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ABSTRACT

Many systems for big data analytics employ a data flow abstrac-

tion to define parallel data processing tasks. In this setting, custom

operations expressed as user-defined functions are very common.

We address the problem of performing data flow optimization at

this level of abstraction, where the semantics of operators are not

known. Traditionally, query optimization is applied to queries with

known algebraic semantics. In this work, we find that a handful

of properties, rather than a full algebraic specification, suffice to

establish reordering conditions for data processing operators. We

show that these properties can be accurately estimated for black

box operators by statically analyzing the general-purpose code of

their user-defined functions.

We design and implement an optimizer for parallel data flows

that does not assume knowledge of semantics or algebraic proper-

ties of operators. Our evaluation confirms that the optimizer can

apply common rewritings such as selection reordering, bushy join-

order enumeration, and limited forms of aggregation push-down,

hence yielding similar rewriting power as modern relational DBMS

optimizers. Moreover, it can optimize the operator order of non-

relational data flows, a unique feature among today’s systems.

1. INTRODUCTION
We are witnessing a data explosion in a variety of domains, in-

cluding large-scale scientific data collection from various sensors,

user-generated data, and data resulting from tracking human behav-

ior online or otherwise. For example, the Large Hadron Collider at

CERN generates around 15 petabytes per year [1], and the LSST

telescope is expected to generate about 0.5 petabytes per month

when it becomes operational [8]. Similar data volumes are ex-

pected to be created by next-generation DNA sequencing technolo-

gies [6]. It is now widely believed that a number of future scientific

breakthroughs will be empowered by the ability to quickly analyze

vast amounts of data. Similarly, the competitive advantage of many

enterprises that operate on a web scale critically depends on draw-

ing insights from huge data sets.

During the last years, it became clear that relational DBMSs

could not cope with the scale and the nature of today’s big data

problems. This is due to a variety of reasons, including obso-

lete architectures [30], and trying to “fit” new problems to the re-

lational model of programming. In 2004, Google reported their

results on analyzing 100 terabytes of (mostly unstructured) data

per day using their MapReduce framework [17], a number that

grew to 20 petabytes per day in 2008 [18]. Partly motivated by

these breakthroughs, new big data analysis systems have emerged

to serve the aforementioned needs. Many of these systems such as

Hyracks [11], Dryad [25], and our own Stratosphere system [7]

adopt a data flow abstraction, where a data analysis program is

specified as a directed acyclic graph (DAG) of smaller components

that contain arbitrary user code. Even though some of these sys-

tems offer higher-level language interfaces [10, 12, 28, 31], sup-

porting parallel user-defined functions (UDFs) is a fundamental re-

quirement for these systems. Recently, commercial parallel DBMSs

such as Aster Data and Greenplum have adopted MapReduce-style

UDFs [2, 20] to explore a wider scope of applications.

The common challenge faced by these systems is to efficiently

execute parallel data flows that embed UDFs. This entails paral-

lelization, as well as reordering of operators. These two problems

are highly coupled, as the optimal parallelization strategy depends

on the operator order and vice versa. Traditional RDBMS opti-

mizers support only UDFs that follow very strict templates such

as scalar, aggregation, and table-generator UDFs. Due to these

strict templates, the main challenge for RDBMS optimizers is not

whether UDFs can be reordered but rather when it is beneficial. In

contrast, MapReduce-style UDFs implement much less restrictive

templates and hide their semantics inside general-purpose impera-

tive code, a fact that poses new challenges for optimization. Con-

ventional wisdom dictates that query optimization is possible at an

abstraction layer where the semantics and the algebraic properties

of operators are known. In this work, we build a query optimizer

that does not require this assumption. Rather, our optimizer per-

forms a fully automatic static code analysis pass over the UDFs,

discovering a handful of properties that guarantee safe reorderings.

We observe that a few properties, rather than knowledge of full

semantics, are enough to enable many optimizations, including se-

lection and join reordering, as well as limited forms of aggregation

push-down.

The contributions of this paper are the following:

1. We introduce the problem of reordering data flow programs

that consist of arbitrary imperative user-defined functions.

2. We formally establish the necessary conditions to reorder UDFs

with a fixed signature (e. g., Map and Reduce) in a data flow.

3. We show how to derive the necessary knowledge for reordering

via a static code analysis pass over the imperative UDF imple-

mentations.
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4. We design and implement a query optimizer for this setting. In

particular, we present a novel plan enumeration algorithm that

does not use algebraic properties.

5. We implement the above concepts in the Stratosphere system [4],

and conduct an extensive experimental study.

6. Our experimental results show that we can reproduce most re-

orderings done by traditional query optimizers in relational qu-

eries such as join and selection reordering and some forms of

aggregation push-down. Further, our system can automatically

find optimal plans for non-relational tasks without being in-

formed a priori about the semantics of the operators.

While we present our optimizer in the context of the Stratosphere

system, the results presented in this paper are applicable to a variety

of parallel data flow systems that use imperative UDFs.

The remainder of this paper is organized as follows. Section 2

presents background material on Stratosphere’s architecture, data

model, and programming model. Section 3 introduces the problem

by means of an example, and outlines the salient points of our so-

lution. Section 4 delves into the details, and presents formal proofs

for rewriting operators. Section 5 shows how to derive the infor-

mation required by the optimizer using static code analysis. Sec-

tion 6 presents the design of our query optimizer, including the plan

enumeration algorithm. Section 7 presents our experimental study.

Finally, Section 8 presents related work, and Section 9 concludes

and offers research directions.

2. BACKGROUND: STRATOSPHERE

2.1 System Architecture
The Stratosphere system consists of two distinct components:

The Nephele execution engine [7, 32], and the PACT compiler [7].

The user writes data analysis tasks in Java by providing first-order

functions for a fixed set of second-order functions called Paral-

lelization Contracts (PACTs, see Section 2.3 for details). The PACT

compiler is responsible for translating the user-defined program

into an efficient DAG data flow program, which is then deployed

and executed by the Nephele engine. During compilation, the PACT

compiler can exploit some declarative aspects of the PACT program

in order to make cost-based decisions similar to a relational DBMS

query optimizer, i. e., it decides on data shipping and local execu-

tion strategies for operators [7]. For example, the PACT compiler

chooses between a partitioning, replication, or combined strategy

for a parallel join (which is specified using the Match second-order

function in the PACT programming model). The work described

in this paper enables the PACT compiler to reorder operators in the

data flow, in addition to choosing parallelization strategies.

2.2 Data Model
Stratosphere has recently migrated from a key-value pair data

model to a record data model. The reasons for the new data model

are twofold: First, it increases end-user productivity by allowing

the programmer to work with more structured data rather than co-

alescing the data to a single value at every step of the data analysis

program. Second, the new data model exposes more knowledge

about the data analysis task to the compiler, making several new

optimizations possible. For example, the optimizations presented

in this paper would be rather limited if a simple key-value data

model was used.

We define a data set as an unordered list of records, and denote

it by D = [r1, . . . , rn]. A record is an ordered tuple of values, r =
〈v1, . . . , vm〉. The semantics of the values, including their type is

left to the user-defined functions that manipulate them. We define

two data sets D1, D2 as equal (denoted as D1 ≡ D2) when there

exist two orderings of their records, such that D1 = [r11, . . . , r1n],
D2 = [r21, . . . , r2m], n = m and ∀i = 1, . . . , n : r1i ≡ r2i.

Two records r1 = 〈v11, . . . , v1n〉 and r2 = 〈v21, . . . , v2m〉 are

equal (ri ≡ r2) iff n = m and ∀i = 1, . . . , n : v1i = v2i.

2.3 Programming Model
The PACT programming model [7] is a generalization of the

MapReduce programming model [17]. A PACT program is a di-

rected acyclic data flow composed of data sources, data sinks, and

operators. An operator consists of a second-order function and

an associated first-order user-defined function (UDF). In addition,

some second-order functions require the specification of special

(possibly composite) “key” fields. The first-order UDF can emit

an arbitrary number of output records per invocation, possibly with

modified value types. The second-order function defines how the

input data set is partitioned into groups and applies the first-order

function to each group independently. Hence, groups are processed

in a data-parallel fashion possibly on different nodes without in-

curring communication overhead. Thereby, the type of the second-

order function defines the parallelization opportunities for a given

operator.

