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Abstract

A measure of centrality is rank monotone if after adding an arc x → y,
all nodes with a score smaller than (or equal to) y have still a score smaller
than (or equal to) y. If in particular all nodes with a score smaller than
or equal to y get a score smaller than y (i.e., all ties with y are broken in
favor of y) the measure is called strictly rank monotone. We prove that
harmonic centrality is strictly rank monotone, whereas closeness is just
rank monotone on strongly connected graphs, and that some other mea-
sures, including betweenness, are not rank monotone at all (sometimes not
even on strongly connected graphs). Among spectral measures, damped
scores such as Katz’s index and PageRank are strictly rank monotone
on all graphs, whereas the dominant eigenvector is strictly monotone on
strongly connected graphs only.

1 Introduction

The study of centrality in networks goes back to the late forties. Since then,
several measures of centrality with different properties have been published.
This paper follows the line of (Boldi & Vigna, 2014), which proposed axioms
that characterize abstractly the behavior of centrality measures. The purpose of
the study is to end up with detailed tables clarifying for each centrality measure
whether it satisfies or not a certain axiom. This kind of knowledge makes it
possible to understand the global behavior of the measure, reducing the need of
dealing with anecdotal results.

The assessment of centrality measures in (Boldi & Vigna, 2014) is based on
simple guiding principles; a centrality measure should be robust (i.e., applica-
ble to arbitrary directed graphs, possibly non-connected, without modifications)
and understandable (it should have a clear combinatorial interpretation). In this
paper we follow the same guidelines, but to allow for a more fine-grained granu-
larity we observe also the behavior of centrality measures on strongly connected
networks, for which sometimes results are quite different.

The main body of results of this paper concerns rank monotonicity. In (Boldi
& Vigna, 2014), the authors discuss score monotonicity—the property that when
an arc x→ y is added to the graph, the score of y strictly increases. As already
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remarked by Chien, Dwork, Kumar, Simon and Sivakumar (2004) in the case
of PageRank, score monotonicity alone is not sufficient, as it just defines the
change on y: in principle, other nodes might change their score as well, in a
preposterous way. They propose a rank monotonicity axiom, which we adopt in
this paper, which states that after adding an arc x→ y, all nodes with a score
smaller than (or equal to) y have still a score smaller than (or equal to) y. In
intuitive terms, the rank of y remains the same, or improves. In this paper we
study also a strict variant, where we require that all nodes with a score smaller
than or equal to y get a score strictly smaller than y (i.e., all ties with y are
broken in favor of y).

There are two main reasons to study a strict version: the first one is that the
constant score is rank monotone, which shows that the non-strict axiom is quite
weak; the second reason is that the strict version is very natural: if you have
two persons P and Q on Twitter with the same centrality, adding a follower just
to P should make it more important than Q. Indeed, we will see that we can
improve the result of rank monotonicity of PageRank proved in (Chien et al.,
2004) to strict rank monotonicity, and under much milder hypotheses.

In any case, score and rank monotonicity complement themselves. Score
monotonicity tells us that “something good happens”. Rank monotonicity that
“nothing bad happens”. Strict rank monotonicity is a glorified combination of
these two properties.

Our results suggest once again that simple measures based on distances,
and in particular harmonic centrality, behave more predictably than some of
the most sophisticated indices proposed in the literature.

2 Related work

Centrality is a central notion in the study of social networks: the first attempts
to define centrality indices date back to the late 1940s and were attempted by
the Group Networks Laboratory at MIT directed by Alex Bavelas (1948), in the
framework of communication patterns and group collaboration (Leavitt, 1951;
Bavelas et al., 1951). In the following decades, various measures of centrality
were employed in many different contexts; see, for instance, (Cohn & Marriott,
1958; Pitts, 1965; Beauchamp, 1965; Mackenzie, 1966).

The most classical notions of centrality are closeness centrality (Bavelas,
1948), and its variant proposed by Lin (1976), betweenness, introduced by
Anthonisse (1971) under the name of rush and rediscovered later by Free-
man (1977), Katz’s index (Katz, 1953) and harmonic centrality, a variation
of closeness based on the harmonic mean.1 While these notions of centrality are
combinatorial in nature and based on the discrete structure of the network, an-
other line of research studies spectral techniques (in the sense of linear algebra)
to define centrality. The most well-known among the spectral centrality indices
is the dominant eigenvector, introduced by Wei (1952) to rank sport teams and

1Harmonic centrality appeared in a number of different context independently; some of its
history is tracked in (Boldi & Vigna, 2014).
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later generalized by Berge (1958) to arbitrary graphs, Seeley’s index (Seeley,
1949), the stationary state of the natural Markov chain on the graph, the dom-
inant singular vectors, introduced by Bonacich (1991) to rank simultaneously
persons and groups and rediscovered later by Kleinberg (Kleinberg, 1999) as
part of HITS, PageRank (Page et al., 1998) and SALSA (Lempel & Moran,
2001).

Although centrality is certainly an important structural property of social
networks, there is no consensus on what centrality is exactly or on its concep-
tual foundation. As Freeman observed, “several measures are often only vaguely
related to the intuitive ideas they purport to index, and many are so complex
that it is difficult or impossible to discover what, if anything, they are measur-
ing” (Freeman, 1979).

