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Abstract

Since the first investigations on web graph compression, it has been clear that
the ordering of the nodes of the graph has a fundamental influence on the com-
pression rate (usually expressed as the number of bits per link). The authors of
the LINK database [2], for instance, investigated three different approaches: an
extrinsic ordering (URL ordering) and two intrinsic orderings based on the rows
of the adjacency matrix (lexicographic and Gray code); they concluded that URL
ordering has many advantages in spite of a small penalty in compression. In this
paper we approach this issue in a more systematic way, testing some known order-
ings and proposing some new ones. Our experiments are made in the WebGraph
framework [3], and show that the compression technique and the structure of the
graph can produce significantly different results. In particular, we show that for
the transposed web graph URL ordering is significantly less effective, and that some
new mixed orderings combining host information and Gray/lexicographic orderings
outperform all previous methods: in some large transposed graphs they yield the
quite incredible compression rate of 1 bit per link. We experiment these simple ideas
on some non-web social networks and obtain results that are extremely promising
and are very close to those recently achieved using shingle orderings and backlinks
compression schemes [4].

1 Introduction

The web graph [5] is a directed graph whose nodes correspond to URLs, with an arc
from x to y whenever the page denoted by x contains a hyperlink toward page denoted
by y; more loosely, the same term is sometimes used for the undirected version of the
graph, when arc direction is not relevant. Web graphs are a huge source of information,
and contain precious data that find applications in ranking, community discovery, and
more. In many cases, the results obtained and the techniques applied for the web graph
are also appropriate for the larger realm of social networks, of which the web graph is
only a special case; while the first studies on web graph compressions date back to the
early 2000’s, very large non-web social graphs were made available only more recently,
�This work is partially supported by the EC Project DELIS, by MIUR PRIN Project “Automi e

linguaggi formali: aspetti matematici e applicativi”, and by MIUR PRIN Project “Web Ram: web
retrieval and mining”. A preliminary version of the results in this paper appeared in [1].
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triggering research about their compressibility as it had happened in the case of web
graphs a decade earlier.

Indeed, one nontrivial practical issue when dealing with such graphs is their size: a
typical web graph or real-world social network contains millions, sometimes billions, of
nodes and although sparse its adjacency matrix is way too big to fit in main memory, even
on large computers. To overcome this technical difficulty, one can access the graph from
external memory, which however requires to design special offline algorithms even for the
most basic problems (e.g., finding connected components or computing shortest paths);
alternatively, one can try to compress the adjacency matrix so that it can be loaded into
memory and still be directly accessed without decompressing it (or, decompressing it
only partially, on-demand, and efficiently).

The latter approach, that can be referred to as web graph compression, can be traced
back to the LINK database [2]; more recently, it led to the development of the Web-
Graph framework [3], which still provides some of the best practical compression/speed
tradeoffs.

Most web graph compression algorithms strongly rely on properties that are satisfied
by the typical web graphs; in particular, the key properties that are exploited to compress
the graph adjacency structure are locality and similarity. Locality means that most links
from page x point to pages of the same host1 as x (and often share with x a long path
prefix); similarity means that pages that are from the same host tend to have many links
in common (this property is becoming more and more frequent with the widespread use
of templates and generated content).

The fact that most compression algorithms make use of these (and similar) properties
explains why such algorithms are so sensible to the way nodes are ordered. A technique
that works incredibly well, and was adopted already in the LINK database [2], consists
in sorting nodes lexicographically by URL (the first node is the one that corresponds
to the lexicographically first URL, and so on). In this way, successor lists contain by
locality URLs that are assigned close numbers, and gap encoding2, a standard technique
borrowed by inverted-index construction, makes it possible to store each successor using
a small number of bits. This solution is usually considered good enough for all practical
purposes, and has the extra advantage that even the URL list can be compressed very
efficiently via prefix omission [6]. Analogous techniques, which use additional information
beside the web graph itself, are called extrinsic.

It is natural to wonder if there is an alternative way of finding a “good ordering” of
the nodes that allow one to obtain the same (or maybe better) compression rate without
having to rely on URLs; this is especially urgent for social networks, where nodes do
not correspond themselves to URLs.3 A general way to approach this problem may
be the following: take the graph with some ordering of its n nodes, and let A be the

1According to the RFC 1738, the host is the string between the second and the third slash in an
absolute URL.

2Instead of storing x0, x1, x2, . . . we store, using a variable-length bit encoding, x0, x1 � x0, x2 �

x1, . . . .
3We note that the same approach has been shown to be fruitful in the compression of inverted indices;

see, for instance [7, 8, 9, 10].
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corresponding adjacency matrix; now, based on A, find some permutation � of its rows
and columns such that, when applied to A, produces a new matrix A0 in which two
rows that are close to each other (i.e., appear consecutively, or almost consecutively) are
similar (i.e., they contain 1’s more or less in the same positions).

