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Vectorial Incremental Nonconservative Consistent Hysteresis
model

V. François-Lavet1, F. Henrotte2, L. Stainier3, L. Noels4 and C. Geuzaine1
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Abstract

This paper proposes a macroscopic model for ferromagnetic hysteresis that is well-suited for
finite element implementation. The model is readily vectorial and relies on a consistent thermody-
namic formulation. In particular, the stored magnetic energy and the dissipated energy are known at
all times, and not solely after the completion of closed hysteresis loops as is usually the case. The
obtained incremental formulation is variationally consistent, i.e., all internal variables follow from
the minimization of a thermodynamic potential.

1 Introduction

Empirical models are essentially interpolated measurements. They offer a continuous representation of
measurements, which are discrete by nature. Phenomenological hysteresis models such as the Preisach
or Jiles-Atherton models [4, 5, 6] belong to this category. No physical consideration presides over
the choice of their particular family of interpolation basis functions, except their ability to accurately
reproduce the measured data.

Because of their lacking a true physical background, empirical models suffer in general from poor
accuracy when evaluated outside the ranges where measured data is available, hence the observed trend
towards carrying out extensive and expensive measurement campaigns. In practice, however, it is im-
possible to calibrate a model for all possible conditions—even though an important role of a model
is precisely to predict material responses in situations where measurements are difficult or impossible
to obtain. In addition, most of the hysteresis models currently used in the electromagnetics commu-
nity [4, 5, 6, 7] are fundamentally scalar models. In order to generalize them to 2-D or 3-D they must be
vectorized, an operation quite artificial and for which a true theoretical basis is lacking.

Some naturally vectorial approaches do exist: a first one is to treat the problem directly at the micro-
scopic level and use multi-scale techniques [8, 9] to trace the useful microscopic information over to the
macroscopic level. The microscopic scale is that of Weiss domains and Bloch walls. These techniques
are definitely relevant to improve the understanding of the microscopic phenomena involved. However,
considering their very high computational cost, they are impracticable in modeling engineering applica-
tions. A second approach is based on the optimization of the parameters of parametric algebraic models
so as to match measured hysteresis curves, e.g., via neural networks [10]. This approach gives interest-
ing results, but as with all empirical models the connection with thermodynamics is lost and the energy
consistency is not necessarily ensured.

The purpose of this paper is to go beyond the limitations of current models and to propose a vec-
torial hysteresis model with a clear-cut relation to the fundamental principles of thermodynamics, and
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therefore a wide applicability. We will show that the proposed model is numerically efficient and can be
easily incorporated into existing Finite Element (FE) codes.

2 Thermodynamic foundation

2.1 Basic principles

In a ferromagnetic material, the first law of thermodynamics, stating conservation of energy, writes

u̇ = Ẇ + Q̇ = h · ḃ− div q, (1)

where u is the internal energy, W and Q are the amounts of work and heat supplied to the system, h
and b are the magnetic field and the magnetic induction, and q is the heat flux. (The dot above a symbol
stands for the time derivative.)

The second law of thermodynamics states that there exists a quantity s called entropy such that:

ṡ ≥ −div (
q

T
), (2)

where T is the temperature and q/T is the entropy flux. This equation can be rewritten

T ṡ+ div q − q · gradT

T
≥ 0. (3)

The first two terms in (3) define the dissipation functional

d := T ṡ+ div q, (4)

whereas the third term corresponds to the thermal dissipation. Using (4), equation (1) becomes

u̇+ d = h · ḃ + T ṡ. (5)

In a thermodynamic approach, functionals are primary quantities from which constitutive relation-
ships are derived by application of general principles. The actual characteristics of the considered
ferromagnetic material are thus introduced in the system by selecting appropriate expressions for the
functionals u and d.

2.2 Ferromagnetic materials

The proposed model builds on the thermodynamic representation of the hysteresis proposed in [1, 2, 3],
but additionally provides a complete variational setting inspired from the kinematic hardening theory
of plasticity [11, 12, 13]. The first and second principles of thermodynamics are explicitly accounted
for in the formulation of the model, which is based on the following simplifying assumptions that have
proved to be largely correct in practice: (i) Hysteresis losses and eddy current losses can be decoupled,
and hence treated separately in a model. This assumption has been discussed in detail by Bertotti [4],
and we thus only deal with hysteresis losses in this paper. (ii) The induction field

b := J0 + J (6)

is a sum of two components: an empty space magnetization J0 := µ0h (where µ0 is the magnetic per-
meability of vacuum), which is always linear and reversible, and a material magnetization J , associated
with the presence of microscopic moments attached to the atoms of the material body, and that can be
both nonlinear and irreversible. (iii) Hysteresis losses can be interpreted as the power delivered by a
constant amplitude generalized force parallel to the variation of the magnetization, i.e., the magnetic
equivalent of a dry friction force [2]. The physical origin of this force is the pinning effect that opposes
the motion of Bloch walls.

