[go: up one dir, main page]

Known Exponential Amicable Pairs

This is an attempt to collect all known exponential amicable pairs. I would appreciate receiving any kind of updates and corrections. Comments are welcome too. Please visit my tables of other kinds of aliquot cycles.

The table below contains the number of exponential amicable pairs arranged according to the number of digits in the smallest member. Click on the number of cycles to see the full list of cycles. Use your browsers back function to get back here. The lists contains all pairs with the smallest member below 4×1011.

Digits 0 1 2 3 4 5 6 7 8 9
0-9000011123
10-190434131514223956
20-297497151226288367530680815907
30-391057122813801669198322842625290432393603
40-494039446045114511421240103444219918231671
50-591433134312261028932913832849820673
60-697297037408529479601032107612241127
70-791147100210411125120812761411150613291329
80-891202130212711345132114061427144114761386
90-991442147715521574150714711639181517791590
100-1091809171717271669157215671680147314311482
110-1191455145216211600184617071719177416391569
120-1291538141014211530159714861362130115451504
130-1391578185216871784164117292181189819092052
140-1492203234623692386435132362984310229852899
150-1593140295529902946384033134160390536723526
160-1693763373238624515442744364492421762515453
170-1794974473947224391411941807155626277806488
180-1895997566755596626695466386206619056249447
190-19912566137251639213111130431347111979115631231413507
200-20911958127321267611694108601031310086968290168394
210-2198352775773407347773870516589665767867678
220-2297244649166616094566654467173637260485944
230-2395775564151995056492146524383472044614675
240-2494186499348294403419240843807464241803787
250-2593555342234263165300128032885275225053066
260-2693414275529552909276025552406227222342152
270-2791995209220192076234621031960189118212289
280-2892010190918721759183819161815172617341630
290-2991586150115171605144113771426126413261218
300-3091261125211791154108912331381175520271930
310-3191853532923763631314288336318168337572775330651603
320-32949620491724765446803456524457943573419644136240426
330-33939525377453727335935352033357032873315603095429634
340-34929032275372656126243248392393722925218402093520331
350-35919530184881780417134162291513814716140301333712641
360-36912089114831095710156982992108767817279377302
370-3796895664660855647527550804644428240933818
380-3893504334529942919264424222253213719701823
390-3991643161618311472133913161181121311061131
400-4091704134112181136133312261213124412811502
410-4192307201820761873190617951885182818761867
420-4291995256822452278218620622142213320492125
430-4392032209919431901193019301808179018141668
440-4491691165216581573158315641520144015421423
450-4591470141014171379135113561338132415101543
460-4691374130613951572142114491375159115111503
470-4791456155618811917172119761835178219721832
480-4891884189318881801200818931820191018951746
490-4991796178617451691169715751682157615351456
500-5091469142114371378130713161544139413071230
510-5191188121712281158116811231122120711431052
520-52910721048952992948885947855845830
530-539790737731711674682641618613650
540-549618627548537522527557507494481
550-559479447443366425431402395351379
560-569330328336334298326314298291281
570-579304246293250284246246271221222
580-589222203209213202202184185194198
590-599178188172164188157146174172160
600-609174152146164132143150141130132
610-619132137124189166152146154247187
620-629175191171177148190167157184145
630-639155137147152165143141139138142
640-649140154149117138144140132113114
650-65910911310988991028610911288
660-669909686968010282868375
670-67980987561728876728163
680-68960576955454959694150
690-69956425640525162567976
700-70976546138544662566752
710-71944526760665254584950
720-72969766145515756515353
730-73943544155525657515348
740-74949424744383841444636
2250 pairs with 750-957 digits
total 3089296 pairs
<!-- end inserted table>

Update History:

28-Sep-2007
Now 3,089,296 pairs.
20-Nov-2006
Now 3,025,530 pairs.
29-dec-2005
18685 new pairs, mostly from Derek Ball. New record size exponential amicable pair with 957 digits in each member found by Derek Ball.
04-Oct-2005
Major update -- now 1,820,071 pairs.

Thanks to:

David Moews, Yasutoshi Kohmoto, Derek Ball


Last update: 28-Sep-2007

Jan Munch Pedersen, amicable@post.cybercity.dk