Finding a good permutation � is an interesting problem in its own account; in [2],
the authors propose to choose the permutation � that would sort the rows of A in
lexicographic ordering. This is an instance of a more general approach: fix some total
ordering � on the set of n-bit vectors (e.g., the lexicographic ordering), and let � be the
permutation4 that sorts the rows of A according to �. Observe that the rows of A0 are
not �-ordered, because the permutation � is applied to both rows and columns. These
approaches are called intrinsic, as they do not rely on external information (such as the
URLs of each node).5

Another possible solution to the same problem, already briefly mentioned in [2],
consists in letting � be a Gray ordering, that is, an ordering where adjacent vectors differ
by exactly one bit. Although this solution may sound promising, one should carefully
determine an efficient algorithm that finds the sorting permutation � with respect to
(some) Gray ordering.

In this paper we explore experimentally, using the WebGraph framework, the im-
provements in compression due to permutations. Besides the classical permutations
described above, we propose two new permutations based on the Gray ordering: how-
ever, we restrict the permutation to rows of the same host. Moreover, for the first time
we provide experimental data on the transposed graph (i.e., the graph obtained reversing
the direction of all arcs), showing that intrinsic permutations provide a dramatic increase
in compression, contrarily to what happens in the standard case.

Some of the methods described in the paper are totally intrinsic and can thus be
applied to any graph; other techniques, although not fully intrinsic, can be adapted
to work also without any additional information on the nodes. It is hence natural to
wonder whether they can be fruitfully exploited on other social networks. Social network
compression has been recently discussed in [4], where the authors proposed two intrinsic
ordering heuristics based on shingles, and also study a compression scheme called backlink
(BL) compression that improves on the WebGraph format, adding the idea of reciprocity.
In the experimental part of this paper, we show how our methods behave when applied
to non-web social networks; our results (still based on the WebGraph framework) are
promising, and they produce compression rates that are comparable to those shown in [4],
while providing fast access.

Before discussing our approach and results, though, we believe that it is worth to
take some time to discuss the current state-of-the-art in web graph compression: this is
the content of the next section.

4In this description we are ignoring the problem that � is not unique if A contains the same row
many times.

5Of course, it is possible to devise intrinsic methods that do not necessarily depend on some ordering;
see, for instance, [11].
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2 Web graph compression: a primer

As briefly explained in the introduction, when large graphs (and, more generally, large
amount of data) are to be processed and their size is such that they cannot fit in main
memory directly, two opposing approaches can be adopted. One possibility is to assume
that the graph is never actually loaded into memory, but it is rather read (possibly more
than once) in a streaming fashion from external storage using a small amount of memory.
The second is to rely on some graph compression techniques that allow one to reduce
the graph space usage enough to be able to load it in memory.

As a first, general remark, let us distinguish between compressed data structures and
compression schemes: the latter is evaluated only on the basis of its space efficiency (how
much space the compressed data occupy), whereas the former requires that accessing the
data can be done efficiently and without (fully) decompressing it. There is of course an
information-theoretical lower bound on the performance of compression schemes (and,
a fortiori, of compressed data structures), given by a simple counting argument: any
compression scheme for objects of a universe � cannot use less than log2 j�j bits on
the average; in some cases, it is actually possible to design compression schemes that
achieve this lower bound, and are henceforth space-optimal, at least in the average case.
For directed labelled graphs, the adjacency matrix is optimal (as there are 2n2 directed
labelled graphs). Turán [12], in one of the early papers on the subject, described a
representation for planar graphs and posed the problem of encoding general unlabelled
graphs (i.e., graphs that should be considered up to automorphisms); a solution was
found a few years later by Naor [13]. Albeit interesting, this kind of results is of limited
practical impact for two reasons: no efficient method is usually provided to access the
data without decompressing it entirely, and moreover in real applications the empirical
distribution of the objects is far from being uniform—in many cases, a scheme that works
poorly in the worst or average case can be preferable if it is able to compress efficiently
typical instances.

On the other hand, compressed data structures are in a sense the empirical counter-
part of succinct data structures (introduced by Jacobson [14]), which store data using a
number of bits equal to the information-theoretical lower bound, providing access time
asymptotically equivalent to a standard data structure; in particular, a compressed data
structure for a graph must provide very fast amortised random access to an arc (link),
say in the order of few hundreds of nanoseconds. More precisely, the kind of compressed
data structures for graphs that are the topic of our discussion should feature the following
(somewhat loose) properties:

� they should mandatorily exhibit good compression ratios (possibly below the information-
theoretical lower bound) at least for the kind of graphs one wants to deal with (in
our case: web graphs, social networks and alike);

� they should possibly guarantee good compression on the average, not far from the
lower bound;

� they should be endowed with access primitives that are almost as efficient as those
of a non-compressed graph structure;
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� they can be coordinate-free: by this we mean that the data structure yields ap-
proximately the same compression rate independently of the specific permutation
of the graph it is fed with.

