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Università degli Studi di Milano, Milano, Italy

April 16, 2021

Abstract

We analyze in detail the probability that sequences of equal length generated
by a pseudorandom number generator starting from random points of the state
space overlap, providing for the first time an exact result and manageable bounds.
While the computation of the probability is almost elementary, the value has been
reported erroneously several times in the literature.

1 Introduction
Pseudorandom number generators are algorithms that emit sequences of seemingly ran-
dom outputs. At each step, the algorithm updates the state of the generator and emits a
new value derived from the state (e.g., the whole state). A classical example is a linear
congruential generator, in which the state is an x 2 Z=mZ, and the algorithm updates
the state using the rule

x  ax C b;

for suitable constants a; b 2 Z=mZ. The period of a generator is the shortest length
P after which the sequence emitted by the generator repeats. For example, in the case
above if m is a power of 2 to achieve period m (the maximum possible) one needs c

odd and a � 1 divisible by 4 (for more details, see Knuth [Knu98, �3.2.1]). Clearly, the
period cannot be greater than the number of possible states.

�After publication of this report [Vig20], Samuel Neves reported that Lemma 2.1 has actually been
proved a long time ago by Naus [Nau68].
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Pseudorandom number generators are being increasingly used in parallel environ-
ments, and a proposed technique for supplying easily different sequences to different
processes is random seeding, in which each processor uses an external source of ran-
domness to choose an initial state uniformly at random. To avoid interference between
the computations of different processors, one would like to choose the period P (and
thus necessarily the state size) so large that the probability that sequences used by dif-
ferent processors overlap is negligible.1

Surprisingly, even though knowing (an upper bound to) the probability of overlap
under the above assumptions is an essential element in choosing an appropriate state
size, its value has been reported in a very unreliable way in the literature. For ex-
ample, Agner Fog [Fog15] reports for n processors using sequences of length L the
probability as p � 1 � .1 � nL=P /n�1 � n2L=P , without any exact upper or lower
bound, quoting as reference L’Ecuyer, Oreshkin, and Simard [LMOS17], who report
p � 1 � .1 � nL=P /n�1, this time referring to Durst [Dur89]: however, Durst never
computes the probability. Instead, he reports an approximated continuous distribution
of an order statistics—the length of the minimum distance between random points in the
unit interval. While the two quantities are correlated, we are just dealing with a continu-
ous approximation of a slightly different problem, and no bounds for the goodness of the
approximation are provided. Eddy [Edd90] reports without proof that the average min-
imum distance is P=n2. Passerat–Palmbach, Mazel and Hill [PPMH11] report without
proof 1 � .1 � nL=.P � 1//n�1 as an exact overlap probability, but even on the trivial
example P D 5, n D L D 2 the formula yields 1. In fact, they first refer to Wu and
Huang [WH06], which again resort to continuous order statistics on an interval, using
simulation to confirm the mean and variance obtained from the approximation. Kalos
and Witlock [KW09] report in their book on Monte–Carlo methods the exact overlap
probability 1 � n.L=P /n�1, which for the case P D 4, n D L D 2 yields 0.

The purpose of this note is to carry in full an exact computation of the probability
of overlap, which will make it possible to conclude that the probability of overlap is
always at most n2L=P , clarifying once and for all the issue and providing a reference
for the bound. We also compute a similar lower bound which shows that in the cases of
practical interest the upper bound is almost tight.

In the following we assume (as in the previously reported estimates) that the gen-
erator has full period, that is, that there is a single cyclic sequence of length P , and
that P is equal to the size of the state space. This is the case for the most commonly
used generators, such as congruential linear generator of full period [Knu73, �3.2.1],
F2-linear generators [LP09], and generators based on stream ciphers [SMDS11].2

1Of course, this is not enough: one would also like to prove some form of statistical independence of
the sequences.

2We remark that in the case the state space is split in several cycles, a standard computation using
conditional probabilities and the results of this paper can be used to derive the exact probability of overlap.
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2 Results
We recast the problem of overlapping subsequences in a more abstract setting. Let us
call a discrete circle of size P the set f 0; 1; 2; : : : ; P � 1 g with its elements arranged
in a circle (i.e., the successor of element i is .i C 1/ mod P ). An interval of length L

starting at i is the set fi; .i C 1/ mod P; : : : ; .i CL� 1/ mod P g. We are interested in
the probability that n intervals of length L, positioned at random on the circle, have no
overlap.