The idea of formalizing the behavior of centrality indices through axioms was
first attempted by Sabidussi, in his much-quoted paper on centrality (Sabidussi,
1966), where he discussed a set of axioms that should be satisfied by a sensible
centrality measure on an undirected graph. A few years later, Nieminen (1973)
attempted a similar formalization for directed graphs. More recently, Boldi
and Vigna (2014) tried to propose a set of axioms capturing various interesting
properties of centrality measures, and put a large spectrum of indices under test
to see which ones satisfied them.

Some axiomatization in the literature are hard, in the sense that they lead to
the definition of a unique measure satisfying the axioms. This is case with See-
ley’s index (Altman & Tennenholtz, 2008)2, the dominant eigenvector and singu-
lar vector (Kitti, 2016), harmonic centrality (Garg, 2009), Katz’s index and the
dominant eigenvector (Dequiedt & Zenou, 2014), and Pinski and Narin’s (1976)
bibliometric ranking (Palacios-Huerta & Volij, 2004). The disadvantage of hard
axiomatizations is that they usually require very specifically tailored axioms,
which have little meaning (or cannot even be formulated) for a generic notion
of centrality.

In this work, we ideally continue along the line started by Boldi and Vi-
gna (2014), and take rank monotonicity into account. In their paper, Boldi and
Vigna already proposed a notion of score monotonicity : a centrality measure
is score monotone if3 adding a new arc x → y increases the centrality score
of y. Score monotonicity, unfortunately, does not say much about the relative
ranks of nodes after the addition of the arc: this is why we are interested in
introducing a form of monotonicity of ranks. In the work of Chien, Dwork,
Kumar, Simon and Sivakumar (2004), albeit targeted exclusively at PageRank,
the authors provide a definition of rank monotonicity that we think captures
the essence of the problem: when we add a new arc x→ y, nodes with a score
smaller than y must continue to have a score smaller than that of y, while

2Note that the authors claim to axiomatize PageRank, but actually the definition they
give lacks the “teleportation factor” α.

3This definition resembles an axiom proposed by Sabidussi (1966), but he additionally
requires that all the other nodes do not decrease their score (a very stringent requirement
indeed, that cannot be satisfied by several measures; most notably, by most indices that are
normalized).
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nodes with a score equal to y must get a score that is smaller than or equal
to that of y.4 This notion can be seen as a generalization of the well-known
rank-monotonicity principle used in the theory of social choice, as in (Fishburn,
1982).

Very recently, Brandes, Kosub and Nick (2012) proposed to call radial a
centrality in which the addition of an arc x→ y does not decrease the rank of y,
in the sense that when we add an arc towards y, nodes with a score smaller than
or equal to y continue to have this property. This is actually a weaker condition
than the one used in (Chien et al., 2004) to state rank monotonicity, as it makes
a form of non-monotonicity of ranks possible: nodes with a score smaller than
y might end up having a score equal to y when we add an arc towards y.

3 Definitions and conventions

In this paper, we consider directed graphs defined by a set N of n nodes and
a set A ⊆ N × N of arcs; we write x → y when 〈x, y〉 ∈ A and call x and y
the source and target of the arc, respectively. An arc with the same source and
target is called a loop.

The transpose of a graph is obtained by reversing all arc directions (i.e., it
has an arc y → x for every arc x → y of the original graph). A symmetric
graph is a graph such that x → y whenever y → x; such a graph is fixed by
transposition, and can be identified with an undirected graph, that is, a graph
whose arcs (usually called edges) are subsets of one or two nodes. A successor
of x is a node y such that x → y, and a predecessor of x is a node y such that
y → x. The outdegree d+(x) of a node x is the number of its successors, and
the indegree d−(x) is the number of its predecessors.

A path (of length k) is a sequence x0, x1, . . . , xk, where xj → xj+1, 0 ≤
j < k. A walk (of length k) is a sequence x0, x1, . . . , xk, where xj → xj+1

or xj+1 → xj , 0 ≤ j < k. A connected (strongly connected, respectively)
component of a graph is a maximal subset in which every pair of nodes is
connected by a walk (path, respectively). Components form a partition of the
nodes of a graph. A graph is (strongly) connected if there is a single (strongly)
connected component, that is, for every choice of x and y there is a walk (path)
from x to y. A strongly connected component is terminal if its nodes have no
arc towards other components.

The distance d(x, y) from x to y is the length of a shortest path from x to
y, or ∞ if no such path exists. The nodes reachable from x are the nodes y
such that d(x, y) <∞. The nodes coreachable from x are the nodes y such that
d(y, x) <∞. A node has trivial (co)reachable set if the latter contains only the
node itself.

Let A be a nonnegative matrix. We will denote with ρ(A) the spectral
radius of A, that is, the modulo of the largest eigenvalue. By Perron–Frobenius

4Sabidussi’s paper tried to capture rank monotonicity, too, but with much weaker require-
ments: he only required that if y has maximum score in the network, then it should have
maximum score also after the addition of an arc towards y.
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theory (Berman & Plemmons, 1994), ρ(A) is an eigenvalue of A. It is called
the dominant eigenvalue, and the associated eigenvectors are called dominant
eigenvectors. The notation Ā will be used throughout the paper to denote the
matrix obtained by `1-normalizing the rows of A, that is, dividing each element
of a row by the sum of the row (null rows are left unchanged). If there are no
null rows, Ā is (row-)stochastic, that is, it is nonnegative and all rows sum to
one; in this case, its spectral radius is 1. Unless otherwise specified, all vectors
in this paper are row vectors.