There are currently five second-order functions (called PACTs)

implemented in Stratosphere: Map, Reduce, Cross, Match, and

CoGroup (see Figure 1). The Map function dictates that every in-

put record forms an individual group. The Reduce function dictates

that a group exists for every unique value of the key attribute in the

input data set, and contains all records with the particular key value.

The Cross, Match, and CoGroup second-order functions are used

to define binary operators. The Cross function forms a group from

every pair of records in its two inputs, similarly to forming a dis-

tributed Cartesian product of two sets. The Match function forms

a group from every pair of records in its two inputs, only if the

records have the same value for the key attribute. Match is there-

fore similar to an equi-join. Finally, the CoGroup function forms a

group for every value of the key attribute (from the domains of both

inputs), and places each record in the appropriate group depending

on the key value of the record.

More formally, assume two input data sets R = [r1, . . . , rN ]
and S = [s1, . . . , sM ]. The Map PACT is defined as

Map : R× f → [f(r1), . . . , f(rN )]

where f is the user-defined first-order function of Map. The Reduce

function is defined as

Reduce : R× f × K → [f(rk11 , . . . , r
k1
n1

), . . . , f(r
kl
1 , . . . , r

kl
nl
)]

where K is a set of attributes of R called the key, the active domain

of K in R is {k1, . . . , kl}, and for record rk it holds that r.K = k.

Note that the UDF f of a Reduce function operates on a list of input

records. The Cross and Match functions are defined as

Cross : R× S × f → [f(r1, s1), f(r1, s2), . . . , f(rN , sM )]

Match : R× S × K× F× f → [{f(r, s)|r.K = s.F}]

where K and F are the keys of the Match function for R and S

respectively. The CoGroup function is defined as

CoGroup : R× S × K× F× f →

[f(rv11 , . . . , r
v1
n1

, s
v1

1 , . . . , s
v1
m1

), . . . , f(r
vl
1 , . . . , r

vl
nl
, s

vl
1 , . . . , s

vl
ml

)]

where the combined active domain of K and F is {v1, . . . , vl}.

We distinguish between PACTs whose UDF is called with ex-

actly one record per input (Map, Match, and Cross) as argument
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Figure 1: (a) Map, (b) Reduce, (c) Cross, (d) Match, and (e) CoGroup second-order functions.

and PACTs whose UDF is called with a list of records per input

(Reduce and CoGroup). We call the former record-at-a-time (RAT)

operators, and the latter key-at-a-time (KAT) operators. For the lat-

ter, we refer to all input records of data set D with a specific key

value k as a key group Dk.

3. A REORDERING EXAMPLE
We address the concrete problem of optimizing PACT programs,

in which the algebraic properties of first-order functions are not

known. Our solution proceeds in three steps: First, in Section 4,

we establish the necessary conditions to reorder PACT operators.

At this stage, we treat the UDFs of operators as black boxes. Our

key insight is that a few properties, rather than full semantics, suf-

fice to establish many reordering conditions. Next, in Section 5, we

show how to safely approximate these properties, by “opening” the

black box operators via a static code analysis pass over their code.

Finally, in Section 6, we show how to enumerate plans when the

concept of algebraic expressions does not apply. We first demon-

strate the salient points of our complete solution with an example.

Assume a PACT program P that consists of three Map operators

with first-order functions f1, f2, and f3 interconnected as follows:

P : I → Map1 → Map2 → Map3 → O

The input data set I contains two integer attributes 〈A,B〉. The first

function f1 replaces B with |B|. The second function f2 emits all

records for which A ≥ 0 and filters the rest of the records, and the

third function f3 replaces A with the sum A + B. For example,

with input record i = 〈2,−3〉, the data flow is

〈2,−3〉 → f1 → 〈2, 3〉 → f2 → 〈2, 3〉 → f3 → 〈5, 3〉

while with input record i′ = 〈−2,−3〉 the data flow is

〈−2,−3〉 → f1 → 〈−2, 3〉 → f2 → ⊥ → f3 → ⊥

where ⊥ represents the empty list.

Consider now the alternative plan P ′ where the order of Map2
and Map1 is inverse:

P
′ : I → Map2 → Map1 → Map3 → O

The data flow for records i and i′ is

〈2,−3〉 → f2 → 〈2,−3〉 → f1 → 〈2, 3〉 → f3 → 〈5, 3〉

〈−2,−3〉 → f2 → ⊥ → f1 → ⊥ → f3 → ⊥

Observe that the order of Map1 and Map2 does not influence the out-

put data set O. Therefore, for input I = [i, i′], these two operators

can be safely reordered. In fact, if f2 filters a significant portion of

the records in I , this reordering is desirable. On the other hand, f1
and f3 cannot be further reordered without changing the result:

〈2,−3〉 → f2 → 〈2,−3〉 → f3 → 〈−1,−3〉 → f1 → 〈−1, 3〉

We generalize this concept in a safe manner without knowing

the semantics of the operators. Our key insight is that reasoning

about the “conflicts” in the data flow suffices to establish reorder-

ing conditions. For example, we do not need to know whether f3

computes A+B or A ·B. We only need to know that f3 replaces

the first field of its input record with a new value, which conflicts

with f2 using the first field of its input record to potentially fil-

ter some records. We can therefore establish that these operators

“conflict” on A, and cannot be reordered. This holds only if the

execution path of a UDF is uniquely determined by its input data,

i. e., communication between functions except via the explicitly de-

fined data channels of the data flow program (e. g., shared memory

or other forms of communication) is prohibited. We assume this

restriction throughout this paper.

We define a read set Rf , and a write set Wf for each opera-

tor with respect to its UDF f . These sets are defined over at-

tributes that need to be extracted from the plan. In our example

plan, we have two attributes A,B, that form the so-called global

record A = {A,B}. The read set of an operator contains all at-

tributes that might influence the operator’s output. The write set

of an operator contains all attributes whose values change with an

application of the operator. We formalize these concepts in Sec-

tion 4. Two operators “conflict” on an attribute if the attribute is

contained in both operators’ write sets, or in one operator’s read set

and the other’s write set. For example, operator f1 has Rf1 = {B},

and Wf1 = {B}, and operator f2 has Rf2 = {A}, and Wf2 = ∅.

These operators do not conflict, and can therefore be reordered.

The next challenge we address is how to derive read and write

sets among other necessary properties. In Section 5 we present an

algorithm that estimates these properties using a static code analy-

sis (SCA) pass over the code of the first-order functions. Assume

the code of the three example first-order functions shown below in

the form of 3-address code [5] where the UDFs access fields A and

B by their positions (0 and 1 respectively) in the input record:

20: f2(InputRecord $ir)
21: $a:=getField($ir,0)
22: if($a<0) goto 25

23: $or:=copy($ir)
24: emit($or)
25: return

10: f1(InputRecord $ir)
11: $b:=getField($ir,1)
12: $or:=copy($ir)
13: if ($b>=0) goto 16
14: $b:=-$b
15: setField($or,1,$b)
16: emit($or)
17: return

30: f3(InputRecord $ir)
31: $a:=getField($ir,0)
32: $b:=getField($ir,1)
33: $sum:=$a+$b
34: $or=copy($ir)
35: setField($or,0,$sum)
36: emit($or)
37: return

The instructions with labels 10 to 17 are the code of function f1,

with labels 20 to 25 of f2, and with labels 30 to 37 of f3. Consider

for example the code of function f2. Recall that f2 filters records

with negative values for attribute A. We can automatically detect

that A ∈ Rf1 by collecting all getField statements (in this case

instruction 21), and determining whether the temporary variables

introduced (in this case $a) are used in the function’s code. In our

example, instruction 22 uses the value of $a in a condition, so we

conclude that field 0 of the input record is part of the read set. In

the same way, we can detect that A ∈ Wf3 by looking at instruc-

tion 35, which potentially changes the value of field 0. We can

thus conclude that f2 and f3 conflict on field 0, and cannot be re-
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ordered. This estimation is conservative, but safe. It results in a set

of reorderings that all produce the same query result, but it might

miss valid reorderings. For example, assume that the input data set

I contains only values with A ≥ 0. Then, instructions 22 and 23

of function f2 will never be executed, and in fact, f2 and f3 can be

reordered. However, this is something that cannot be detected by

static code analysis, and this reordering will be prohibited by our

system.