Which specific access primitives are provided depend on the way compression is achieved
as well as on its intended usage. Broadly speaking, we can distinguish between sequential
access (scan through all the arcs, with guarantees that the arcs going out of each node
are provided consecutively), random access (given x, provide the list of successors of x)
or direct access (given x and y, tell whether there is an arc from x to y or not). In some
cases, random or direct access to the transposed graph might also be made available.
Note that we are not interested in dynamic data structures: we are assuming that the
graphs under consideration are static and immutable; this implies, in particular, that we
are disregarding the time taken for construction (compression) but we are assuming that
compression can be performed using a reasonable amount of time and space, precisely
because there is no other way to modify the graph than to reconstruct everything from
scratch. Unfortunately, compression time and space is not usually reported in papers
about web graph compression. The rationale behind this choice is that since such graphs
will be stored once and read many times, construction time is not very relevant. On
the other hand, apart for the considerations above, it is necessary that the compression
techniques be very scalable, as the web graph is growing every day. The lack of exper-
iments beyond, say, 100 million nodes may be a sign that the technique described does
not really scale up.

The features of the links of a web graph that are usually quoted as locality and simi-
larity (described in the introduction) were originally exploited by the LINK database [2];
given that the nodes are sorted lexicographically by URL, locality guarantees that most
links are between nodes close to each other in the order, and similarity suggests that
nearby nodes have similar successor lists. The authors of the LINK database write each
successor list as a sequence of gaps (the smallest successor of node x is written as a
difference from x, and each of the remaining successors, in increasing order, is written
as a difference from the previous one): locality implies that the gaps written this way
are small and using some suitable universal code for the integers they can be written
compactly; in [2], a nybble code is used to write gaps (binary values are written as se-
quences of 3-bit groups, plus one continuation bit): the reason behind this choice is that,
although nybble codes are outperformed by Huffman, they are much faster to decom-
press. As [15] explain a posteriori, the choice of nybble codes is optimal (at least for
gaps between successors) among all the universal codes of the same family (the so called
k-bit variable length code, where k D 3 for nybble codes): indeed, empirical analysis
performed by [15] on Web graphs shows that such gaps exhibit a Power Law distribution
with exponent around 4=3, and the optimal k for this exponent is6 3.

Besides their clever usage of locality, [2] also analyse the idea of storing similar
successor list by reference: if a list of successors is sufficiently similar to one of those that

6In the same work, they show that the first gap, i.e., the (absolute value of the) difference between
the source and the smallest successor, has also a Power Law distribution but with a different exponent
(7=6 instead of 4=3) that would suggest using a 6-bit variable length code, instead.
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appeared immediately before it, only the symmetric difference between the two successor
sets is written: a bit list records which successors of the referenced list are actually used.
The idea of using similarity was also explored independently in [16], which also presents
some negative results about the complexity of finding the “best possible” node to copy
from, and suggests a number of possible practical improvements over the bit list idea,
in particular that of run-length encoding such a list, which is similar to the inclusion-
exclusion blocks used by WebGraph [3].

The results of [2] were obtained on large datasets on which they obtain a compression
rate of about 5:5bits/link: this value includes the offset data structure that allows for
random access, but it is not clear from the paper how much one can gain in space if only
sequential access is required. Sequential and random access require about 220 and 300
ns/link, respectively (on a Compaq with 2 Ghz CPUs).

Apart for [2], there was a flurry of activities about the same problem in the early
2000s, some of which delivered ideas that were later used in other frameworks. In
2002, [17] considered two solutions, both based on the idea of grouping the successor
lists into blocks and then compressing each block separately, either by gzipping it or
by writing each successor as a difference from the source (once more, exploiting locality
albeit in a slightly different way); they did not use a standard universal code for writing
the differences, but rather employed three different encodings depending on the size of
the integer to be written. The best compression result they obtain is about 13 bits/link,
with access time of about 5:1�s/link (on a Compaq with 800 MHz Pentium III). Observe
that [17] decided to release the dataset on which their experiments were run: they were
the first ones to do so, to the best of our knowledge7.