3.1 Centrality measures

In this section we quickly sketch the mathematical definitions of the central-
ity measures studied in this paper. The reader can find an accurate historical
account in (Boldi & Vigna, 2014), along with motivations. When several al-
ternative definitions are possible we report the one that is better suited to our
proofs.

Geometric measures assume that importance is a function of distances. In
particular, we have:

Indegree. The number of incoming arcs d−(x), that is, the nodes whose dis-
tance to x is one.

Closeness. Bavelas (1948) introduced closeness in the late forties; the closeness
of x is defined by

1∑
y d(y, x)

. (1)

For this definition to make sense, the graph must be strongly connected.
Lacking that condition, some of the summands will be ∞, resulting in
a null score for all nodes that cannot coreach the whole graph. Often
closeness is patched by eliminating infinite summands at the denominator,
and this is the definition we shall use in the rest of the paper.

Lin’s index. Nan Lin (1976) tried to repair the definition of closeness for
graphs with infinite distances by weighting closeness using the square of
the number of coreachable nodes; his definition for the centrality of a node
x with a nonempty coreachable set is∣∣{y | d(y, x) <∞}

∣∣2∑
d(y,x)<∞ d(y, x)

.

Harmonic centrality. Closeness is essentially the reciprocal of a denormalized
arithmetic mean. If we instead take the reciprocal of a denormalized
harmonic mean we obtain harmonic centrality :∑

y 6=x

1

d(y, x)
. (2)
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Spectral measures compute the dominant left eigenvector of some matrix
derived from the adjacency matrix A of the graph, and depending on how the
matrix is modified before the computation we can obtain a number of different
measures. In general, such vectors are defined up to a positive multiplicative
constant, and are unique if the matrix is irreducible (Berman & Plemmons,
1994), which is true of the adjacency matrixA iff the graph is strongly connected.

The dominant left eigenvector. The dominant left eigenvector of the adja-
cency matrix A (Wei, 1952; Berge, 1958).

Seeley’s index. The dominant left eigenvector of Ā, the adjacency matrix with
`1-normalized rows (Seeley, 1949). It is the stationary state of the natural
Markov chain on the graph, in which the next state is chosen uniformly
among successors.

Katz’s index. A recursive summation of paths, that can be seen as a linear
operator:

1

∞∑
i=0

βiAi = 1(1− βA)−1,

where β is a parameter satisfying the condition 0 ≤ β < 1/ρ(A) (Katz,
1953). The constant vector 1 can be replaced by a positive preference
vector (Hubbell, 1965).

PageRank. A recursive sum of weighted paths (Page et al., 1998), that again
can be seen as a linear operator:

p = (1− α)v

∞∑
i=0

αiĀi = (1− α)v
(
1− αĀ

)−1
. (3)

Here v is a preference vector (a probability distribution) and 0 ≤ α < 1.

HITS. The dominant right singular vector of A, which is just the dominant
left eigenvector of ATA (Bonacich, 1991; Kleinberg, 1999).

SALSA. The dominant left eigenvector of AT Ā (Lempel & Moran, 2001).

Note that in the last two cases one can also consider the alternative score
given by the left dominant vector of AAT (indeed, usually the two scores are
used at the same time). The two eigenvectors are exchanged when the graph is
transposed, so we need to discuss just one.

Finally, betweenness centrality was introduced by Anthonisse (1971) under
the name of rush and rediscovered later (Freeman, 1977). The idea is to measure
the probability that a random shortest path passes through a given node: if σyz
is the number of shortest paths going from y to z, and σyz(x) is the number of
such paths that pass through x, we define the betweenness of x as∑

y,z 6=x,σyz 6=0

σyz(x)

σyz
.
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4 Rank Monotonicity

We assume from the beginning that the centrality measures under examination
are invariant by isomorphism, that is, that they depend just on the structure
of the graph, and not on particular labeling chosen for each node: all measures
defined above are such (this condition is sometimes called anonymity).

Boldi and Vigna (2014) proposed to study the following property:

Definition 1 (Score–Monotonicity Axiom) A centrality measure satisfies
the score-monotonicity axiom if for every graph G and every pair of nodes x, y
such that x 6→ y, when we add x→ y to G the centrality of y increases.

Score monotonicity is just half of what one really wants: it is indeed possible
to define pathological scores that are score monotone, but modify the relative
score of nodes in counterintuitive ways. For example, you may find scenarios
where the score of a node z, originally smaller than that of y, is made larger
than that of y by the addition of the arc x → y. To avoid these problems,
we suggest to study the following natural axiom, which appears in the work of
Chien, Dwork, Kumar, Simon and Sivakumar (2004):

Definition 2 (Rank–Monotonicity Axiom) A centrality measure satisfies
the rank-monotonicity axiom if for every graph G and every pair of nodes x, y
such that x 6→ y, when we add x→ y to G the following happens:

• if the score of z was strictly smaller than the score of y, this fact remains
true after adding x→ y;

• if the score of z was smaller than or equal to the score of y, this remains
true after adding x→ y.

Note that another formulation of the above definition is as follows:

• if the score of z was strictly smaller than the score of y, this remains true
after adding x→ y;

• if the score of z was equal to the score of y, it remains equal o becomes
smaller after adding x→ y.

We also define the strict version:

Definition 3 (Strict Rank–Monotonicity Axiom) A centrality measure sat-
isfies the strict rank-monotonicity axiom if for every graph G and every pair of
nodes x, y such that x 6→ y, when we add x→ y to G the following happens:

• if the score of z 6= y was smaller than or equal to the score of y, after
adding x→ y the score of z becomes smaller than the score of y.