Entropy is assumed constant in what follows (ṡ = 0), i.e., thermal effects are neglected. Moreover,
in order to focus on the main aspect of the paper, which is the modelling of the hysteresis behaviour, the
terms involving the empty space magnetization J0 are provisionally disregarded until section 3.



Figure 1: Graphical representation of the vector equation (9). Left: single magnetization (one internal
variable). Right: magnetization subdivided in 3 parts (3 internal variables).

2.3 Differential model

Under the assumptions detailed above, the energy density u is a function of J only and one has

u = u(J), u̇ = hr · J̇ , with hr := ∂Ju. (7)

The dissipation function d describing magnetic hysteresis as a magnetic analogous of a dry friction force
reads

d = χ|J̇ | = hi · J̇ , with hi := ∂J̇d = χ
J̇

|J̇ |
. (8)

Substituting (7) and (8) into (5) yields (h− hr − hi) · J̇ = 0. As the latter identity must always be true,
the factor between parentheses vanishes and the following governing equation for the ferromagnetic
material is obtained:

h− hr − hi = 0, or h− ∂Ju− χ
J̇

|J̇ |
= 0. (9)

Since χ is a constant and J̇/|J̇ | is a unit vector, the vector equation (9) can be given the graphical
representation given in Fig. 1 (left). The vector hr is linked with the magnetization of the material J by
(7), and the tip of the applied field h is located inside a sphere of radius |hi| = χ centered at the tip of
hr. (A further interpretation when J is decomposed into several parts will be given in Section 2.6.)

2.4 Variational model

The governing equation (9) obtained in the previous section is a differential one. It can be discretized in
time and implemented directly in a time-stepping FE model. This is for the most part the approach of
Henrotte et al. in [2] where, however, a simplified case is presented: the unit vector J̇/|J̇ | is assumed
parallel to the vector h−hr(Jp), where Jp is the value of J at the previous time step, instead of parallel
to h − hr(J), where J is the value at the current time step. This simplification makes the update
algorithm explicit and avoids carrying out nonlinear iterations.

If one wants an exact solution of (9), a robust method to solve the nonlinear problem is required.
An interesting approach consists in building a functional of J whose minimization at each time step
amounts to solve (9). This variational approach is inspired from the kinematic hardening theory of
plasticity [11]. The functional is determined in two steps.

First, the functional
g(h,J) := u(J)− h · J (10)

is formed, such that
∂Jg = ∂Ju− h. (11)



Second, one notes that d is a function of J̇ (see (8)), whereas the sought functional should be a function
of J . This is solved by defining a pseudo-potential

D(J ,Jp) := χ|J − Jp|, (12)

whose gradient

∂JD = χ
J − Jp

|J − Jp|
≈ χ J̇

|J̇ |
= hi (13)

is a good approximation of the gradient of d for sufficiently small time steps. Equation (9) can thus
finally be rewritten

∂J (g +D) = 0, (14)

and the sought functional is
Ω(h,J ,Jp) = g(h,J) +D(J ,Jp). (15)

The updated value of J follows from minimizing Ω at each time step. This variational update is a
time-discretized variational statement of the constitutive relation (9).

The constitutive behaviour of the ferromagnetic material is thus completely determined by two quasi-
thermodynamic functionals: the potential g, which is related to the magnetic energy u, and the pseudo-
potential D. The equivalent of the yield surfaces of the kinematic hardening is, in the case of the
ferromagnetic material, the sphere depicted in Fig. 1 (left).

There exists an analogy with the stress-strain model of St Venant with hardening. Hardening is in-
troduced by connecting nonlinear springs in parallel with a slider, i.e., a friction element characterized
by a limit force χ. The magnetic field h corresponds to the stress whereas the magnetization J corre-
sponds to the elongation. Starting from zero, the applied magnetic field h is increased. Before it reaches
the limit χ (h < χ), the applied field is equilibrated by the force of the slider, and no magnetization
occurs (J̇ = 0). When h reaches the limit force χ, the slider is set into motion, which means that the
magnetization J increases. The power delivered in the slider χJ̇ is dissipated, whereas the recoverable
energy stored in the spring increases. When the magnetic field h comes down below χ again, the slider
gets locked, and magnetization is frozen (J̇ = 0).

2.5 Saturation characteristic

It is necessary to build the functional u to select a parametric saturation curve, whose parameters will be
identified from measurements. In case of nonoriented steels, it is enough to work with a simple scalar
saturation curve like

hr(J) = α atanh(J/JS), (16)

and to assume that the vector field hr is parallel with J :

hr(J) = hr(J)
J

|J |
. (17)

The advantage of the atanh function is that it can be derived and integrated analytically. (Other choices
could also be made: see e.g. [2].)