The authors of [15] tried to learn from the lessons of [2] and [17], and also introduced
new ideas: in particular, they observe that often successors are consecutive to each
other and propose a run-length encoding to store such sequences (a technique similar to
interval compression of [3]): with their machinery they achieve about 9:7 bits/link, with
a random access time of about 3:5�s/link (on a Solaris UltraSPARC-II with a 360MHz
CPU).

An independent and orthogonal approach to web graph compression (or, more gen-
erally, to graph compression altogether) tries to consider the problem from a structural
viewpoint. In its simplest form, this solution may consist in classifying the arcs of the
graphs into two or more classes and in compressing them differently; an early example
of this approach is attempted in [18], that distinguishes between global frequent links
(interhost links towards pages with large indegree, that are Huffman-coded), global ab-

7It is worth to spend some words, here, about the intrinsic difficulty to compare different compression
techniques proposed and discussed in the literature: datasets on which the experiments are performed
are most often not made available; the code is also most of the times not distributed, and even when it is,
its usability is limited (e.g., because only the executable is provided, and/or because the documentation
is extremely terse or completely absent). Moreover, papers often do not describe the code in full details,
making a re-implementation almost impossible or useless. Finally, a comparison of time performances is
made even more difficult by the relative impossibility to compare structures offering different access to
the graph, and by the fact that they are anyway experimented on hardware with different computational
power.
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solute links (the other interhost links, stored using a Golomb code) and local links (that
are, in turn, classified into “frequent” and “distant” links). Their approach requires about
13:9 bits/link with a random access time of about 0:26 ms/link (they do not give details
about the hardware on which their experiments were run, though). A similar technique
was discussed in [19], where the nodes are first partitioned into groups (called supern-
odes), and both the quotient graph thereby obtained and each component graph are
stored separately: with their approach, they occupy about 5:1 bits/link, with sequen-
tial and random access require about 300 and 700 ns/link, respectively (on a 933 MHz
Pentium III).

2.1 WebGraph

In this paper we refer to the BV compression scheme provided by the WebGraph frame-
work [3]. It is a compression scheme that combines several ideas from the literature and
some new insights in a carefully engineered algorithm:

� successor lists are compressed by referencing previous successor lists, if this is
advantageous, and the list of arcs copied by a previous successor list is represented
by inclusion-exclusion blocks;

� consecutive successors are represented by intervals;

� the residual successors are gap-encoded using � codes [20], a kind of instantaneous
code devised explicitly for power laws with small exponent.

WebGraph provides an implementation of the BV compression scheme in Java (full source
is available). Moreover, the LAW (Laboratory for Web Algorithmics8) provides freely
several datasets in BV format: in what follows, when we name a graph, we will use its
name in the LAW repository.

Clearly, the compression rate is strongly dependent on the ordering of the nodes:
actually, on a randomly permuted graph, BV simply encodes the successor lists by gaps.
We also remark that WebGraph is an extremely configurable system, in which, for in-
stance, it is possible to choose a different instantaneous code for each component of the
compression algorithm. By hardwiring our currently best choices we could gain some
constant speed-up factor.

Another important design choice of WebGraph, which imposes a constant-time slow-
down, is its lazy implementation. When the successor list of a node is computed, a
small amount of memory is allocated to keep track of inclusion-exclusion blocks and
intervals: the successors originated by the various aspects of the compression algorithm
are represented by iterators, which are aggregated in a tree; at each node, the results are
merged on the fly. As a result, random access does not require to allocate memory for
the entire list of successors of a node.

8http://law.dsi.unimi.it/
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2.2 Recent advances

In this section we gather more recent papers that have presented significant advances in
compressed data structures for graphs. Most of the papers provide comparisons results
against WebGraph, that is considered a de facto standard in web-graph compression,
and use datasets from the LAW repository.

An important remark is to be made about pointers: most, if not all, the structures we
discuss provide both sequential and random access. The bits per link reported are those
related to the data required for sequential access. For random access, however, some
more data must be loaded into memory: usually, a list of pointers into the bitstream
representing the graph. This list is monotone, so it can be represented using Elias–Fano
coding [21, 22], requiring around 2C log ` bits per pointer, where ` is the average number
of bits per node. Since the overall space usage is of lower order with respect to the rest
of the data (in practice, it is usually less than 10 bits/node), and it is a “common evil”,
it is often not reported in the literature. This lack of report creates some confusion, as
it happens that, in benchmarks, variants that do not compress the pointers are used to
achieve maximum speed: at that point, however, the impact of pointers on memory is
very significant (i.e., it can cause double space usage).

Separable graphs. Blandford, Blelloch and Kash [11] have proposed a general-purpose
compressed data structure that works for separable graphs (intuitively, a graph is sep-
arable if it can be split into small, approximately equally sized disconnected pieces by
removing a small number of edges). The representation does not seem to depend on
the initial ordering; the compression rate and access time are good, but experiments are
provided only for very small data sets, and the software is not available.