Note that the only difference between the last two definitions is the behavior on
ties (nodes with the same score as y): if a measure is strictly rank monotone,
adding an arc x→ y will break all ties with other nodes in favor of y.
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Figure 1: Typical node configuration for geometric measures. The path labels
represent the length of a shortest path.

5 Proofs and Counterexamples

We have now defined a number of centrality measures and two axioms. We are
thus going to provide a proof or a counterexample for each combination. We
will also pose each question in two different environments: general graphs, and
strongly connected graphs. To make the treatment complete, we will try to
provide answers for the score-monotonicity axiom on strongly connected graphs
when necessary (i.e., when the axiom is not satisfied in general graphs).

5.1 Harmonic centrality

It is easy to see that harmonic centrality satisfies score monotonicity on all
graphs: as we will see, it is also strictly rank monotone. We start by proving a
lemma which bounds the variation of additive contributions in the definition of
harmonic centrality:

Lemma 1 Let G be a graph with distance function d, and let d′ be the distance
function of G with an additional new arc x → y. Then, for every node w 6= y
and z 6= w we have

1

d′(w, z)
− 1

d(w, z)
≤ 1

d′(w, y)
− 1

d(w, y)
.

Moreover, if d′(w, z) < d(w, z)

1

d′(w, z)
− 1

d(w, z)
<

1

d′(w, y)
− 1

d(w, y)
.

Proof. The first part of the thesis is obvious if d′(w, z) = d(w, z). Otherwise,
with the notation of Figure 1, the hypothesis d′(w, z) < d(w, z) yields s >
p+1+r (which implies p, r <∞). Note that in this case t > p+1, as otherwise
s > p + 1 + r ≥ t + r, contradicting the triangular inequality s ≤ t + r. We
conclude that

1

d′(w, z)
− 1

d(w, z)
=

1

p+ 1 + r
− 1

s
<

1

p+ 1
− 1

t
=

1

d′(w, y)
− 1

d(w, y)
,
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Figure 2: A counterexample showing that closeness does not satisfy rank mono-
tonicity on general graphs.

since when s, t <∞

1

p+ 1 + r
− 1

s
−
(

1

p+ 1
− 1

t

)
=

p+ 1− p− 1− r
(p+ 1 + r)(p+ 1)

+
s− t
st

< − r

st
+
r

st
= 0,

and the remaining cases (where s or t are infinite) are trivial.

Theorem 1 Harmonic centrality satisfies strict rank monotonicity on all graphs.

Proof. With the notation of Lemma 1, we assume that for a node z 6= y∑
w 6=z

1

d(w, z)
≤
∑
w 6=y

1

d(w, y)
.

Adding the latter inequality to that of Lemma 1, for every w 6= y, z, we obtain∑
w 6=z,y

1

d′(w, z)
+

1

d(y, z)
≤
∑
w 6=z,y

1

d′(w, y)
+

1

d(z, y)
.

Now, obviously d′(y, z) = d(y, z) and d′(z, y) ≤ d(z, y). But then either z 6= x,
in which case at least for w = x we are adding a strict inequality, or z = x, in
which case d′(z, y) < d(z, y). This concludes the proof.

5.2 Closeness

Closeness does not satisfy score monotonicity in general (Boldi & Vigna, 2014),
but it is trivial to show that it does on strongly connected graphs. It is also easy
to show that it does not satisfy rank monotonicity in general graphs: a simple
counterexample is shown in Figure 2.5 Both node y and node z have closeness
equal to 1, as the summation in (1) reduces to a single summand of value 1.
When we add an arc from x to y, the score of z does not change, but the score
of y becomes 1/2, as now we are adding two summands of value 1.

Nonetheless, things improve on strongly connected graphs, where we can
prove a result analogous to (but weaker than) Lemma 1:

5We remark that it is easy to show that score and rank monotonicity are not satisfied on
general graphs even if infinite distances are not eliminated from the summation.
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Lemma 2 Let G be a graph with distance function d, and let d′ be the distance
function of G with an additional new arc x→ y. Then, for every nodes w and
z

d(w, z)− d′(w, z) ≤ d(w, y)− d′(w, y).

Proof. If d(w, z) = d′(w, z) the thesis is obvious. Otherwise, looking at Fig-
ure 1, we have s ≤ t+ r by the triangular inequality. Thus,

d(w, z)− d′(w, z) ≤ s− p− 1− r ≤ t− p− 1 ≤ d(w, y)− d′(w, y).

At this point, a proof analogous to that of Theorem 1 shows that

Theorem 2 Closeness satisfies rank monotonicity on strongly connected graphs.

Proof. With the notation of Lemma 2, we assume that for a node z

1∑
w d(w, z)

≤ 1∑
w d(w, y)

.

Equivalently, ∑
w

d(w, y) ≤
∑
w

d(w, z),

and adding for all w the inequalities of Lemma 2∑
w

d′(w, y) ≤
∑
w

d′(w, z).

The same chain of deductions is true if we start from a strict inequality. A final
inversion completes the proof.

The previous theorem cannot be improved to strict rank monotonicity, as
the example in Figure 3 shows. The rank of y and z in the graph is the same
(by symmetry) before adding the arc x→ y, but it remains the same after the
addition. Indeed, for what concerns y the only effect on the summation in (1)
of the new arc is that of changing the distance from x to y from 2 to 1, thus
reducing the summation by 1. On the other hand, for what concerns z the only
effect of the new arc is that of changing the distance from x to z from 3 to 2,
once again reducing the summation by 1.