The saturation curve (16) depends on two parameters only: JS is the saturation magnetization, and
α is a characteristic magnetic field inversely proportional to the slope of the curve at the origin. The
corresponding expression for the magnetic energy is obtained by integration:

u(J) :=

∫ J

0
hr(x) dx = αJS

( J
JS

atanh(
J

JS
) +

1

2
ln |( J

JS
)2 − 1|

)
. (18)



Figure 2: Pictorial representation of the model with N internal variables.

2.6 The model with N spheres

The accuracy of the hysteresis model depends on the representation of the statistical distribution of the
pinning point strengths in the material. The characteristics of this distribution vary largely across the
different types of soft and hard ferromagnetic materials. This can be accounted for in the model by (i)
dividing the material magnetization J into N parts

J =

N∑
k=1

Jk (19)

and (ii) defining for each part Jk a time-independent pinning force χk. This piecewise representation
has practical advantages regarding the implementation and implies no limitation of the accuracy as the
number of divisions N can be chosen arbitrarily large. (Higher order (non-piecewise) representations
could be considered as well at the expense of a more sophisticated implementation.)

The Jk’s are the internal variables of the hysteresis model. Since they are additive (cf. (19)), they
are all subjected to the same applied magnetic field h. The situation can be pictorially represented as the
series connection of N cells (Fig. 2). The elongation of each cell corresponds to a partial magnetization
Jk, which is caused by the applied field h minus the force exerted by the parallel connected slider with
threshold force χk. The saturation law for each cell is

hkr (J) = α · atanh(Jk/Jk
S), hk

r (Jk) = hkr (J j)
Jk

|Jk|
, (20)

and the total energy density is assumed to be simply the sum of cell-based energy densities:

u :=
N∑
k=1

u(Jk), u(Jk) :=

∫ Jk

0
hkr (x) dx = αJk

S

(
Jk

Jk
S

atanh(
Jk

Jk
S

) +
1

2
ln |(J

k

Jk
S

)2 − 1|
)
. (21)

As the dissipation functional reads

D =

N∑
k=1

χk|Jk − Jk
p |, (22)

the functional Ω (15) can be written as a sum of independent cell-based Ωk functionals

Ω =
N∑
k=1

Ωk(h,Jk,Jk
p ) =

N∑
k=1

(
u(Jk)− h · Jk + χk|Jk − Jk

p |
)

(23)

that can be minimized separately. Knowing h at the current time step, and Jk
p at the previous time

step in each cell, the minimization of Ωk delivers the updated value of Jk at the current time step. The
magnetic field h and the yield surfaces in a model with three spheres are depicted in Fig. 1 (right).



(a)

k JS [T ] χ [A/m]

0 0.11 0
1 0.8 16
2 0.31 47

(b)

k JS [T ] χ [A/m]

0 0.11 0
1 0.3 10
2 0.44 20
3 0.33 40
4 0.04 60

Table 1: Identified parameters for electrical steel M250-50A with 3 internal variables (a) and 5 internal
variables (b).

Figure 3: Accuracy of the model as a function of the number of internal variables.

3 Application

3.1 Parameter identification

Working with N cells, the hysteresis model has 2N + 1 parameters to identify: the initial saturation
slope α, which is identical for all cells (this is an empirical result) and the 2N cell-specific parameters
Jk
S and χk. A standard non-oriented electrical steel grade M250-50A [15] has been used in this paper to

test the new model. The identification can be done easily on basis of the first magnetization curve (virgin
curve) of the material, measured with e.g. an Epstein frame or a Single Sheet Tester. By comparing the
modelled first magnetization curve with the measured one for increasing values of the applied field h,
the pairs (Jk

S , χ
k) can be identified systematically for increasing values of χk. The identified parameters

are α = 65 [A/m], and those given in Table 1 for a hysteresis model with 3 and 5 internal variables,
respectively.

Fig. 3 shows the accuracy of the model as a function of the number N of internal variables. A rapid
decay of the error is observed as the number of internal variables increases. Reasonably accurate models
are thus obtained with relatively few parameters.

3.2 Minor loops and higher harmonics

The hysteresis model proposed in this paper represents a significant improvement with respect to con-
ventional post-processing techniques based on measured loss characteristics. Because it relies on a
physical assumption that it is vectorial and dynamic from the beginning (the analogy with a dry friction
force), the identified parameters represent the material in general, and not under specific experimental
conditions. In other words, although the identification was done with experimental data assuming a si-
nusoidal in time and unidirectional b field, the identified parameters given in Table 1 can be used in 2D
and 3D, and in the presence of higher harmonics. Fig. 4 shows the main and minor loops obtained with



(a) Model using 3 internal variables (cf. Table 1(a)) (b) Model using 5 internal variables (cf. Table 1(b))

Figure 4: Main and minor hysteresis loops of M250-50A steel modelled with 3 or 5 internal variables,
when a 10-th harmonic is superimposed to the main frequency.