4. CONDITIONS FOR REORDERING

4.1 Definitions
The user-code of operators accesses record attributes by static

field indices. However, the reordering of two operators can cause

changes of the mapping of field indices to attributes. Since the

user-code assumes the original mapping, it is essential to avoid that

attributes are accessed by wrong indices in order to preserve the

original semantics of the data flow. For this purpose, we define the

global record as a collection of every attribute that is accessed by

any operator in the execution plan. Thus, the global record includes

every attribute of the input data sets as well as the attributes that are

created by operators at some stage of the execution plan.

Definition 1. The global record A is a unique naming of all base

and intermediate attributes in the data flow. In addition, we define

a redirection map α(D,n), which maps every field index n ∈ N of

every data set D (base or intermediate) to the corresponding entry

in the global record A.

Next, we formally define the read and write sets. Denote by D

the attributes of data set D, and by #D the number of attributes

of D. The write set Wf of an operator with first-order function f

contains the attributes whose value might change after applying f .

Definition 2. An attribute A belongs to the write set Wf of an

operator with UDF f , input I , and output O iff:

(1) A = α(O,m), m > #I, or

(2) A = α(I, n), ∃i ∈ Instances(I) : ∃oi ∈ f(i) : oi[n] 6= i[n]

The definition captures the fact that an attribute is in Wf if it is

either newly created by f (case 1 of the definition), or that there

exists at least one record in the data set with a different value of this

attribute after f is applied (case 2 of the definition). The above def-

inition can be extended for UDFs that operate on multiple records.

The read set Rf of an operator with user function f contains the

attributes that might influence the operators’s output.

Definition 3. An attribute A = α(I, n) belongs to the read set Rf

of an operator with UDF f , input I , and output O iff:

∃i1, i2 ∈ Instances(I), ∀m 6= n: i1[n] 6= i2[n] ∧ i1[m] = i2[m]

(1) (|f(i1)| 6= |f(i2)|), or

(2) (∃o1 ∈ f(i1), o2 ∈ f(i2), k 6= n : o1[k] 6= o2[k])

The definition captures the fact that an attribute A can influence

f ’s output if a change on A’s value only may produce a different

output. Note that key attributes of KAT operators are always in-

cluded to the read set because they directly influence the operator’s

result. Note that the above definitions do not use the semantics of

the functions. Section 5 discusses how to approximate these sets

using static code analysis of the UDFs.

Finally, we define two conditions that are necessary for reorder-

ing of operators in most cases:

Definition 4. Two operators with UDFs f1, f2 satisfy the read-

only conflict (ROC) condition iff Rf1 ∩ Wf2 = Wf1 ∩ Rf2 =
Wf1 ∩Wf2 = ∅.

The ROC condition captures the fact that a UDF does not update

or use attributes that another UDF updates. The ROC condition

is necessary for all reorderings described in this paper. To reorder

KAT operators, we additionally need the condition that key groups

are preserved:

Definition 5. An operator with UDF f satisfies the key group preser-

vation (KGP) condition for an attribute set K ⊂ A iff (1) ∀r ∈ I :
|f(r)| = 1, or (2) |f(r)| < 1, and ∃F,F ⊂ K : ∀r, r′ ∈ I :
πF(r) = πF(r

′) ⇒ |f(r)| = |f(r′)|

The projection π of a record on a set of attributes is defined as usual.

The above definition can be extended for KAT operators. The KGP

condition states that function f , when applied to a set of records Ik
with the same value for K, either emits or filters all these records.

4.2 Reordering MapReduce Programs

4.2.1 Reordering Map Operators

In Section 3 we outlined why two Map operators that satisfy the

ROC condition can be reordered without changing the query result.

We now prove this statement formally.

Theorem 1. Two Map operators can be reordered if their first-

order functions satisfy the ROC condition.

PROOF. Assume the two plans

P : I → Mapf → S → Mapg → O

P
′ : I → Mapg → S

′ → Mapf → O
′

We prove that O ≡ O′. Assume a record i ∈ I , and let Oi =
Mapg(Mapf ([i])), O

′
i = Mapf (Mapg([i])), Si = Mapf ([i]) = f(i),

and S′
i = Mapg([i]) = g(i). It suffices to prove ∀i ∈ I : Oi ≡ O′

i.

We first observe that if the ROC condition holds, the global record

can be partitioned as A = W ∪ (Wf ∪̇Wg), where A∪̇B addition-

ally implies that A ∩ B = ∅. We define πF(r) as the projection of

record r to attribute subset F.

First, we prove that an invocation of f and g produces the same

result cardinality in both plans: |f(i)| = |f(s′j)| = k where s′j ∈
S′
i, and |g(i)| = |g(si)| = l where si ∈ Si. Records s′j ∈ S′

i

are produced by applying g to i. Recall that g can only change

Wg attributes, therefore π
W∪Wf

(s′j) = π
W∪Wf

(i). Observe that

the execution path of f depends only on the values of attributes

in W ∪ Wf . Therefore, f follows the same execution path for s′j
and i, and the cardinality of its output is the same: ∀s′j : |f(i)| =
|f(s′j)| = k. We can similarly prove |g(i)| = |g(si)| = l. This

allows us to decompose plan P for input i as

P1 :i → f → [si|i = 1, . . . , k]

P2 :si → g → [oij |j = 1, . . . , l] ∀i = 1, . . . , k

and plan P ′ as

P
′
1 :i → g → [s′j |j = 1, . . . , l]

P
′
2 :s′j → f → [o′ji|i = 1, . . . , k] ∀j = 1, . . . , l

We will now prove that ∀i = 1, . . . , k, ∀j = 1, . . . , l : oij =
o′ji. We observe that π

W
(oij) = π

W
(o′ji) since attributes in W are

not changed by either f or g. Therefore, it suffices to prove that (1)

πWf
(oij) = πWf

(o′ji), and (2) πWg (oij) = πWg (o
′
ji). The proofs

for the two cases are completely symmetric. We proceed to prove

case (1).
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From sub-plan P2 we observe that records oij are produced by

applying g to records si. Therefore, they have the same values for

all attributes that g does not change: π
W∪Wf

(oij) = π
W∪Wf

(si).

It suffices thus to prove πWf
(o′ji) = πWf

(si). Consider sub-

plans P1 and P ′
2 that show the application of f to i and s′j respec-

tively. First, observe that s′j comes from applying g to i, therefore

πWf
(s′j) = πWf

(i). The execution path of f depends only on

values of attributes in W ∪Wf . Since πWf
(s′j) = πWf

(i), the ex-

ecution of f in sub-plans P1 and P ′
2 will follow the same execution

path. Therefore, the changes applied to i will be the same as the

changes applied to s′j . Therefore, πWf
(o′ji) = πWf

(si).

4.2.2 Reordering Map and Reduce Operators

Recall that unlike the MapReduce model, the PACT model al-

lows arbitrary data flows containing Map and Reduce (among other)

operators. Assume the plan

P : I → Mapf → S → Reduceg → O

with input I having two attributes 〈A,B〉. UDF f emits all input

records with odd values both of A and B. UDF g calculates the

sum of B using A as key, and appends the sum as a new attribute

C to all of its input records. Note that the ROC condition holds.

Consider the input data set in the following example application of

the plan:
[

〈1, 1〉,〈1, 2〉,
〈2, 1〉, 〈2, 2〉

]

→ Mapf → [〈1, 1〉] → Reduceg → [〈1, 1, 1〉]

and the execution if the operators are reordered

[

〈1, 1〉,〈1, 2〉,
〈2, 1〉, 〈2, 2〉

]

→Reduceg→









〈1, 1, 3〉,
〈1, 2, 3〉,
〈2, 1, 3〉,
〈2, 2, 3〉









→Mapf → [〈1, 1, 3〉]

The ROC condition alone cannot guarantee the reordering of a Map

and a Reduce operator. The reason is that the key groups of the

Reduce operator in the two plans do not have the same cardinality,

and thus result in a different value for attribute C. This would

not be a problem if the Map operator either eliminated whole key

groups, or left them intact. Note that if Map also emitted multiple

records per call, the cardinality of the key groups would change.

Therefore, we need the KGP condition to hold as well.

Theorem 2. A Map operator with UDF f and a Reduce operator

with UDF g can be reordered if the ROC condition holds for f, g,

and the KGP condition holds for f and the key K of the Reduce

operator.