5.3 Lin’s index

Lin’s index does not satisfy score monotonicity in general (Boldi & Vigna, 2014),
but on strongly connected graph it is equivalent to closeness, so it satisfies
score and rank monotonicity (but not strict rank monotonicity). It is again
easy to show that it does not satisfy rank monotonicity in general graphs: a
counterexample is shown in Figure 4. The Lin centrality of y and z is (k+1)2/k.
After adding an arc x→ y, the centrality of y becomes (k+5)2/(k+9), which is
smaller than the previous value when k > 3, and thus smaller than the centrality
score of z, which does not change.
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x y z

Figure 3: A counterexample showing that closeness does not satisfy strict rank
monotonicity on strongly connected graphs.

1

2

k

y x

z

Figure 4: A counterexamples showing that Lin’s index does not satisfy rank
monotonicity on general graphs.
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y

Figure 5: A counterexample showing that betweenness satisfies neither score
nor rank monotonicity on strongly connected graphs.

5.4 Betweenness

Betweenness centrality fails to satisfy all axioms of (Boldi & Vigna, 2014). It
also fails to satisfy rank monotonicity, even on strongly connected graphs. In
Figure 5 we show a graph G (for simplicity, we represent by an edge a pair of
symmetric arcs) to which an arc x→ y is added, getting the graph G′.

In G, the score of x and y is zero, since there is no shortest path passing
through them. But when we add the arc x → y, a new shortest path arises
through x, raising its score to 1/3, but not through y, so its score remains zero.
As a result, rank monotonicity and score monotonicity are both violated on a
strongly connected graph.

5.5 PageRank and Katz’s index

Rank monotonicity of PageRank was proved by Chien, Dwork, Kumar, Simon
and Sivakumar (2004). Their proof works for a generic regular Markov chain:
in the case of PageRank this condition is true, for instance, if the preference
vector is strictly positive or if the graph is strongly connected.

5.5.1 Properties of damped spectral rankings

In this work, we aim at lifting almost all hypothesis on the underlying graph and
preference vector, and at showing a stronger result: strict rank monotonicity.
In fact, we prove (strict) rank monotonicity for certain updates of a generic
damped spectral ranking given by

r = v
∑
n≥0

(αM)n = v
(
1− αM

)−1
, (4)
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where M is a nonnegative matrix, 0 ≤ α < 1/ρ(M) is a damping factor, and v
is a nonnegative preference vector. Both PageRank and Katz’s index are special
instances of damped spectral ranking.

In order to prove our result, we first need the following:

Lemma 3 Let M be a nonnegative matrix, 0 ≤ α < 1/ρ(M) a damping factor
and v a nonnegative preference vector. Let

r = v
∑
n≥0

(αM)n

be the associated damped spectral ranking and let C =
(
1−αM

)−1
. Then, given

y and z such that cyz > 0 and letting q = cyy/cyz, we have cwy ≤ q · cwz for all
w. In particular, if ry 6= 0

• if rz ≤ ry, then cyz ≤ cyy;

• if rz < ry, then cyz < cyy.

Proof. The first claim is a restatement of the known property (Willoughby,
1977) that for all y, z and w

cwz ≥
cwycyz
cyy

,

so
qcwz ≥ cwy.

Note now that if cyy < cyz, then q < 1, and

ry =
∑
w

vwcwy <
∑
w

vwcwz = rz,

which proves the first item (the strict inequality is due to the assumption ry 6=
0). If cyy ≤ cyz, then q ≤ 1, and the second item follows similarly.

Note that the hypothesis on ry is necessary: consider the matrix

M =

 1 1 0
1 0 0
0 0 1

 , (5)

whose spectral radius is the golden ratio
(
1 +
√

5
)
/2; for α = 3/5 we have

∑
n≥0

(αM)n =

 25 15 0
15 10 0
0 0 5

2

 .

If we consider the preference vector 〈0, 0, 1〉, the associated spectral ranking will
be 〈0, 0, 5/2〉. If we let z and y be the first and second node, respectively, we
have cyz = 15 > 0, 0 = ry ≤ rz = 0 but cyz = 15 > 10 = cyy, showing that
Lemma 3 would not be true if the requirement ry 6= 0 was dropped.

We can finally prove our main theorem:
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Theorem 3 Let M and M ′ be two nonnegative matrices, such that M ′ −M =
χTx δ (i.e., the matrices differ only on the x-th row, and δ is the correspond-
ing row difference). Let also v be a nonnegative preference vector and 0 ≤
α < min (1/ρ(M), 1/ρ(M ′)); let r and r′ be the damped spectral rankings (4)
associated with M and M ′ respectively. Assume further that:

1. there is exactly one y such that δy > 0;

2. ry 6= 0

3. ry ≤ r′y.

Then, if rz ≤ ry we have r′z − rz ≤ r′y − ry. As a consequence, rz ≤ ry implies
r′z ≤ r′y, whereas rz < ry implies r′z < r′y.

Proof. In this proof, as in the Lemma, we let C =
(
1 − αM

)−1
. First of all,

we note that given the hypotheses both 1− αM and 1− αM ′ are M -matrices,
so they both have positive determinants. Since M ′ is obtained from M by a
rank-one correction (M ′ = M +χTx δ), applying the matrix determinant lemma
we have

det
(
1− αM ′

)
= det

(
1− αM − αχTx δ

)
=
(
1− αδ(1− αM)−1χTx

)
det(1− αM).

