B1 = 〈S2, S3, S4〉 etc., was introduced in [Sa1]. The
point is that unlike A, if Hj is the Zariski closure of Bj then Bj is an arithmetic subgroup
of Hj(R). In this way the study of the integer orbits of Bj falls under the realms of the
arithmetic theory of quadratic forms. In particular one finds that among the curvatures are
the set of values at integers of various inhomogeneous binary quadratic forms. Very recently
Bourgain and Fuchs have shown that the different forms are highly uncorrelated at certain
scales and as a consequence they establish;

Theorem ([B -F]):

The positive density conjecture is true, that is the set of curvatures in an integral Apollo-
nian packing has positive density in all the positive integers.

A much more ambitious conjecture about the set of numbers which are curvatures is that
it should satisfy as local to global principle. According to the asymptotics for NP (x), we have
that on average a large integer n is hit about nδ−1 times. So if n is large, one might hope that
n is in fact hit unless there is some obvious reason that it shouldn’t be. The obvious reason
is that the n’s that are curvatures satisfy congruence conditions and these can be studied in
detail.

It is here that A being Zariski dense in OF is relevant. There are general theorems
([M-V-W]) which assert that for groups such as A and q ≥ 1 an integer having its prime
factors outside a finite set of primes S = S(A), the reduction of Amod q in GL4(Z/qZ) is
the same as that of OF (Z) mod q. While the description of the last is still a bit complicated
because orthogonal groups don’t quite satisfy strong approximation (see[Ca], one needs to
pass to the spin double cover), it is nevertheless well understood. For the Apollonian group
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A, Fuchs ([F]) has determined the precise image of A in GL4(Z/qZ) for every q. In particular
the “ramified” set S(A) consists only of 2 and 3.

From her characterization one obtains the following important product structure for the
reduced orbits ([F-S]). Let Oa(q) be the reduction of Oa into (Z/qZ)4. If q = q1q2 with
(q1, q2) = 1 then Oa(q) = Oa(q1) × Oa(q2) as subsets of (Z/qZ)4 = (Z/q1Z)4 × (Z/q2Z)4

(the latter identification coming from the Chinese remainder theorem). Moreover for p ≥ 5 a
prime and e ≥ 1 Oa(p

e) = V (Z/peZ)/{0}, that is the nonzero points on the Descarte cone in
arithmetic mod pe. For p = 2 and 3 this is not true but the description of Oa(p

e) stabilizes
at e = 8 for p = 2 and at e = 1 for p = 3. With this the detailed information about the orbits
mod q it is a simple matter to determine the exact congruence conditions that the curvatures
in an integral packing must satisfy.

For example for the packing P0, the reader might have noticed that

a(C) ≡ 0, 4, 12, 13, 16, 21 (mod 24) (17)

and this is the only congruence restriction. The local to global conjecture for P0 (and a similar
conjecture applies to any integral P ) is then

Local to Global Conjecture ([G-L-M-W-Y], [F-S]):

Except for finitely many m ≥ 1, every m satisfying (17) is the curvature of some C ∈ P0.

If the conjecture is true and is proven effectively then one would have a completely sat-
isfactory description of the set of curvatures. Fuchs and Sanden [F-S] have made a detailed
numerical study of this local to global conjecture. For P0 they list the NP0(108) circles with
curvatures at most 108 and they examine those with 107 ≤ a(C) < 108 grouping them into
each of the six allowed progressions mod 24. For each progression the distribution of the
frequencies with which the numbers are hit is calculated. The means of these distributions
can be determined asymptotically using [Fu] and [K-O] and it is smallest for m ≡ 0(24) and
largest for m ≡ 21(24), in fact the latter is double the former. The results of these calcula-
tions for these two progressions are displayed by the histograms in Figures 13 and 14. The
number of exceptions that is numbers in [107, 108) which satisfy the congruence but are not
curvatures (which is the frequency of 0 in the histogram) is still sizable for m ≡ 0(24) while for
m ≡ 21(24) it is the single number 11459805. The reason for the difference is that the mean
for m ≡ 0(24) is still quite small at 12.41 while for m ≡ 21(24) it is 24.86. As x increases
the means in each progression will be of order xδ−1 and the frequency of 0 will drop. The
local to global principle asserts that from some point on this frequency count doesn’t change
and it appears to be quite plausible. From this data one might reasonably venture that every
m ≡ 21(24) bigger than 11459805 is a curvature of a circle in P0.
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To put this local to global conjecture in perspective consider the same problem for OF (Z),
rather than for A. That is the question of which numbers a are coordinates of points x ∈
V prim(Z). For a given a this is a question of representing an integer by a ternary quadratic
form. For the form at hand this is not a difficult problem (every a occurs) but if one were
to change the form F the resulting form in three variables would be quite general. That is
one is facing the question of a local to global principle (except for finitely many exceptions)
for ternary quadratic forms. This is the most difficult case of Hilbert’s 11th problem and
it has only recently been settled in general (see [D-SP], [Co]). Even there the solution is
ineffective and the local to global principle needs to be modified beyond the naive congruence
obstructions; there being obstructions coming from the spin group ([Ca pp 250]). Given this
one should be cautious about a local to global conjecture in the context of the small group
A, but my guess is something like this is true and to me this problem is a fundamental and
attractive one.

One can ask which pairs of positive integers are curvatures of mutually tangent circles
C1, C2 in P0 (here and below the pairs C1, C2 are unordered). Again there are some congruence
obstructions but this time there cannot be a stable (i.e. except for finitely many exceptions)
local to global principle. The reason is that such pairs of circles are too sparse: Let

N
(2)
P (x) = |{C1, C2 ∈ P |C1 is tangent to C2 and a(C1) ≤ a(C2) ≤ x}| .