PROOF. Consider the two pipelines:

P : I → Mapf → S → Reduceg → O

P
′ : I → Reduceg → S

′ → Mapf → O
′

As before, we prove that O ≡ O′. Let I = ∪kIk, where Ik is the

key group with key value k and the plans

P : Ik → Mapf → Sk → Reduceg → Ok

P
′ : Ik → Reduceg → S

′
k → Mapf → O

′
k

It suffices to prove that Ok ≡ O′
k. Observe that if the KGP condi-

tion holds, |Sk| = |Ik|, or |Sk| = 0. If |Sk| = 0, then Mapf will also

filter all records from S′
k in P ′, and trivially Ok ≡ O′

k = ⊥. As-

sume that |Ik| = |Sk| = k, and |Ok| = l. Since the Reduce UDF

treats Ik in P ′ in the same way as Sk in P (because |Ik| = |Sk|

and the ROC condition holds), and the Map UDF emits exactly one

record per input, it holds that |S′
k| = |O′

k| = l. Therefore, we can

decompose plan P as

P1 : ∀i ∈ [i1, . . . , ik], i → f → s, s ∈ [s1, . . . , sk]

P2 : [s1, . . . , sk] → g → [o1, . . . , ol]

and plan P ′ as

P
′
1 : [i1, . . . , ik] → g → [s′1, . . . , s

′
l]

P
′
2 : ∀s′ ∈ [s′1, . . . , s

′
l], s

′ → f → o
′
, o

′ ∈ [o′1, . . . , o
′
l]

We now prove that ∀j, j = 1, . . . , l : oj = o′j . Due to the ROC

condition it suffices to prove (1) πWf
(oj) = πWf

(o′j), and (2)

πWg (oj) = πWg (o
′
j).

We proceed to prove case (1). Case (2) is proven similarly.

From sub-plan P2, and record oj , there is a record sx with the

same attribute values for Wf : ∀j, j = 1, . . . , l ∃x, x = 1, . . . , k :
πWf

(oj) = πWf
(sx). Note that Reduce may “consolidate” multi-

ple records into one, or produce multiple records per input record.

However, due to the ROC condition, attributes in Wf must be pre-

served. Similarly, from P ′
1 we have ∀j, j = 1, . . . , l ∃y, y =

1, . . . , k : πRf
(s′j) = πRf

(iy) (due to the ROC condition, at-

tributes in Rf are preserved as well). Using the same arguments

as in the proof of Theorem 1, we know that g follows the same

execution path in sub-plans P2 and P ′
1.

Therefore, f follows the same execution path for records s′j and

ix, so the result records of applying f to these records will also

share the same values for Wf attributes: πWf
(o′j) = πWf

(sx) ⇒

πWf
(o′j) = πWf

(oj).

The condition for reordering two Reduce operators are the ROC

condition and the KGP condition for both UDF-key pairs. The

proof proceeds similarly.

4.3 Reordering Binary Second­Order Func­
tions

4.3.1 Record­at­a­time Operators

We first cover plans with RAT operators that are constructed us-

ing the Cross, Match, and Map PACTs. Assume a Cross operator

with UDF f and inputs R,S. The operator applies f to every pair

(r, s) ∈ R × S. Here, the Cartesian product R × S of two data

sets R = [r1, . . . , rn], S = [s1, . . . , sm] is defined as a data set

R × S = [ri|sj : i = 1 . . . , n, j = 1, . . . ,m] where r|s is the

concatenation of records r and s. The attribute set of R × S is the

union of the attribute sets of R and S with a proper renaming (e. g.,

each attribute is prefixed by the data set name it belongs to).

We observe that we can conceptually transform a Cross operator

to a Map operator with the same UDF over the Cartesian product:

Crossf (R,S) ≡ Mapf (R× S)

We can similarly transform a Match operator with UDF f to a Map

operator with UDF f ′ over the Cartesian product:

Matchf (R,S) ≡ Mapf ′(R× S)

The difference here is that we need to change the UDF f in order to

incorporate the implicit equi-join performed by the Match second-

order function. Assume that the join keys are attributes R.A, S.B.

We substitute f with

f
′(r|s) = if (R.A = S.B) then f(r, s) else ⊥

We stress that this is a conceptual transformation in order to estab-

lish reordering conditions; all optimizations described in this paper
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are non-intrusive. This transformation simply means that the at-

tributes used as keys for the Match operator are added to the read

set Rf of the operator.

Using the above transformations, plans that contain Match, Cross,

and Map operators are equivalent to plans that contain only Map

operators and Cartesian products. Therefore, it only remains to es-

tablish when the latter two can be reordered:

Theorem 3. A Map operator with UDF f and a Cartesian product

operator R× S can be reordered as

Mapf (R× S) ≡ Mapf (R)× S

iff (Rf ∪Wf ) ∩ S = ∅, where S is the attribute set of S. The case

of pushing the operator to the other side of the Cartesian product is

symmetric.

The proof follows directly from the fact that (Rf ∪Wf )∩S = ∅ ⇒
f(r|s) = f(r)|s.

It is straightforward to construct the conditions that allow re-

ordering for Match, Cross, and Map operators using Theorems 1

and 3. We now show the proof for reordering two Match operators

with first order functions f, g, and key attributes Kf ,Kg as a series

of transformations:

(a)
Matchg

Matchf

R S

T

(b)
Mapg′

×

Mapf ′

×

R S

T

(c)
Mapg′

Mapf ′

×

×

R S

T

(d)
Mapf ′

Mapg′

×

R ×

S T

(e)
Mapf ′

×

R Mapg′

×

S T

(f)
Matchf

R Matchg

S T

Step (a) → (b) substitutes the Match operators with their Map and

Cartesian product equivalents. Step (b) → (c) reorders Mapf ′ with

the Cartesian product with T . For plans (b) and (c) to be equivalent

it is necessary that f ′ does not use attributes of T ((Rf ′ ∪Wf ′) ∩
T = ∅). Step (c) → (d) makes use of the conditions of Theorem 1

(namely the ROC condition on UDFs f ′, g′) to reorder the two Map

operators, and reorders the two Cartesian products using the normal

associativity rule. Step (d) → (e) pushes Mapg′ under the Cartesian

product, requiring the condition (Rg′ ∪ Wg′) ∩ R = ∅. Finally,

step (e) → (f) reconstructs the Match operators. By collecting the

conditions needed by the series of transformations, we arrive at the

conditions to reorder two Match operators.

Lemma 1. Two Match operators with UDFs f, g and key sets

Kf ⊂ R ∪ S,Kg ⊂ S ∪ T can be reordered iff the ROC condi-

tion holds for f ′, g′, (Rf ′ ∪Wf )∩T = ∅, and (Rg′ ∪Wg)∩R = ∅
where Rf ′ = Rf ∪ Kf , and Rg′ = Rg ∪ Kg .

By repeating the same process for each pair of Match, Cross, and

Map, we establish similar conditions for all combinations of these

operators.

4.3.2 Key­at­a­time Operators

Incorporating KAT operators (Reduce and CoGroup) requires

stricter conditions, since groups must be preserved. We first show

how to reorder a Reduce operator with a Cartesian product.

Theorem 4. A Reduce operator with UDF g and key K ∪ R and a

Cartesian product operator R× S can be reordered as

Reduceg,K∪R(R× S) ≡ R× Reduceg,K(S)

iff (Rg ∪Wg) ∩ R = ∅.

PROOF. Assume the data sets R = [ri : i = 1 . . . , n], S =
[si : i = 1 . . . ,m]. The key of the Reduce operator K∪R includes

all attributes of data set R. Note that K ⊂ S. Every record of the

Cartesian product can be written as ri|kj |s
′
k, where kj is the part of

the S record with attributes K, and s′k is the part of an S record with

non-key attributes. Every record ri|kj |s
′
k of the Cartesian prod-

uct belongs to the same Reduce group Gij , determined by ri and

kj only. The output of the plan is [g(Gij), Gij = {ri|kj |s
′
k}].

Assume that g does not use any attribute of R for any purpose

other than grouping its input data set. Then, it is safe to “push”

Reduceg to the data set S and remove the R part of the Reduce

key. This will produce groups Gj = {kj |s
′
k}, and the output of

the reduce will be [g(Gj)]. By performing the Cartesian product

of these groups with R, we get the set of records ri|g(Gj). If the

Reduce UDF g simply emits the R attributes unchanged, we have

ri|g(kj |sk) = g(ri|kj |sk).