We conclude that necessarily

1− αδ(1− αM)−1χTx > 0. (6)

We now use the Sherman–Morrison formula to write down the inverse of
1− αM ′ as a function of 1− αM . More precisely,

(
1− αM ′

)−1
=
(

1− α
(
M + χTx δ

))−1
=
(
1− αM − αχTx δ

)−1
=
(
1− αM

)−1
+

(
1− αM

)−1
αχTx δ

(
1− αM

)−1
1− αδ

(
1− αM

)−1
χTx

.

We now multiply by the preference vector v, obtaining the explicit spectral-
rank correction:

r′ = v
(
1− αM ′

)−1
= v

(
1− αM

)−1
+ v

(
1− αM

)−1
αχTx δ

(
1− αM

)−1
1− αδ

(
1− αM

)−1
χTx

= r +
αrχTx δ

(
1− αM

)−1
1− αδ

(
1− αM

)−1
χTx

= r +
αrx

1− αδ
(
1− αM

)−1
χTx
δ
(
1− αM

)−1
.

The case rx = 0 is obvious. Thus, let us assume that rx > 0. By (6), we
can gather all the scalar values appearing in the second summand into a single
positive constant κ and just write

r′ − r = κδ
(
1− αM

)−1
.
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Figure 6: A counterexample for the last hypotheses of Theorem 3.

Note that if [
δ
(
1− αM

)−1]
z
≤ 0

the thesis is trivial by the hypothesis ry ≤ r′y. This holds true, in particular, if
cyz = 0, as in that case[

δ
(
1− αM

)−1]
z

= −
∑
w 6=y

∣∣δw∣∣cwz ≤ 0.

If cyz > 0, since ry 6= 0 we know from Lemma 3 that q = cyy/cyz ≥ 1, and
for all w we have cwy ≤ qcwz. It follows that[
δ
(
1− αM

)−1]
y

= δycyy −
∑
w 6=y

∣∣δw∣∣cwy ≥ δyqcyz −∑
w 6=y

q
∣∣δw∣∣cwz

= q
(
δycyz −

∑
w 6=y

∣∣δw∣∣cwz) = q
[
δ
(
1− αM

)−1]
z
≥
[
δ
(
1− αM

)−1]
z
.

This completes the proof.

We remark that no hypothesis in the statement of the last theorem can be
weakened. The update vector must increase a single coordinate to model an
increase of importance of y alone.

The condition ry 6= 0 cannot be weakened, as the counterexample shown in
Figure 6 proves. The spectral ranking r induced by the adjacency matrix with
preference vector 〈1, 0, 0〉, without the dotted arrow, has ry = rz = 0. If we add
the dotted arrow, though, the score vector becomes r′ = 〈1, α, α2/(1−α)〉, and
r′z − rz = r′z = α2/(1− α) is larger than r′y − ry = r′y = α for α > 1/2.

Finally, the condition ry ≤ r′y cannot be eliminated. Consider once again
the matrix M of (5), and its spectral rank with α = 3/5 and preference vector
〈1, 1, 4〉, which is 〈40, 25, 10〉. If we update the second row using the vector
〈−1, 1, 0〉 the new scores will be 〈5/2, 25/4, 10〉 contradict the thesis.

Note, however, that we can actually prove the condition under mild assump-
tions on M and δ:

Theorem 4 Condition (3) of Theorem 3 can be substituted by the following two
hypotheses (that imply it)

1. 1− αM is (strictly) diagonally dominant

2.
∑
z δz ≥ 0.
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Moreover, in the strict case, ry < r′y, provided that rx > 0.

Proof. The proof follows the lines of the proof of Theorem 3, noting again that
for rx = 0 the statement trivializes. However, once we get the update vector δ
we now note that being 1−αM diagonally dominant, the (nonnegative) inverse
C = (1 − αM)−1 has the property that the entries cii on the diagonal are
(strictly) larger than off-diagonal entries Cki on the same column, as shown in
Remark 3.3 of (McDonald et al., 1995). Thus,[

δ(1− αM)−1
]
y

= δycyy −
∑
z 6=y

∣∣δz∣∣czy ≥ δycyy −∑
z 6=y

∣∣δz∣∣cyy ≥ 0.

In the strict case, if there is at least one index z 6= y such that
∣∣δz∣∣czy 6= 0, then

the first inequality is strict; otherwise, the second inequality is strict (because
δy > 0 and cyy > 0).

Finally, we can prove strict rank monotonicity under the additional hypoth-
esis of score monotonicity:

Theorem 5 Let M and M ′ be two nonnegative matrices as in Theorem 3 and
let r and r′ be the damped spectral rankings associated to M and M ′ respectively.
Assume further that:

1. there is exactly one y such that δy > 0;

2. rx, ry 6= 0

3. ry < r′y.

Then, if rz ≤ ry we have r′z − rz < r′y − ry, and in particular r′z < r′y.

The proof is the same as that of Theorem 3: the additional hypotheses makes
it possible to make the relevant inequalities strict.

5.5.2 Applications to PageRank and Katz’s index

These results on damped spectral rankings show, in particular, that all known
variants of PageRank (strongly preferential, weakly preferential, pseudoranks,
etc.) and Katz’s index cannot be proved to satisfy rank monotonicity for an
arbitrary preference vector without additional hypotheses (e.g., that all scores
are positive).