Lemma 2.1 Let P > 0 and consider n > 0 intervals of length L, 0 < L � P=n, whose
starting points are chosen uniformly and independently at random on the discrete circle
of size P . Then, the probability that the intervals have no overlap, that is, that all
pairwise intersections of distinct intervals are empty, is

.P � nLC n � 1/Š

P n�1.P � nL/Š
:

Proof. First, we will count the number of layouts of n intervals of length L with no
overlaps.

� If we have a layout in which an interval overlaps with zero, the interval can be in
L different positions. For each such position, we have to place the remaining n�1

intervals in the remaining P �L elements without overlap. But this is exactly like
positioning n � 1 markers between P � L � .n � 1/L elements, which can be
done in  

P � nLC n � 1

n � 1

!
ways. We conclude that the number of layouts without overlap in which one
interval contains zero is

L

 
P � nLC n � 1

n � 1

!
:

� If no interval overlaps with zero, the first interval appearing after zero must start
in some position j , 1 � j � P � nL. The remaining n � 1 intervals must be
placed in the P � .j CL/ elements starting at j CL, which means that (similarly
to the previous case) there are 

P � nL � j � n � 1

n � 1

!

3



layouts for a given j . We conclude that the number of layouts without overlap in
which no interval contains zero is (using Pascal’s identity [GKP94])

P�nLX
jD1

 
P � nL � j C n � 1

n � 1

!
D

 
P � nLC n � 1

n

!
:

Each of the layouts above can be instantiated in nŠ different ways, and there are
P n possible ways of positioning n intervals on the discrete circle, so the proba-
bility of no overlap of the statement is

nŠ

 
L

 
P � nLC n � 1

n � 1

!
C

 
P � nLC n � 1

n

!!.
P n

D nŠ

�
L

.P � nLC n � 1/Š

.n � 1/Š.P � nL/Š
C

.P � nLC n � 1/Š

nŠ.P � nL � 1/Š

�.
P n

D nŠ

�
nL

.P � nLC n � 1/Š

nŠ.P � nL/Š
C .P � nL/

.P � nLC n � 1/Š

nŠ.P � nL/Š

�.
P n

D
.P � nLC n � 1/Š

P n�1.P � nL/Š
:

As a consequence, we get the desired estimate:

Theorem 2.2 Let P > 0 and consider n > 0 intervals of length L > 0 whose starting
points are chosen uniformly and independently at random on the discrete circle of size
P . Then, the probability of overlap p satisfies

n.n � 1/.L � 1/

P

�
1 �

n2L

2P

�
� p �

n2L

P

�
1 �

1

n

�
:

Proof. We know the exact probability of overlap when nL � P from Lemma 2.1. Then,

1 �
.P � nLC n � 1/Š

P n�1.P � nL/Š
� 1 �

.P � nLC 1/n�1

P n�1
D 1 �

�
1 �

nL � 1

P

�n�1

� 1 � e�..nL�1/=P�1/.n�1/
�

�
nL � 1

P
� 1

�
.n � 1/ �

n2L

P
�

nL

P
:

The inequalities exploit the known properties

e�1
�

�
1 �

1

n

�n�1

and 1 � e�x
� x for all x and all n � 1.
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We can analogously obtain the lower bound:

1�
.P � nLC n � 1/Š

P n�1.P � nL/Š
� 1�

.P � nLC n � 1/n�1

P n�1
D 1�

�
1 �

nL � nC 1

P

�n�1

� 1 � e�..nL�nC1/=P /.n�1/
� 1 � e�n.L�1/.n�1/=P

�
n.n � 1/.L � 1/

P
�

n2.n � 1/2.L � 1/2

2P 2

�
n.n � 1/.L � 1/

P

�
1 �

n2L

2P

�
:

Here we used the fact that�
1 �

1

n

�n

� e�1 and x �
1

2
x2
� 1 � e�x for all x � 0 and all n � 1.

The result follows by noting that both bounds are trivially true for n D 1 and vacuously
true when n > 1 and nL > P .

As a consequence, p � n2L=P , and if n, L are large and n2L is significantly smaller
than P the upper bound is very close to p.
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