Using the above transformation, we can, in principle, reorder Re-

duce with Match and Cross operators by transforming the latter to

Map operators over Cartesian products. It is not very often that

the Reduce key includes all attributes of a data set. However, we

can consider special cases where it is safe to add the R attributes

to the Reduce key without changing the result. One case is when

|R| = 1. This appears quite often in practice when implement-

ing SQL queries with correlated subqueries that return a single tu-

ple. More interestingly, using Theorem 4 as basis, we can arrive

at a Match-Reduce transformation similar to the invariant grouping

transformation in relational DBMSs [13]. Assume the plan

(a) Reduceg,F(Matchf,R.K=S.F(R,S))

where the Match keys are K ⊂ R, F ⊂ S, and the Reduce key

is a superset of F. Assume that F is a foreign key to K. Then, in

every record received by the Reduce operator, the F part uniquely

determines all R attributes. We can therefore add R to the key of the

Reduce operator without changing the Reduce groups, and apply

Theorem 4 to push the Reduce under the Match. As always, the

ROC and KGP conditions must hold in order to reorder the Reduce

and Map UDFs. The transformation steps taking plan (a) above as

the starting point are shown below.

(b)

Reduceg,F∪R

Mapf ′

×

R S

(c)

Mapf ′

Reduceg,F∪R

×

R S

(d)

Mapf ′

×

R Reduceg,F

S

(e)

Matchf,R.K=S.F

R Reduceg,F

S

The last step is to incorporate CoGroup operators. We note that

a CoGroup operator can be conceptually transformed to a Reduce

operator over the tagged union R ∪T S of its inputs R,S:

CoGroupg(R,S) ≡ Reduceg′(R ∪T S)

The tagged union of two data sets R and S is simply the data set R

followed by the data set S, where each record has an additional lin-

eage attribute l, which tracks the data set that the record originates

from. The CoGroup UDF g is properly annotated to distinguish be-

tween data sets based on the lineage attribute, yielding the Reduce

UDF g′.

Map and Reduce operators can be pushed down under the tagged

union R ∪T S if their UDFs operate only on one of the tagged

union’s inputs. This can be properly detected using the lineage at-

tribute l. For example, assume that we want to push a Map operator
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with UDF f under the tagged union R ∪T S, and that f uses only

R attributes. We can define a UDF fR as

fR(r) =

{

f(r) if r.l = R

r otherwise.

thus forcing the Map UDF f to ignore S records. This transforma-

tion yields

MapfR(R ∪T S) ≡ Mapf (R) ∪T S

and allows the following series of transformations that show how a

Map operator can be reordered with a CoGroup operator.

(a)

Mapf

CoGroupg

R S

(b)

Mapf

Reduceg′

∪T

R S

(c)

Reduceg′

MapfR

∪T

R S

(d)

Reduceg′

∪T

Mapf

R

S

(e)

CoGroupg

Mapf

R

S

Step (a) → (b) replaces CoGroup with its Reduce equivalent. Step

(b) → (c) uses the conditions of Theorem 2 to reorder the Map

and Reduce operators and transforms Map’s UDF f to fR. Step

(c) → (d) pushes the Map operator under the tagged union by re-

versing the previous transformation. Finally, step (d) → (e) recon-

structs the CoGroup operator and transforms fR back to f . We fol-

low the same procedure to establish reordering conditions between

CoGroup and other operators.

4.4 Possible Optimizations
We have presented the necessary and sufficient conditions to re-

order every combination of PACT operators. These conditions are

usually the ROC and the KGP conditions, together with some re-

strictions on the key of the Reduce operator.

These conditions lead to a number of possible optimizations.

First, assuming a straightforward implementation of an acyclic SQL

query as a PACT program, our conditions allow the full set of join

and selection reorderings that RDBMS optimizers consider. Sec-

ond, we allow the invariant grouping transformation [13], the most

elementary form of aggregation push-down. More advanced trans-

formations that include group-by considered by RDBMSs assume

knowledge of the nature of the aggregating function, and are thus

of limited applicability in settings of arbitrary UDFs as ours [14].

We do not allow reorderings that need semantic information to

be established, including associative side-effects. For example, we

cannot reorder two Map functions that add a constant number to

the same field. In addition, the fact that we discover the necessary

conditions for reordering through static code analysis poses further

restrictions to the possible optimizations (see Section 5 for details).

5. DISCOVERING PROPERTIES VIA

CODE ANALYSIS
The reordering proofs presented in Section 4 assume knowledge

of a global record, read and write sets for each operator, as well as

bounds on the output cardinality. In this section, we briefly sketch

our solution to estimating read and write sets, as well as creating a

global record, via static code analysis. We omit the details for emit

cardinalities, which can be estimated by traversing the control flow

graph of a UDF.

Our solution relies on a static code analysis (SCA) framework

that analyzes the Java bytecode of a UDF. We assume that the

framework provides a control flow graph and two data structures

that are obtained by a data flow analysis: A use-definition chain

USE-DEF(l, $t) of a statement l and variable $t is a list of all

possible definitions of variable $t that reach l without being over-

ridden by other definitions. A definition-use chain DEF-USE(l, $t)
is a list of all uses of variable $t defined in statement l.

For the remainder of this section, we assume that the UDF code

is formatted as typed three-address code [5]. The possible state-

ments in three-address code are definitions of a local (e. g., int i)

or a temporary (e. g., int $t) variable, assignment (e. g., $t:=3),

branching (e. g., if ($t<3) goto label), as well as basic arith-

metic and function calls. In addition, we assume the existence of an

attribute type, Attribute, as well as record types InputRecord,

and OutputRecord, and a set of functions that operate on these

types. These functions constitute essentially the assumed record

API, which is exposed to the programmer of PACT programs, and

they are gradually introduced in the course of this section.

We estimate the read set Rf of an operator by scanning its UDF’s

code for statements of the form l:$t:=getField($ir,n). State-

ment l stores the n-th field of the (parameter variable) input record

$ir to the temporary variable $t. We assume that this is the only

record API function to access a particular field of an input record.

We further assume that integer n is statically computable. Recall

that the n-th field of the input I corresponds to attribute α(I, n) of

the global record. We then look up all uses of the temporary vari-

able $t in the code using the data structure DEF-USE($t). If such

uses exist, then we add the attribute α(I, n) to Rf .

Estimating the write set Wf of an operator is more challeng-

ing than read set estimation since also implicit modifications must

be taken into account. Our record API provides two constructors

to create an output record $or. First, a copy constructor $or=new

OutputRecord($ir) to copy an input record $ir. Second, the de-

fault constructor $or=new OutputRecord() to create a new and

empty output record $or. The subtle difference is that the first con-

structor implicitly copies all attributes of the input record (Implicit

Copy) while the second method implicitly projects all attributes

(Implicit Projection). In addition, the API provides methods to ex-

plicitly copy, project, modify, and add single attributes to output

records. Therefore, the code analysis method to estimate write sets

must identify whether a user function implicitly copies or projects,

and estimate a complementary set of explicitly projected or copied

attributes. In addition, a set of modified and added attributes must

be derived.

In order to identify the implicit operation and the attribute sets

required for the write set estimation, we start by collecting all state-

ments of the form e:emit($or) which emit the output record

$or. We track the origin of $or and can safely identify the im-

plicit operation by identifying the constructor call. If both con-

structors are used in different code paths, implicit projection is the

safe choice. Subsequently, the remaining attribute sets are esti-

mated by collecting all statements s:setField($or,n,$t), that

set the n-th field of output record $or to the value of the tem-

porary variable $t. Explicit projections can be identified if $t

is null. Explicit copies require that $t was previously set by

l:$t:=getField($ir,n). This can be easily detected by looking

at USE-DEF($t). In all other cases, statement s defines an explicit

modification operation and is added to the appropriate set. Note

that it is always safe to consider s as an explicit modification. Our

implementation includes an additional record constructor $o=new

OutputRecord($i1,$i2) that concatenates two input records in

order to support efficient binary UDFs. This constructor yields im-

plicit copy operations for both input records. By looking at all

statements s, we can also keep track of the global record. A new
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attribute α(O,n) is added to the global record if integer n is larger

than #I, the number of attributes in the input I .

The most important property of any method that relies on static

code analysis is to guarantee safety. In our setting, safety is de-

fined as follows: Our analysis algorithm creates a set of properties,

which in turn lead to a certain set of possible reorderings. These

reorderings result in a set of plans P ′ equivalent to the initial plan

P . Our method is safe if P ′ and P produce the same query result

for every possible input I .