Corollary 1 PageRank satisfies the strict rank-monotonicity axiom, for any
graph, damping factor and preference vector, provided all scores are nonzero.
The latter condition is always true if the preference vector is everywhere nonzero
or if the graph is strongly connected.
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Proof. Consider two nodes x and y of a graph G such that there is no arc from
x to y, and let d be the outdegree of x. Given the normalized matrix Ā of G,
and the normalized matrix Ā′ of the graph G′ obtained by adding to G the arc
x→ y, we have

Ā′ − Ā = χTx δ,

where δ is the difference between the rows corresponding to x in Ā and Ā′,
which contains −1/d(d+ 1) in the positions corresponding to the successors of
x in G, and 1/(d+ 1) in the position corresponding to y (note that if d = 0, we
have just the latter entry), so we can apply Theorem 5. The hypothesis ry < r′y
is always verified by Theorem 4.

Corollary 2 Katz’s index satisfies the strict rank-monotonicity axiom, for any
graph, attenuation factor and preference vector, provided all scores are nonzero.
The latter condition is always true if the preference vector is everywhere nonzero
or if the graph is strongly connected.

Proof. Consider two nodes x and y of a graph G such that there is no arc from
x to y. Given the matrix A of G, and the matrix A′ of the graph G′ obtained
by adding to G the arc x→ y, we have

A′ −A = χTxχy,

and we can apply Theorem 3. The hypothesis ry < r′y is trivially verified, as
the only nonzero entry of δ = χy is the positive one.

It is interesting to note there is a kind of duality between the hardness in
proving score monotonicity in (Boldi & Vigna, 2014) and strict rank mono-
tonicity here. When proving score monotonicity, the problem is that rx must be
nonzero, or the score of y will not increase. When proving rank monotonicity,
instead, rx = 0 is not an issue: but if ry = 0, we have no way to control the
growth in score of other nodes with respect to y, as (5) shows.

6 Other dominant eigenvectors

The definition of Katz’s index and PageRank is free of multiplicative constants.
This is no longer true of the other spectral measures based on dominant eigen-
vectors introduced in Section 3. Thus, proving or disproving statements about
these measures requires some care.

There is a common theme to all counterexamples: a component is built
into the example in such a way that it absorbs all the rank of the dominant
left eigenvector (i.e., all other nodes have a zero score). This can be crafted
by making the component sufficiently dense (i.e., a small clique) and usually
terminal in the graph of strongly connected components. Another node y is
placed in such a way that connecting the component to the node makes the
graph strongly connected. However, we make the graph somewhat dense around
another node z, which causes the score of z to become larger than that of y when
this happens.
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Figure 7: A counterexample for rank monotonicity of Seeley’s index on general
graphs.

6.1 Seeley’s index and SALSA

For Seeley’s index and SALSA, we can avoid multiplicative constants. In the
first case, we will restrict our considerations to graphs in which all nodes have at
least an outgoing link, and there is exactly one terminal strongly connected com-
ponent. The associated matrices are stochastic and the resulting Markov chains
have a unique stationary state, which makes it possible to define a unique, `1-
normalized dominant eigenvector (i.e., make it into a probability distribution).
The restrictions are sufficient to prove or disprove all our results.

In the case of SALSA (Lempel & Moran, 2001), there is a closed form expres-
sion for the score: one computes the connected components of the symmetric
graph induced by the matrix ATA; the SALSA score of a node is the ratio be-
tween its indegree and the sum of the indegrees of nodes in the same component
of the symmetric graph, multiplied by the ratio between the component size and
the graph size. Also in this case, the resulting vector is `1-normalized.

In both cases, the vector we define is equivalent to the limit obtained starting
from the uniform distribution and iterating multiplication by the matrix defining
the score (in the case of SALSA, assuming that every node has at least an
incoming and an outgoing link), which makes the choice natural.

Using the definition above, we can show that Seeley’s index is not rank
monotone on general graphs. Consider the counterexample in Figure 7: before
adding the arc x→ y, there is a unique dominant left eigenvector that is zero on
y and z. After adding the arc, the dominant left eigenvector is 〈1/5, 2/5, 2/5〉.
Incidentally, the counterexample shows also that Seeley’s index is not score
monotone, as adding an arc from z to y will leave the dominant left eigenvector
unchanged.

On the other hand, on strongly connected graphs Seeley’s index is the sta-
tionary state of a regular Markov chain, and we can apply the results of (Chien
et al., 2004), which prove score and rank monotonicity. Nonetheless, Seeley’s
index does not satisfy strict rank monotonicity: in Figure 8 we show a graph in
which the score of y and z is equal. By the dominant left eigenvector equation
(i.e., the stationary state equation), this happens whenever a node of outdegree
one has an arc towards a node of indegree one. So when we add an arc x→ y,
the score of y increases, but the score of z remains equal to the score of y.

For what matters SALSA, Figure 9 shows a counterexample that violates
both score and rank monotonicity on a strongly connected graph: before adding
the arc x → y, all scores are equal to 1/8; after adding x → y, the score of y
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Figure 8: A counterexample for strict rank monotonicity of Seeley’s index on
strongly connected graphs.

x

y

z

Figure 9: A counterexample for score and rank monotonicity of SALSA on
strongly connected graphs.

decreases to 3/28 and the score of z increases to 3/14.

6.2 The dominant left eigenvector and HITS

In the first part of this section, we will describe a number of negative results. We
will define graphs such that the associated scores will be always unique, which
will relieve us from the problem of multiple dominant eigenvectors. We will also
circumvent the problem of multiplicative constants by using zero-vs-nonzero
arguments.