Pattern compression. Asano, Miyawaki and Nishizeki [23] use different techniques to
encode intra and inter-host links, and for intra-host compression they adopt six different
kinds of patterns that are used to cover the local adjacency matrix. No code is made
available, and experiments are performed just on small graphs. The random access time
is in the order or several �s/link, so by our standards it is not classifiable as a compressed
data structure9.

Compression by community detection. Buehrer and Chellapilla [24] propose to
identify communities (i.e., complete bipartite graphs) and to replace them with virtual
nodes. They provide a scanning algorithm that can identify a significant number of
such communities in a web graph, so that the final number of bits per link is better
than WebGraph’s (although in most cases it is worse than what we show in Table 3);
experiments are performed on large graphs, too. No detailed data are provided on
decompression time, though, albeit it is argued in [25] that many useful algorithms can

9Experiments compare the sequential access speed with that provided by WebGraph, but clearly
the author have mistakenly used the direct-access interface of WebGraph to perform a sequential scan,
instead of employing an iterator (that scans the graph sequentially). Consequently, for high compression
they show unrealistic data.
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be run directly on virtual nodes. Since the software is not available, we have not been
able to determine whether the compression scheme is dependent on the initial ordering,
or to ascertain whether their solution can be classified as a compressed data structure.

Grammar compression. Claude and Navarro [26] propose a very interesting com-
pression scheme based on a general-purpose grammar-based compression method, Re-
Pair [27]. Re-Pair codes the most frequent pair of symbols with a new symbol and records
compactly the corresponding expansion rule. The resulting scheme provides sometimes a
better space/time improvement over WebGraph, and it is general-purpose, but it is not
as scalable because of the large amount of memory required and of the long time required
to compress a graph. Also in this case the authors claim that the method is coordinate-
free, but experiments show that it is dependent on the initial ordering (on a random
permutation of the LAW dataset uk-2002 we obtained 7:61 instead of 4:22bits/link, and
compression required days rather than hours).10 On LiveJournal, Re-Pair compression
provides an unsatisfactory 18:37 bits/link.

k2-trees. Brisaboa, Ladra and Navarro [28] propose another approach based on repre-
senting the adjacency matrix of the graph using a k2-ary tree that records at each level
which children contain at least a one. The tree is represented compactly using the vast
array of knowledge about succinct data structures gathered in the last decade. There is
a very important feature of this approach: the same structure can be used both to obtain
the successor list and to obtain the predecessor list (apparently, also direct access would
be easy to implement). The structure is about one order of magnitude slower than other
approaches, but if both successors and predecessors are needed the compression results
are unbeatable. Of course, the initial ordering is essential (they use URL ordering), so
also this approach is in principle amenable at improvements by permuting the under-
lying graph. Experiment are provided only for graphs up to 20 million nodes, and the
software is not available. Since the method relies heavily on the 1’s of the matrix being
concentrated in relatively few locations, it is likely that this approach has less success
with social networks.

Compression by breadth-first visit. Apostolico and Drovandi [29] propose an in-
novative and very interesting method based on a breadth-first visit followed by a clever
compression scheme that exploits naturally both locality and similarity: successors are
compressed either by reference to the previous successor for the same node, or by refer-
ence to the successor of the previous list that is in the same ordinal position. Moreover,
blocks of identical successors are recorded just once. The authors provide an implemen-
tation of their algorithm (but no source code). Compression rates are excellent (in many
cases, the best available), and access is very fast. The downside is that one is forced to
store the graph using a specific numbering of the nodes. This problem can be obviated

10Since Re-Pair compression is not coordinate-free, it could in principle benefit from the permutations
suggested in this paper. However, some preliminary experiments showed no improvement or even a
worsening of the compression rate using the permutations described in this paper.
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by storing the forward and reverse permutation, and remap each successor list on the
fly, possibly sorting it. This approach, however, worsens significantly both space usage
and access time. Thus, rather than with standard WebGraph, this technique is best
compared with the compression rates of this paper, as the point of this paper is precisely
choosing a permutation to maximise compression.11

The authors claim that the method is coordinate-free, and indeed some experiments
with random permutations show that the method has relatively low dependence on the
initial ordering (uk at level 8 requires 2:028 bits/link, whereas a random permutation
requires 2:324 bits/link), something which is unique among the methods we review. Pre-
liminary experiments suggest that the proposed encoding method is strongly oriented
towards graphs with tight clusters: the outcome on some social networks discussed in
this paper is unsatisfactory (e.g., 15 bits/link on LiveJournal), and also results on trans-
posed graphs are not very competitive (the best compression on the transpose of the
dataset uk of this paper is 1:348 bits/link).