We guarantee safety through conservatism. In particular, we

guarantee that the properties discovered by our static code anal-

ysis algorithm are supersets of the true properties of any execution

of the program for any collection of input data sets. We omit the

proofs due to lack of space. The main intuition is that we consider

all possible execution paths of operators, and we add an attribute

to the global record, and read and write set of an operator when

in doubt. Since the discovered properties are supersets of the real

properties, they cause additional conflicts (see Section 4) leading

to a subset of the valid reorderings, and thus to a subset of the true

equivalent alternative plans.

6. PLAN ENUMERATION
In this section, we present an algorithm that, for a given data

flow, enumerates all data flows that can be derived by valid pair-

wise reorderings of operators. The algorithm differs significantly

from the well-known enumeration algorithms used in traditional

relational database optimizers, namely enumeration via top-down

branch-and-bound [19,21] or bottom-up dynamic programming [27,

29]. This is due to the difference in the algorithm input. Tra-

ditional relational optimizers operate on algebraic expressions on

which heuristics such as selection and projection push-down can

be applied and from which data structures such as join graphs can

be derived. In contrast, our enumeration algorithm is called with

a specific data flow instance from which all valid reordered data

flows must be generated. In the presented version, the algorithm is

restricted to tree-shaped data flows, i. e., an operator may only have

a single ancestor.

Algorithm 1 provides pseudocode for enumerating all valid alter-

natives for a given data flow. The algorithm is based on recursive

calls to enumerate alternatives for sub-flows and the exchange of

two neighboring operators. In the listing, data flows and sets of data

flows are denoted with capitalized names while operators and sets

of operators have lowercased names. The functions getRoot(D)

and rmRoot(D) return or remove the root of the data flow D, while

addRoot(D, r) appends r as root of D and setRoot(D, r) re-

places D’s root with r. For ease of exposition, the algorithm as

shown handles data flows with single-input operators only. How-

ever, it can be easily extended to deal with non-unary operators,

and our implementation can, in fact, handle binary operators.

We discuss the algorithm and argue that it computes all valid

reordered data flows with the help of an example data flow D =
[Src → Map1 → Map2 → Map3]. The flow consists of a data

source Src and three Map operators with Map3 being the root. We

assume that all Map operator pairs can be reordered except for Map2
and Map3. The algorithm starts by recursively enumerating all re-

ordered alternatives Alts−r for D−r , which is the input data flow

D minus the root operator r (Map3) (Line 18):

Alts−Map
3
= Enum-Alternatives([Src → Map1 → Map2])

= {[Src → Map1 → Map2], [Src → Map2 → Map1]}

The result of the first recursive call Alts−r is used for two pur-

poses. First, to enumerate a subset of the result Alts, namely all

Algorithm 1 Enumeration of Alternative Data Flows.

1: function ENUM-ALTERNATIVES(D)
2: input: data flow D
3: output: all possible data flows derived by reordering of D
4: Alts = mTab.get(getMTabKey(D)) // check memoTable
5: if (Alts 6= ∅) then

6: return Alts
7: r = getRoot(D) // get root r of D
8: if (r is data source) then

9: Alts = {r}
10: else if (r is data sink) then

11: D−r = rmRoot(D)
12: Alts−r = Enum-Alternatives(D−r)
13: for (A−r ∈ Alts−r) do // add r to each A−r

14: Alts = Alts ∪ {addRoot(A−r, r)}

15: else if (r is single-input operator) then

16: cand = ∅
17: D−r = rmRoot(D)
18: Alts−r = Enum-Alternatives(D−r)
19: for (A−r ∈ Alts−r) do

20: s =getRoot(A−r) // get candidate root s
21: Alts = Alts ∪ {addRoot(A−r, r)} // add r to A−r

22: if (s /∈ cand ∧ reorderable(r, s)) then

23: cand = cand ∪ {s} // enum candidate s only once
24: D−s =setRoot(A−r, r) // replace s by r
25: Alts−s = Enum-Alternatives(D−s)
26: for A−s ∈ Alts−s do // append s to each A−s

27: Alts = Alts ∪ {addRoot(A−s, s)}

28: mTab.put(getMTabKey(D), Alts)
29: return Alts

reordered flows with the original root r. This is done by simply

appending the root r (Map3) to each computed alternative A−r ∈
Alts−r (Line 21):

Alts = {[Src → Map1 → Map2 → Map3]} ∪

{[Src → Map2 → Map1 → Map3]}

Second, Alts−r is used to retrieve candidate root operators s that

can be reordered with r. For each root s of the computed alter-

natives A−r ∈ Alts−r , the algorithm checks whether it can be

reordered with the original root r (Map3) by calling the Boolean

function reorderable(r, s) (Line 22). In our example, this is

only true for s = Map1 and r = Map3 since Map3 and Map2
cannot be reordered. Therefore, Map3 replaces Map1 as root of

A−r = [Src → Map2 → Map1] , i. e., r is pushed down to data

flow D−s (Line 24):

D−Map
1
= [Src → Map2 → Map3]

The successive recursive call Enum-Alternatives(D−s) enumer-

ates all valid reorderings for the D−s (Line 25):

Alts−Map
1
= Enum-Alternatives([Src → Map2 → Map3])

= {[Src → Map2 → Map3]}

The result set Alts is amended by all valid reorderings that have s

as root. This is done by simply appending s to all reordered flows

A−s ∈ Alts−s (Line 27):

Alts = Alts ∪ {[Src → Map2 → Map3 → Map1]}

Finally, all computed alternatives Alts are returned:

Alts = {[Src → Map1 → Map2 → Map3],

[Src → Map2 → Map1 → Map3],

[Src → Map2 → Map3 → Map1]}

In order to avoid duplicate enumerations, the algorithm may only

descent once into recursion for each distinct root candidate s (Lines
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16, 22, 23). The use of a memo table reduces the number of recur-

sive descents and improves the runtime (Lines 4, 28).

The enumeration algorithm can also be easily integrated with

a Volcano-style physical optimizer using interesting properties as

described in [7, 21]. Instead of computing and returning all valid

reordered data flows, the Enum-Alternatives() function can be

adapted to compute the least expensive physical execution plan for

each interesting property. Additionally, the algorithm must take

care that at least one plan for each possible root node s of a sub-

flow is returned, in order to enumerate all possible reorderings.

Physical execution plans are generated by recursively computing

the least expensive execution plans for sub-flows, choosing local

and shipping strategies only for the root node, and connecting it

to the sub-plan. Interesting properties can be tracked during recur-

sive descent and be used to enumerate physical execution plans for

sub-flows. By integrating cost-based physical optimization in the

enumeration algorithm, the principle of optimality can be exploited

which effectively reduces the number of enumerated alternatives.

In contrast to optimization of relational queries, our approach

for enumerating reordered data flows is limited by the choice of

the initial data flow. For some queries, such as queries that include

circular join graphs, the initial data flow already implies a plan de-

cision that cannot be changed by reordering operators.

7. EVALUATION
We implemented a prototype to evaluate our approach for data

flow optimization. The prototype is based on a pre-release snapshot

of the next version of the Stratosphere system which is available as

open source [4]. Furthermore, we implemented data processing

tasks from different domains as PACT programs to experimentally

evaluate and validate our approach. The domains include relational

OLAP, as well as weblog clickstream processing and biomedical

text mining. Our experimental evaluation covers the following as-

pects. First, we assess the optimization potential for parallel data

flows. Second, we evaluate the plan space enumerated by our op-

timizer. Third, we discuss the overhead of the plan enumeration

algorithm. Finally, we verify that static code analysis can be used

to derive the necessary properties for reordering UDFs.

We start discussing our prototypical implementation and present

the PACT programs used for evaluation before we show and discuss

experimental results.

7.1 Experimental Setup
The existing optimizer of Stratosphere performs cost-based phys-

ical optimization as known from parallel relational optimizers, i. e.,

it selects data shipping and execution strategies such as broadcast-

ing and hybrid-hash joins for a given data flow [7]. The cost model

is a combination of network IO, disk IO, and CPU costs of UDF

calls. For result size and cost estimations, the optimizer relies on

hints such as “Average Number of Records Emitted per UDF Call”,

“CPU Cost per UDF Call”, and “Number of Distinct Values per

Key-Set”. These can be provided by the user, a language compiler

(e. g., Hive or Pig), or obtained by runtime profiling.