Figure 5: Total magnetic losses associated with the M250-50A hysteresis cycle when increasing the
amplitude of the 10-th harmonic superimposed to the main frequency.

resp. 3 and 5 internal variables when the applied field h consists of a fundamental harmonic with a 10th
higher harmonic superposed. The general aspect of the hysteresis loops is already good with 3 internal
variables, but the shape of the minor loops is more realistic with 5 internal variables. This is confirmed
by analyzing the computed losses.

Fig. 5 shows a comparison between the hysteresis losses calculated by integration over time of the
value of the dissipation functional (22) with 3, 5 and 8 internal variables. It is observed that the gain of
accuracy between 5 and 8 internal variables is already much less significant than the one between 3 and
5 internal variables. Once again, it may be concluded that a relatively small number of internal variables
is sufficient to obtain an accurate representation of the complex response of the material.

3.3 Finite element implementation

The ferromagnetic material relationship is

h =
b−

∑N
k=1 J

k

µ0
(24)



and we shall work with the magnetic vector potential a (with b = curla), so that Gauss’ law div b = 0
is automatically satisfied. The weak formulation of Ampere’s law then reads [17, 18]: Find a such that∫

Ω

1

µ0
curla · curla′dΩ−

N∑
k=1

∫
Ω

1

µ0
Jk · curla′dΩ =

∫
Ω
js · a′ dΩ (25)

holds for a set of suitably chosen test functions a′ (js being a given source current density). These finite
element equations are nonlinear because the N internal variables Jk are the result, in each element, of
the implicit relationship

Jk = Update(h,Jk
p ), with h =

curla−
∑N

k=1 J
k

µ0
. (26)

The detailed algorithm is as follows:

Algorithm 1: Finite Element Algorithm

Initialize Jk
p = 0;1

for t = 1 : tmax do // Time loop2

while ∆a < criterion do // Picard iteration3

for all finite elements do // Assembly loop4

Update internal variables Jk using (26);5

Assemble element in the linear system (25);6

Solve linear system;7

A Picard iteration loop is done at each time step to resolve the nonlinearity. In each iteration of
the Picard scheme, the “Update” function in (26) minimizes Ωk (23). Amongst the many robust opti-
mization schemes available, a first-order descent method has been chosen in our implementation. Since
the functional Ωk has an angular point when hi 6= 0, which might impede convergence, the descent
algorithm uses J = Jp as an initial guess. In our tests this makes the minimization algorithm always
converge in less than 20 iterations. Overall, the hysteresis model requires the storage of 2N additional
vector unknowns (Jk and Jk

p ) per element.
As an application example, a three-phase transformer has been analyzed. The material data of Ta-

ble 1(a) has been used to model the ferromagnetic behaviour of the core of the transformer. Figure 6
shows a closeup on the central T-joint of the core, i.e., on the region where the fields are not unidirec-
tional. The trajectory of the tips of the b (solid line) and the h (dotted line) vectors are represented at 4
selected points over about one period. Clearly, the main aspects of the ferromagnetic behaviour, namely
the vector character, saturation and the lagging behind of b with respect to h, are correctly represented
by the model.

4 Conclusion

The motivation for this work is the development of constitutive models for hysteresis phenomena. The
proposed model, based on thermodynamic principles, is energy-consistent. A variational approach pro-
vides a robust and coherent framework to efficiently handle the strong nonlinearity of the problem within
a finite element scheme. The use of a dissipation functional and its connection with yield surfaces was
inspired by modern approaches of kinematic hardening. Besides mathematical and physical elegance,
this model has practical advantages. Unlike the model of Preisach and Jiles-Atherton, it is readily vec-
torial and the number of parameters is not limited. Moreover, it relies on an energy balance, of which
the stored magnetic energy and dissipated energy are known at all times.



Figure 6: Magnetic and induction field in the central T-joint of a three-phase transformer over about
one period. The dotted line is the h-field and the solid line is the b-field obtained with three internal
variables Jk (cf. Table 1(a)).

With this approach, hysteresis losses, accounting for vector effects (rotating hysteresis) and the
presence of higher harmonics, can be evaluated with controllable accuracy. This opens up the possibility
of accurate evaluations of magnetic losses in real-life electrical engineering devices: from the prediction
of iron losses in electrical engineering devices (rotating machines, actuators, brakes) to the accurate
modeling of hysteresis in magnetostrictive actuators and smart materials.

Quantitative loss comparisons and a more systematic parameter identification methodology are cur-
rently under investigation. Another further improvement will be to deal with laminated structures ex-
plicitly by means of appropriate multi-scale techniques. Finally, we have only considered the special
case of rate-independent isotropic materials. Further developments to handle rate effects and anisotropy
would clearly be of interest.
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