Two observations must be done about this method. First of all, successors are not
returned in increasing order. Second, to provide random access, additional data must be
loaded into memory. These data include not only a set of pointers into the compressed
data, but also a set of node identifiers. Thus, the “common evil” elimination that we
discussed at the start of this section does not apply in this case. Moreover, in the current
implementation data are not kept in succinct form, a choice that provides very high-speed
access, but at the same time increases by a large amount the space allocated in main
memory. To keep differences to a minimum, we compare results oriented to random
access (e.g., Table 4 and 5) to the “level 8” compression of the Apostolico–Drovandi
scheme, which in the current implementation uses 8 bits per node—a value comparable
by that used by WebGraph for pointers alone.

3 Notation and Gray Code Basics

Von Neumann’s notation. In the following we will use von Neumann’s definition of
natural numbers

x D f 0; 1; : : : ; x � 1 g;

which leads to a simple notation for sets of integers. We allow some ambiguity when
writing exponentials: 2n denotes the vectors of n bits, or, equivalently, the power set
of n (interpreting the vectors as characteristic functions n ! 2). Since 2n ambiguously
denotes also the set X D f 0; 1; : : : ; 2n�1 g we assume the natural correspondence between
the latter set in increasing order and the strings of n bits in lexicographic ordering. The
mapping from strings to X is obviously given by base-2 evaluation.

In the following, if x 2 2n, we use x0; x1; : : : to denote the bits of its binary expansion
(x0 being its least-significant bit). In other words, interpreting x as a characteristic
function n! 2, we let

xk D x.k/:

11Comparison with the Apostolico–Drovandi method did not appear in the preliminary version of this
paper [1] as at that time [29] was not yet published.
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x Nx

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Table 1: The natural Gray code on 3 bits: in the right-hand column, any two successive
vectors differ in exactly one bit.

Gray codes and Gray orderings. An n-bit Gray code is an arrangement (i.e., a
total ordering) of 2n such that any two successive vectors12 differ by exactly one bit;
Gray codes, named after the physicist Frank Gray, find countless applications in com-
puter science, physics and mathematics (we refer the interested reader to [30] for more
information on this topic). The ordering imposed by a Gray code on 2n is called a Gray
ordering.

Even though there are many Gray codes, and thus many Gray orderings, one that is
very simple to describe is the following:

Definition 1 ([30, Section 7.2.1.1]) For every x 2 2n, let Nx 2 2n be defined by

Nxn�1 D xn�1;

Nxk D xkC1 ˚ xk for k < n � 1;

where ˚ is the exclusive or. Then, x 7! Nx is a bijection, and the ordering � defined by

Nx � Ny iff x < y

is a Gray ordering, called the natural Gray ordering.

Table 1 shows the natural Gray code on 3 bits. Now, let us write x 7! Ox for the
inverse of x 7! Nx; starting from Definition 1 one can easily see that Ox can be recursively
obtained as follows

Oxn�1 D xn�1;

Oxk D xk ˚ OxkC1:

This observation gives a nice and simple way to compute Ox from x: indeed, let x # k be
the number of 1’s in x preceding position k (i.e., the number of 1’s in bits that are at
least as significant as the k-th). Then

Oxk D x # k mod 2: (1)
12We say that a0 is the successor of a with respect to the ordering < iff a < a0 and a � b � a0 implies

either a D b or b D a0.
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4 On Gray orderings and graphs

An obvious application of Gray ordering to graphs is that of permuting node labels so that
the resulting adjacency matrix changes “slowly” from row to row. Indeed, intuitively if
we permute the rows of the adjacency matrix following a Gray ordering rows with a small
number of changes should appear nearby. (This intuition is only partially justified—e.g.,
in Table 1 the first and last word of the second column differ by just one bit, yet they
are as far apart as possible). Of course, to maintain correctly the graph we also need
to permute columns in the same way: but this process will not change the number of
differences between adjacent rows.

Indeed, already some of the first investigation of web graph compression experimented
with Gray orderings [2]13. However, the authors reported a very small improvement in
compression with respect to URL ordering; this fact, coupled with the obvious advantages
of the latter, pushed the authors to discard Gray ordering altogether. The main question
we try to answer in this paper is whether this small difference is actually an absolute
property or it is an artifact strongly depending on the compression algorithms used, and
whether it also applies to transposed graphs. To this purpose, we first develop a very
simple algorithm that makes it possible to decide the Gray code ordering inspecting the
successor lists in parallel.