In order to implement our prototype, we adapted the optimiza-

tion process of Stratosphere’s optimizer in the following ways. Prior

to plan enumeration, the optimizer obtains information about the

UDFs which is required to reason about reorderability of operators.

This information can be provided by manually attached annotations

or derived by an SCA component. Our SCA component is based on

the Soot framework [3], which provides all features required by our

code analysis technique (see Section 5). It does also take care of

establishing the global record. After the information has been ob-

tained, all valid alternative data flows are computed using the enu-

meration algorithm presented in Section 6. The existing cost-based

optimizer [7] is called for each alternative to choose shipping and

local strategies and compute a cost estimate. Finally, the cheapest

plan is selected and returned for execution.

We perform our experiments on a cluster of four machines each

being equipped with two Intel Xeon E5530 Quadcore CPUs, 48

GB RAM, and ten 250 GB disks for data bundled in a RAID5.

The machines are connected with 1 GBit Ethernet and run Linux

(Ubuntu Server 10.04.3 LTS), Sun Java 6, and HDFS 0.20.2. We

execute all tasks with a degree of parallelization of 32.

7.2 Evaluation Programs
We evaluate our approach using four tasks from different do-

mains. Algebraic optimization of relational queries is best known

from relational DBMS but also applied in the context of parallel

data flow systems by higher-level languages such as Hive [31],

SCOPE [12], and Tenzing [16]. In order to show the effectiveness

of our approach, we implemented two queries of the TPC-H bench-

mark for evaluation. Parallel data flow engines are commonly used

for non-relational tasks. We show the applicability of data flow op-

timization for such domains by providing two non-relational tasks,

namely biomedical text mining and weblog clickstream processing.

All four tasks are implemented as handcrafted PACT data flows. In

this section, we shortly present all tasks and their implementations.

Relational OLAP: We implemented slightly modified variants of

queries 7 (where we reduced the selectivity of the shipdate filter

and removed the final sorting) and 15 (where we removed the fil-

ter on total revenue) from the TPC-H benchmark to cover rela-

tional analytical tasks. For our experiments, we run both queries on

a 400 GB TPC-H data set. Query 7 applies a local predicate on the

lineitems relation, joins six relations with circular-connected join

predicates, and finally performs a grouping with sum aggregation.

Figure 2(a) shows our PACT implementation. All joins are imple-

mented as Match operators except the join with the disjunctive join

predicate (nation1 ✶ nation2), which is implemented as a fil-

tering Map operator. Grouping and sum aggregation are done by a

Reduce operator.

(a)
Reduce γ n1,n2,

year,
∑

vol

Mapσ(n1=x∧n2=y)
∨(n1=y∧n2=x)

Matchs ⊲⊳ n2

Matchc ⊲⊳ n1

Matcho ⊲⊳ c

Matchl ⊲⊳ o

Matchl ⊲⊳ s

Mapσ(date≥a)
∧(date≤b)

li

s

o

c

n1

n2

(b)
Reduce γ n1,n2,

year,
∑

vol

Mapσ(n1=x∧n2=y)
∨(n1=y∧n2=x)

Matchc ⊲⊳ n1

Matchl ⊲⊳ s

Matcho ⊲⊳ c

Matchl ⊲⊳ o

Mapσ(date≥a)
∧(date≤b)

li

o

c

Matchs ⊲⊳ n2

s n2

n1

Figure 2: PACT data flows of Query 7: (a) Implemented data

flow, (b) 1st ranked reordered data flow.

Our query 15 applies a local predicate on the lineitem relation,

joins it with the supplier table, and groups and aggregates to com-

pute the final result. We implemented the local predicates as a Map,

the join as a Match, and the grouping and aggregation as a Reduce
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operator (see Figure 3(a)). Note that the join predicate and the

grouping clause reference the same attribute (s key). As shown

in Section 4.3.2, this is a necessary condition to reorder a Match

and a Reduce operator.

(a)
Matchs ⊲⊳ l

s Reduce γ s key,∑
revenue

Mapσ(date≥a)
∧(date≤b)

l

(b)
Reduce γ s key,∑

revenue

Matchs ⊲⊳ l

s Mapσ(date≥a)
∧(date≤b)

l

Figure 3: PACT data flows of Query 15: (a) Implemented data

flow, (b) Data flow with Match before Reduce.

Text Mining: We implemented a text mining task that detects re-

lationships between genes and drugs described in biomedical text

corpora. The data flow is a pipeline of Map operators which ex-

tract entities and relationships by applying several natural language

processing (NLP) algorithms to the input. Our program takes a

text collection as input and performs some linguistic preprocess-

ing, e. g., tokenization and part-of-speech tagging on the input, to

enable entity and relation extraction. In order to reduce interme-

diate result set sizes, each entity or relation extraction component

also works as a filter by forwarding only those records that actu-

ally contain a gene, drug, or relation mention. Most NLP compo-

nents are very compute-intensive since they often call third-party

machine-learning or automaton-based components to enable the

extraction process. Furthermore, most components have dependen-

cies on other components to be executed in advance. These depen-

dencies limit the set of valid reordered data flows. Optimization

potential arises from different filter selectivities and varying exe-

cution costs for the text mining components. We execute the text

mining data flow on a 425 MB subset of the PubMed data set.

Clickstream Processing: Weblog processing is a common exam-

ple of non-relational data flows [20]. We implemented a task that

processes web shop clickstream data (see Figure 4(a)). The task

extracts click sessions that lead to buy actions and augments them

with detailed user information. Such tasks are common preprocess-

ing steps for data mining algorithms. In our scenario, a clickstream

entry contains an IP address, a timestamp, and a visited URL. The

URL encodes a session id, and the performed user action. The first

Reduce operator filters on sessions that include at least one buy ac-

tion. The successive Reduce operator condenses a session into a

single record. The following Match operator joins by session id

with a relation that resolves session ids to ids of logged in users,

thereby selecting only sessions with logged in users. Finally, a sec-

ond Match operator appends detailed user information by joining

on the user id. For our experiments, we ran the task on 430 GB

click, 13.8 GB login, and 9.2 GB user info data.

(a)
Match

Append User Info

Match
Filter Logged-In Sessions

Reduce
Condense Sessions

Reduce
Filter Buy Sessions

click

login

user info

(b)
Match

Append User Info

Reduce
Condense Sessions

Reduce
Filter Buy Sessions

Match
Filter Logged-In Sessions

click login

user info

Figure 4: PACT data flows of clickstream processing task: (a)

Implemented data flow, (b) 1st ranked reordered data flow.

7.3 Experiments
Optimization Potential: Query optimization as performed by mod-

ern relational DBMSs has the potential to improve query execution

time by orders of magnitude. Our first set of experiments assesses

the potential of our generic data flow optimization technique. We

enumerate all possible data flows for a given PACT program. Each

reordered alternative is fed into the physical optimizer where ship-

ping and local execution strategies are enumerated, and cost esti-

mates are obtained. We sort the resulting plans in ascending order

by their estimated costs and assign a rank to each plan that corre-

sponds to its position in the list. We pick ten plans in regular rank

intervals from the list and execute them. For each executed plan, we

plot the cost estimate of the optimizer and the actual runtime (av-

eraged over three runs), both normalized by the lowest estimated

costs and averaged runtime respectively.

Figure 5 shows the results for TPC-H query 7. The enumera-

tion algorithm explored a space of 2518 alternative plans. We see

that the plan with the least estimated costs provides also the least

execution time with an absolute runtime of roughly 6 minutes (see

Figure 2(b) for this plan). The last ranked plan is slower by a factor

of 7 and requires the most time for execution (about 45 minutes).
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Figure 5: Normalized cost estimates and execution runtime for

10 regularly picked execution plans of the TPC-H query 7.

Figure 6 shows the estimated costs and runtimes for selected

plans of the text mining task. The best plan (according to estimated

costs) outperforms the worst by almost an order of magnitude.
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Figure 6: Normalized cost estimates and execution runtime for

10 regularly picked execution plans of the text mining job.

Our experiments show that reordering of data flows can lead to

significant performance improvements. Due to the observation that

in general execution plans with higher cost estimates require more

time for execution, we can also approve the validity of the opti-

mizer’s cost model. We note that Stratosphere does not support in-

dexes, columnar layouts, or materialized views yet. Therefore, all

execution plans result in full scans of all included data sets, which

limits the achievable runtime improvements.

