c=2n mod n | Solutions 'n' in order (e.g. gauranteed to be in sequence) |
3 | 4700063497 |
5 | 19147, 129505699483, 674344345281 |
7 | 25, 1727, 3830879, 33554425, 19584403931, 25086500333 |
9 | 2228071, 16888457, 352978207, 1737848873, 77362855777, 567442642711 |
11 | 262279, 143823239, 382114303, 1223853491, 381541784791, 556985326431 |
13 | 95, 4834519, 156203641, 135466795859 |
15 | 481, 44669, 1237231339, 1546675117, 62823773963, 284876771881, 1119485807557 |
17 | 45, 99, 53559, 1143357, 2027985, 36806085, 1773607905, 3314574181, 1045463125509, 1226640523999 |
19 | 2873, 10081, 3345113, 420048673, 449349533, 2961432773, 19723772249, 821451792317, 1207046362769 |
21 | 3175999, 54895651 |
23 | 555, 80481, 41546509, 967319517, 2196415073, 5094927987 |
25 | 95921, 24960497, 3594750257 |
27 | 174934013, 20958230885 |
29 | 777, 56679, 274197, 2359749, 2804637, 4657821, 5212515021, 49330976277, 831447303027 |
31 | 140039, 404167811, 1767944407 |
2n mod n = 3, n =
8365386194032363
2n mod n = 3, n =
63130707451134435989380140059866138830623361447484274774099906755
2n mod n = 5, n = 1643434407157 and 5675297754009
and 12174063716147 and 162466075477787
2n mod n = 7, n = 15237454403219419167053498809
2n mod n = 11, n = 98828020264153 and
894157816841269897394424491194255510200782699
2n mod n = 13, n = 1910102794991114096035717
2n mod n = 15, n = 26598440989093
2n mod n = 17, n = 3567404505159 and
106436400721299
2n mod n = 19, n = 500796684074966733196301
2n mod n = 23, n =
20116752226784148927290928186507
2n mod n = 25, n = 3746723371601 and
840968862911681
Max Alekseyev found another solution to 2^n = 3 (mod n) using this approach in November 2006. It is 3468371109448915.
Update:I found another solution 10991007971508067 in Jan 2007 continuing with my original search back in 2000-2001.
if 5|n, n=5*(4x+3) if 19|n, n=19*(18x+13) if 23|n, n=23*(11x+8) if 29|n, n=29*(28x+5) if 47|n, n=47*(23x+19) if 53|n, n=53*(52x+17) if 71|n, n=71*(35x+16) if 97|n, n=97*(48x+19) if 101|n, n=101*(100x+69)
33857 = 2^6 * 23^2 + 1 233927 = 2^3 * 3^4 * 19^2 - 1 125000 = 50^3
c | Hits |
2 | 665328 |
8 | 240284 |
512 | 87889 |
32 | 75381 |
128 | 55180 |
2097152 | 30881 |
32768 | 28355 |
2048 | 18443 |
8192 | 15830 |
131072 | 12187 |
524288 | 7045 |
8388608 | 588 |
33857 | 90 |
233927 | 84 |
125000 | 76 |
15443 | 61 |
129032 | 58 |
48707 | 57 |
35477 | 56 |
559682 | 56 |
494018 | 55 |
2^25 = 7 (mod 25) and 2^(2^25-7) = 7 (mod 2^25-7) 2^18 = 10 (mod 18) and 2^(2^18-10) = 10 (mod 2^18-10) 2^91 = 37 (mod 91) and 2^(2^91-37) = 37 (mod 2^91-37)
Consider the equation 2^n = c (mod n) Unless c=2, n cannot be prime so let's concern ourselves with composite n and represent n as n = x * p, where p is prime This requires (1) 2^n = c (mod x) (2) 2^n = c (mod p) And since n = x * p and 2^p = 2 (mod p) this means (3) 2^x = c (mod p) Therefore p must divide 2^x - c. If we factor 2^x - c into primes p, we have several solutions to (3). If it also happens that 2^n = c (mod x), then we have a solution to the problem. It should be obvious that with small x, you have a good chance of this happening, around 1/x. This is the factorization method of finding solutions and easily explains the patterns. If it happens for an existing solution n that 2^n - c = n * prime, you have around a 1/n chance of finding another solution. So the pattern isn't particularly helpful, except to identify the factors of 2^n - c may be useful in finding new solutions. But apparently no more useful than an arbitrary 2^x - c. Note though that the factorization approach is only capable of finding special solutions in practice (those that contain very small factors and one large prime factor). Peter Montgomery's solution to 2^n = 3 (mod n) required factoring 2^483-3. To just find the Lehmer solution, 4700063497, you would have had to factor 2^893-3. And for my 8365386194032363, factoring 2^4790708227-3.
2^202201409 = 99 (mod 202201409) 2^4574351 = 999 (mod 4574351) 2^32743 = 9999 (mod 32743) 2^697937887 = 99999 (mod 697937887) 2^56894809 = 999999 (mod 56894809) 2^106829527 = 9999999 (mod 106829527) 2^5451050779 = 99999999 (mod 5451050779)
2^262279 = 11 (mod 262279) 2^1917403 = 111 (mod 1917403) 2^21936793 = 1111 (mod 21936793) 2^45109 = 11111 (mod 45109) 2^?????????? = 111111 (mod ??????????) [Can you find a solution?] 2^8829626651 = 1111111 (mod 8829626651) 2^567989047 = 11111111 (mod 567989047)
2^1207 = 77 (mod 1207) 2^1271 = 777 (mod 1271) 2^419203 = 7777 (mod 419203) 2^141865 = 77777 (mod 141865) 2^40568093 = 777777 (mod 40568093) 2^164920309 = 7777777 (mod 164920309) 2^n = 77777777 (mod n), n=47222727390771757195151147189 or 5598655951447526819598923132276913265794639577197454266113243526525826813744462303340285
These are all 'work in progress', so be sure to come back later to see updates!
I setup an ECM Server on this server to factor numbers of the form 2x-3. See my ECM Project page for details if you would like to help out.