When manipulating web graphs using the WebGraph framework, successors are re-
turned under the form of an iterator providing an increasing sequence of integers. This
makes it possible to compare the position in the Gray ordering of two rows of the ad-
jacency matrix by iterating in parallel over the adjacency lists of two nodes. While the
lists coincide, we skip, and keep a variable recording the parity of the number of arcs
seen so far (note that the value of formula (1) depends only on the parity of x # k). As
soon as the lists differ, we can use formula (1) to compute the first different bit of the
ranks of the adjacency rows in the Gray ordering: assuming the first list returns j and
the second list returns k (for sake of simplicity, we assume that the end-of-list is marked
by 1), we have the following scenario:

� if the parity is odd, the order of the lists is the order of j and k;

� if the parity is even, the order of the lists is the order of j and k reversed.

This can be easily seen as j < k implies that the first difference in the rows of the
adjacency matrix is at position j , where the first list has a one whereas the second list
has a zero. If the parity is odd, this means that the rank of the first list has a zero in
position j , whereas the rank of the second list has a one. The situation is reversed if the
parity is even. Algorithm 1 describes formally this process.

Once this simple consideration is made, it is trivial to implement Gray code (or
lexicographic) graph permutation using WebGraph’s facilities. The idea is that of using a
standard comparison-based sorting algorithm that compares lists of successors exploiting

13Note that in the paper the codes are incorrectly spelt as “Grey”.
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Algorithm 1 The procedure for deciding the Gray natural order of two rows of the
adjacency matrix, represented by means of iterators i and j that return the position
of the next nonzero element. Note that end-of-list is denoted by 1 and that we used
Iverson’s notation: Œa < b� has value one if a < b, zero otherwise. The meaning of the
return value is negative, null or positive depending on whether iterator i corresponds
to a vector that precedes, is equal or follows (respectively) the vector corresponding to
iterator j according to the Gray natural order.

0 p  false;
1 forever begin
2 a next.i/;
3 b  next.j /;
4 if a D1 and b D1 then return 0;
5 if a ¤ b then begin
6 if p ˚ Œa < b� then return 1
7 else return �1
8 end;
9 p  :p

10 end;

the considerations above.14 As a result, we can compute the Gray permutation of the
uk graph (see Table 2) in about one hour on an Opteron at 2.8GHz.

Note that from a complexity viewpoint this approach is far from optimal. Indeed, a
simple way to permute words in Gray code ordering is to apply a modified radix sort in
which, at each recursive call, we have a parity bit that tells us whether 0 � 1 or 1 � 0.
We apply a standard radix sort algorithm, dividing words in two blocks depending on
the first bit, and then recurse on each block: however, when we recurse on the block of
words starting with one, we invert the parity bit.

Now, this approach is theoretically optimal if the size of the input is given by the
number of entries in the adjacency matrix. However, the adjacency matrix of a web
graph is very sparse, and never represented explicitly.

Alternatively, we could develop a radix sort that picks up successors from successor
lists (for all nodes) and deduces implicitly the zeroes and the ones of the adjacency ma-
trix. Albeit in principle such an algorithm would iterate optimally (i.e., it would extract
from each iterator the minimum number of elements that are necessary to compute the
ordering), it would require to build at the same time the iterators for all nodes—a task
that would require a preposterous amount of core memory.

14In this case, the lazy architecture used by WebGraph turns out to be very effective, as the comparison
ends very quickly for most pairs of successor lists, without the need to decompress them fully.
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Name Year Nodes Edges
cnr 2000 325 557 3 216 152
webbase 2001 118 142 155 1 019 903 190
it 2004 41 291 594 1 150 725 436
eu 2005 862 664 19 235 140
uk 2007 105 896 555 3 738 733 648

Table 2: Basic properties of graphs used as dataset.

5 Experimental results

In this section, we present a number of experiments performed on web graphs and social
graphs; the experiments show the impact of ordering on the compression performance
of BV, and provide a positive evidence that Gray code ordering and its variants yield
good compression ratios in all cases. As suggested in Section 2, we compare our results
against the Apostolico–Drovandi compression method [29].

5.1 Experiments on web graphs

We ran a number of experiments on web graphs of different sizes (ranging from 300K
nodes up to almost 120M nodes) and collected at different times, and on their transposed
version. The graphs used are described in Table 2, and they are all publicly available,
as well as the code used in the experiments.

We started with the standard URL ordering of nodes and permuted the nodes in
different ways, taking note of the number of bits/link occupied if the graph is compressed
in WebGraph format. Six node orderings were considered:

� URL: URL ordering (to avoid confusion, we use “URL ordering” instead of “URL
lexicographic ordering”);

� lex: lexicographic row ordering;

� Gray: Gray ordering;

� lhbhGray: loose host-by-host Gray ordering (i.e., keep URLs from the same host
adjacent, and order them using Gray ordering);

� shbhGray: strict host-by-host Gray ordering (like before, but Gray ordering is
applied considering only local links, i.e., links to URLs of the same host).