Plan Enumeration Space: We continue discussing the plan enu-

meration space with TPC-H query 15. Our implementation is based

on a Map, a Reduce, and a Match operator (see Figure 3). We can

exchange Match and Reduce since the ROC condition is fulfilled,

Match preserves the group cardinality because it is a PK-FK join,

and Reduce groups on the match key (s key). This is essentially
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an aggregation push-up rewrite that could also be applied by a rela-

tional optimizer. Besides the changed order of Reduce and Match,

the rewrite also leads to different physical plan choices.

For the data flow with Reduce being the input of Match (Fig-

ure 3(a)), the physical optimizer chooses to partition the input of

Reduce and establish the groups by sorting. The grouped and ag-

gregated result is locally forwarded into the Match operator and

used to build a hash table. Since Match operates on the same key

as Reduce, the partitioning property remains and can be reused. To

compute the final result, the supplier relation is also partitioned,

shipped to the Match operator, and probed against the hash table.

In fact, the optimizer could also choose to reuse the sorting of Re-

duce and perform a sort-merge join for Match. However, this would

require to sort the supplier relation.

The alternative data flow with Match being the input of Reduce

(Figure 3(b)) is executed using a different shipping strategy. In this

case, Match’s lineitem input is much larger than the supplier input,

since it has not been aggregated as in the previous case. Therefore,

the optimizer decides to broadcast the much smaller supplier input

to all parallel instances of Match and build a hash table from it.

The lineitem side is locally forwarded and probed against the hash

table. The result is partitioned and shipped to Reduce which groups

by sorting and computes the final result.
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Figure 7: Normalized cost estimates and execution runtime for

all 4 execution plans of the clickstream processing job.

As previously stated, our optimizer is also able to reorder non-

relational operators. Figure 4 shows (a) the implemented PACT

program and (b) the data flow chosen by the optimizer for the click-

stream processing task. Both Reduce operators are non-relational

operators. The “Filter Buy Sessions” UDF is called with all click

records of a session and checks whether at least one click performs

a buy action. In that case, all click records are forwarded, other-

wise none. The subsequent “Condense Sessions” UDF collects all

clicks of a session, merges them into a single record and forwards

it. Comparing the best performing and the implemented data flow,

we see that the optimizer pushed the selective join (“Filter Logged-

In Sessions”) below both non-relational Reduce operations. We are

not aware of a data processing system that is able to perform sim-

ilar optimizations. Figure 7 gives the estimated costs and runtimes

of all four execution plans. The best performing plan beats the im-

plemented data flow (Rank 3) by a factor of 1.4 or 13:47 minutes.

Our optimizer explores large fractions of the search space that

conventional relational optimizers cover, including bushy join or-

ders (Figure 2), pushed aggregations (Figure 3), and reasoning about

interesting properties [7]. Furthermore, we show that our approach

enables optimizations that are not supported by any current data

analysis system we are aware of (Figure 4).

Enumeration Time: Our enumeration algorithm is facing the same

problem of exponential search space sizes as relational optimizers.

As previously discussed, our prototypical implementation first enu-

merates all valid reordered data flows and subsequently calls the

physical optimizer for each candidate. This implementation does

PACT Task Enumerated Orders with

Manual Annotation

Enumerated

Orders with SCA

Clickstream 4 3 (75%)

TPC-H Q7 2518 2518 (100%)

TPC-H Q15 4 4 (100%)

Text Mining 24 24 (100%)

Table 1: Comparing number of reordered alternatives for man-

ually annotated and automatically derived read and write sets.

not permit cost-based search space pruning and it is not tailored to-

wards efficient plan enumeration. In Section 6 we gave an intuition

how the enumeration algorithm could integrated with physical op-

timization. An important part of our future research is to leverage

well-known search space pruning techniques and benchmark the

overhead of our query optimizer. For all queries presented so far,

which represent typical data analysis tasks, plan enumeration took

less than 1654 ms using our naive implementation. The overhead

of performing the static code analysis is virtually zero.

Feasibility of Static Code Analysis: We evaluate the feasibility of

static code analysis to determine read and write sets of UDFs. For

this purpose, we compare the number of reordered alternative data

flows that were enumerated based on read and write sets which

were manually annotated and automatically derived using static

code analysis. Table 1 gives the results for all presented evaluation

tasks. The information extracted by our prototypical implementa-

tion of the SCA component enables the optimizer to enumerate al-

most all valid plans for our four evaluation data flows. The current

implementation is restricted to information that is available at UDF

compile time and can be easily accessed such as field accesses with

literals and final variables. This can be extended to more exhaus-

tive control flow tracking and incorporation of job configurations

which are only available at optimization time.

8. RELATED WORK
We are not aware of any work that aims to optimize data flows

with unknown operator semantics by reordering. The work most

relevant to ours is Manimal [26]. Manimal applies static code anal-

ysis to MapReduce programs to identify relational-style selections

and projections. An optimizer selects from available B+-tree in-

dexes and decides on the use of delta-compression. Manimal’s op-

timizations are orthogonal to ours (operator reordering), and would

constitute valuable additions to our system.

Optimization of user-defined predicates was discussed in the con-

text of extensible RDBMSs [15, 23]. This line of work only con-

sidered UDFs with the semantics of relational selection operators.

Therefore, the challenge was not to identify when reordering is pos-

sible, but when it is beneficial.

A number of recent approaches consider optimization in the con-

text of translating a higher-level algebraic specification to a data

flow. Higher-level specifications include AQL [9], Pig [28], Jaql

[10], Hive [31], Tenzing [16], DryadLINQ [33], and SCOPE [12].

The target parallel data flow platforms include MapReduce [17],

Dryad [25], and Hyracks [11]. In contrast to these approaches, our

work applies optimization directly to data flows without knowledge

of the operator’s algebraic properties. We view the two approaches

as complementary; while we show that some optimizations can be

done at the data flow level, thus making a data flow engine able to

seamlessly handle multiple data and programming models, other

optimizations are semantic in nature and can only be done at a

higher level. We note that higher-level language translators can

enrich data flows with reordering information based on the opera-

tors semantics, hence enabling the unified optimization of operator

order and physical optimization at the data flow abstraction.
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The Starfish project applies cost-based optimization to MapRe-

duce programs [24]. In contrast to our work, Starfish does neither

inspect or optimize the program itself. Instead, it uses runtime pro-

filing and cost-based optimization to generate well-performing job

configurations for Hadoop MapReduce jobs.

Finally, we draw inspiration from the Ferry project [22]. Ferry

follows an algebraic approach to push data processing instructions

from the application into the DBMS by translating general-purpose

(application) code to SQL queries.

9. CONCLUSIONS AND FUTURE WORK
We propose and address the problem of optimizing data flows

that consist of black box user-defined functions written in an imper-

ative language. In this setting, the algebraic properties of the oper-

ators of the data flow are unknown, and must be discovered. Our

key insight is that a handful of properties, which can be discovered

using static code analysis, suffice to establish many optimizations

known from relational algebra, including filter and join reordering,

and some forms of aggregation push-down. We formally establish

reordering conditions, show how to estimate the desired properties

via static code analysis, and present a plan enumeration algorithm.

We have prototyped our solution in the Stratosphere system. Our

experimental results show that our approach is able to reorder re-

lational and non-relational data flows, leading to runtime improve-

ments of up to an order of magnitude. Moreover, we demonstrate

that our approach is able to perform optimizations which algebraic

optimizers are not capable of. Our experiments attest, that our

static code analyzer successfully extracts properties from black box

UDFs that are required for reordering them.

We identify several avenues for future research. While this work

explores which reorderings of data flows are possible, we plan to

identify which reorderings are beneficial. This will include esti-

mating the selectivity and execution cost of black box operators.

Furthermore, we plan to investigate a wider range of optimizations

including managing attribute projections globally in a plan, opti-

mizations that take into account some semantic information of op-

erators, and intrusive optimizations that change the code of the user

functions. The latter could include, dissecting an operator into in-

dependent components that can be then individually reordered. We

plan to exploit the state of the art of semantic program analysis to

gain more information about the internals of the operator UDFs.
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N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. B. Zdonik.
One size fits all? Part 2: Benchmarking studies. In CIDR,
pp. 173–184, 2007.

[31] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive - A warehousing solution
over a map-reduce framework. PVLDB, 2(2):1626–1629, 2009.

[32] D. Warneke and O. Kao. Nephele: Efficient parallel data processing
in the cloud. In SC-MTAGS, 2009.

[33] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
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