In generating the packing, a circle placed at generation n > 1 is tangent to exactly three
circles from previous generations and its radius is no bigger than any of these three. From
this it follows that

N
(2)
P (x) = 3NP (x) (18)

and this is too small to accommodate even infinitely many local congruence obstructions.

Section 6. Primes

If you are drawn to primes then on looking at Figure 6 you might have asked if there are
infinitely many circles whose curvatures are prime? Are there infinitely many “twin primes”,
that is pairs of tangent circles both of whose curvatures are prime. The pair near the middle
with curvatures 157 and 397 is such a twin. If these sets are infinite then can one count them
asymptotically; is there a “prime number theorem”?

Theorem ([Sa1]):

In any primitive integral Apollonian packing there are infinitely many twin primes and in
particular infinitely many circles whose curvatures are prime. In fact the set of points x in
an orbit Oa = aA of a primitive integral point a ∈ V prim(Z), for which at least two of x’s
coordinates are prime, is Zariski dense in V .
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For congruence reasons (even-odd) P0 contains no prime triples, that is circles C,C ′, C ′′

mutually tangent all of whose curvatures are prime. The proof of the above theorem uses
the arithmetic groups B1, B2, B3 and B4 of A to place the problem in the ballpark of more
standard problems concerning primes. Eventually the half dimensional sieve ([Iw]) is what is
used to produce primes.

We turn to counting these primes and twin primes. What makes this feasible is the affine
linear sieve introduced recently in [B-G-S]. This sieve applies to orbits of groups such as the
Apollonian group and it achieves in this context roughly what the sieves of Brun and Selberg
do in the classical setting of the integers. Let

ΠP (x) = |{C ∈ P : a(C) ≤ x, a(C)prime}|

and the closely related weighted count

ψP (x) =
∑

C∈P

a(C) prime
a(C)≤ x

log a(C) .

For twin primes set

Π
(2)
P (x) = |{C,C ′ ∈ P | a(C) ≤ a(C ′) ≤ x, a(C), a(C ′) prime, C tangent to C ′}|

and the corresponding weighted count

ψ
(2)
P (x) =

∑

C,C′∈P

a(C)≤a(C′)≤x

a(C),a(C′) prime
C tangent to C′

log a(C) log a(C ′) .

The asymptotics of ΠP (x) and ψP (x) are related on summing by parts: ΠP (x) ∼ ψP (x)/ log x

as x → ∞. For Π
(2)
P (x) and ψ

(2)
P (x) the relation is less clear (γ1 ≤ Π

(2)
P

(x)(log x)2

ψ
(2)
P

(x)
≤ γ2 for

0 < γ1 < γ2 <∞ constants) and it is more natural to consider the weighted sum.

Using the affine sieve and standard heuristics concerning the randomness of the Mobius
function µ(n) and a nontrivial calculation, [F-S] formulate a precise “prime number conjec-
ture”:

Conjecture ([F-S]): For any primitive integral packing P , as x→ ∞

ψP (x)

NP (x)
−→ L(2, χ4)

and
ψ

(2)
P (x)

N
(2)
P (x)

−→ β ,
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where the numbers L(2, χ4) and β are

L(2, χ4) = Π
p≡1(4)

(1 − p−2)−1 · Π
p≡3(4)

(1 + p−2)−1 = 0.9159 . . .

β =
2

3
· Π
p≡1(4)

(1 − p−2)−2 · Π
p=3(4)

(1 + p−2)−2 · (1 − 2p(p− 1)−2) = 0.460 . . .

These numbers come from a detailed examination of the set Oa(q) and certain algebraically
defined subsets therof which eventually leads to the product of the local densities over primes.
It is a pleasant and unexpected feature that the prime and twin prime constants above don’t
depend on the packing P . A numerical check of these conjectures for P0 with x up to 108

is given in the graphs in Figures 15 and 16. The graph in Figure 15 is that of ψP (x)/NP (x)

against x and in Figure 16 of ψ
(2)
P (x)/N

(2)
P (x). The agreement with the conjecture is good.

Figure 15
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Figure 16

As with the classical sieve the affine linear sieve can be used to prove upper bounds which
are of the “true” order of magnitude.

Theorem ([K-O])

ΠP (x)≪
P

NP (x)

log x
;

and

Π
(2)
P (x) ≪

P

N
(2)
P (x)

(log x)2
.

Note that from the refined asymptotics of [K-O] mentioned in Section 4, it follows that

∑

C∈P

a(C)−δ = ∞ .

According to the conjectured “prime number theorem” above we should have that

∑

C∈P

a(C)prime

a(C)−δ = ∞.
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On the other hand the upper bound above for twins implies that

∑

C,C′∈P

a(C)≤a(C′)

C,C′ twin primes

a(C ′)−δ <∞ .

This is the analogue of Brun’s Theorem for the usual twin primes, that the sum of their
reciprocals converges.

There are many ingredients that go into the affine linear sieve and we end by mentioning
one of them. For q ≥ 1 the reduced orbit Oa(q) can be made into a 4-regular connected graph
by joining ξ in Oa(q) to ξSj for j = 1, 2, 3, 4. The key property proved in [B-G-S] is that for
q-square-free these graphs are an expander family as q −→ ∞, (see [Sa2], and [H-L-W] for
a definition and properties). This ensures that the random walk on Oa(q) gotten by moving
with one of each Sj at each step is rapidly uniformly mixing and this is a critical ingredient
in controlling remainder terms in the affine sieve.

Acknowledgements: Thanks to Alex Kontorovich, Gerree Pecht, Katherine Sanden and
Ann Sarnak for providing the pictures.
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