First of all, the counterexample in Figure 10 shows that the dominant left
eigenvector is not rank monotone on general graphs. Before adding the arc
x→ y, there is a unique dominant left eigenvector that is zero on y and z and
has the same value on all other nodes. After adding the arc, the dominant left
eigenvector gives to z a centrality greater than y.

The counterexample in Figure 11 shows that HITS is not rank monotone
on strongly connected graphs. Before adding the arc x → y, there is a unique
dominant left eigenvector that is zero on all nodes except those of the 3-clique.
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Figure 10: A counterexample for rank monotonicity of the dominant left eigen-
vector on general graphs.

y z

x

Figure 11: A counterexample for rank monotonicity of HITS on strongly con-
nected graphs.

After adding the arc, HITS gives to z a centrality greater than y.
Finally, the counterexample in Figure 12 shows that HITS is not score mono-

tone on strongly connected graphs: before adding the arc x→ y, the score of y
is zero, and it remains zero.6

We are left with two open problem: is the dominant left eigenvector rank
or score monotone on strongly connected graphs? We can give a direct positive
answer for the first question, using Theorem 2.1 from (Elsner et al., 1982), which
implies that adding an arc x→ y to a strongly connected graph with dominant
left eigenvector r strictly increases all ratios ry/rz for all z 6= y. An immediate
consequence is strict rank monotonicity.

However, while the question about rank monotonicity can be posed unam-
biguously even if the score is defined only up to a multiplicative constant, to
prove score monotonicity we need to establish a canonical dominant left eigen-
vector. We choose `1-normalization, as in the case of Markov chains: under

6Note that the counterexamples in Figure 11 and Figure 12 are built on the same principles
as that in Figure 10, and nodes with the same names play the same role. Their rather awkward
construction is due to the fact that an arc in Figure 10 must be replaced with a common
predecessor in the other two examples, as in HITS rank propagates by zig-zag paths, that
is, by common predecessors (remember that HITS is the left dominant eigenvector of ATA).
After that, a few additional well-placed arcs are necessary to get a strongly connected graph.
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Figure 12: A counterexample for score monotonicity of HITS on strongly con-
nected graphs.

this assumption, once again the result from (Elsner et al., 1982) proves score
monotonicity of the dominant left eigenvector for strongly connected graphs.

7 Conclusions and future work

All our results are summarized in Table 1, where we distilled them into simple
yes/no answers to the question: does a given centrality measure satisfy the ax-
ioms? For sake of completeness, the table contains also results proved in (Boldi
& Vigna, 2014).

Once again, only harmonic centrality satisfies all axioms. Betweenness ex-
hibits possibly the worst behavior, failing to satisfy all axioms, even on strongly
connected graphs. This is in line with results in (Boldi & Vigna, 2014) based on
information retrieval, in which betweenness performed in a way that is essen-
tially indistinguishable from a random score.

It is interesting to note that indegree satisfies all axioms, except for size.
Indeed, indegree turns out to be a surprisingly strong baseline in a number of
contexts.

Our results provide further evidence that harmonic centrality should always
be used instead of closeness. Closeness does not satisfy strict rank monotonicity,
for reasons that are related to the fact that it does not satisfy the density
axiom (Boldi & Vigna, 2014). So, even on strongly connected graphs it is more
advisable to use harmonic centrality. Our counterexamples show, for instance,
that if you have two persons P and Q on Twitter with the same closeness
centrality, adding a follower just to P might not make it more important than
Q—a very counterintuitive behavior.

An interesting open problem concerns a different normalization for the dom-
inant left eigenvector obtained using eigenprojectors. Since the eigenspace asso-
ciated to the dominant eigenvalue λ0 has dimension one, there is an associated
eigenprojection Eλ0

. One could define the canonical dominant left eigenvector
as the vector 1Eλ0

. This is in analogy with the theory of Markov chains, where
the eigenprojector of the transition matrix maps initial distributions to limit
stationary distributions (modulo convergence problems due to periodicities).

Given a dominant left eigenvector ` and a dominant right eigenvector r
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Table 1: Overall results from (Boldi & Vigna, 2014) and this paper. “yes*”
means that the strict version of rank monotonicity is satisfied. The results about
rank monotonicity for Katz and PageRank hold for all parameters under the
hypothesis that all the scores are nonzero. Score monotonicity of the dominant
left eigenvector for strongly connected graphs assumes `1-normalization of the
scores. The centrality indices are listed based on the number of axioms they
meet.

Monotonicity
Other axioms

General Strongly connected

Centrality Score Rank Score Rank Size Density

Harmonic yes yes* yes yes* yes yes

Degree yes yes* yes yes* only k yes

Katz yes yes* yes yes* only k yes

PageRank yes yes* yes yes* no yes

Dominant no no yes yes* only k yes

Seeley no no yes yes no yes

Lin no no yes yes only k no

Closeness no no yes yes no no

HITS no no no no only k yes

SALSA no no no no no yes

Betweenness no no no no only p no
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normalized so that ` · r = 1, the eigenprojector is given by

Eλ0
= rT `,

yielding

1Eλ0 = 1rT ` =
∑
i

ri` = ‖r‖1`.

Note that in the case of stochastic matrices the resulting canonical eigenvector
is simply the unique stationary distribution multiplied by n. Proving that 1Eλ0

is score monotone is left as an open problem.
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