We remark that we devised the latter two orderings trying to combine external and
internal information.
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Figure 1: The picture shows the adjacency matrix of the cnr graph (325 557 nodes),
when nodes are ordered as follows (left-to-right, top-to-bottom): lexicographically by
URL, lexicographically by row, Gray ordering, loose host-by-host Gray ordering, strict
host-by-host Gray ordering, randomly.
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Figure 1 shows how the adjacency matrix changes when re-ordering is applied. To
obtain this figure, we actually divided the matrix into smaller 100 � 100-square subma-
trices, computed the fraction of 1’s found in each submatrix, and plotted a square using
a grayscale that maps 0 to white and that becomes exponentially darker (1 is black).

WebGraph compression depends not only on the graph to be compressed and the
ordering of its nodes, but also on a number of other parameters that control its behaviour.
Two parameters that happen to be important for our experiments are:

� Window size: when compressing a certain matrix row, WebGraph compares it with
a number of previous rows, and tries to compress it differentially with respect to
(i.e., as a difference from) each such row, choosing at the end the row that gave the
best compression (or none, if representing the row non-differentially gives better
compression); the number of rows considered in this process is called the win-
dow size. Of course, larger window sizes produce slower compression, but usually
guarantee better compression.

� Maximum reference count: compressing a row x differentially with respect to some
previous row y < x makes it necessary, at access time, to decompress row y before
decompressing row x; if also y is compressed differentially with respect to some
other row z < x, z must be decompressed first, and so on, producing what we call a
reference chain. This recursive process must be somehow limited, or access becomes
extremely inefficient (and may even overflow the recursion stack). The (maximum)
reference count is the maximum length of a reference chain (we simply avoid to
compress a row differentially with respect to one that already has a maximum-
length reference chain); the default reference count is 3, but this value may be
pushed up to 1 (meaning that we just don’t care of creating too long chains: this
makes sense if we plan to access the graph only sequentially, in which case we just
need to keep the last w uncompressed rows, where w is the window size used for
compression).

The Apostolico–Drovandi compression scheme, instead, needs a single parameter,
the level, which determines the number of nodes stored in a compression block. Larger
blocks imply better compression, but slower access (see [29] for details).

Tables 3 and 4 show the number of bits/link occupied by the various graphs using
1 and 3, respectively, as reference count (the window size was fixed at 8), and level
10000 and 8, respectively. Not surprisingly, the number of bits/link for the random
permutation, that we present here only for comparison, is very large.

5.2 Experiments on social graphs

To see whether the results obtained on web graphs hold on when non-web social networks
are used, we took into consideration three datasets:
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Graph URL lex Gray shbhGray lhbhGray Random [29]

cnr
2.823 2.981 2.983 2.845 2.843 17.986 1.907
2.654 2.185 2.192 2.176 2.177 15.084 2.055

webbase
3.059 3.410 3.416 2.907 2.895 30.937 2.883
2.876 2.753 2.740 2.589 2.598 28.236 2.756

it
1.969 1.733 1.723 1.541 1.545 26.430 1.515
1.737 1.206 1.207 1.206 1.209 21.717 1.412

eu
4.331 3.944 3.938 3.600 3.715 19.859 2.850
3.903 2.832 2.833 2.761 2.795 16.445 2.543

uk
1.906 1.513 1.509 1.332 1.367 27.576 1.440
1.662 1.042 1.040 1.007 1.014 21.682 1.348

Table 3: Compression rate summary, window size set to 8, and (maximum) reference
count set to 1. The level for the Apostolico–Drovandi method is set to 10000. Every
table cell contains the data for the graph and its transpose.

Graph URL lex Gray shbhGray lhbhGray Random [29]

cnr
3.551 3.833 3.844 3.654 3.659 18.008 2.788
2.839 2.489 2.495 2.472 2.474 15.084 2.408

webbase
3.732 4.404 4.409 3.680 3.688 30.937 3.770
3.092 3.132 3.105 2.902 2.916 28.236 3.163

it
2.763 2.626 2.618 2.334 2.353 26.430 2.180
1.852 1.407 1.393 1.378 1.379 21.717 1.586

eu
5.130 4.935 4.927 4.438 4.599 19.872 3.543
4.002 3.063 3.072 2.993 3.019 16.445 2.902

uk
2.659 2.394 2.396 2.101 2.163 27.576 2.028
1.761 1.222 1.205 1.162 1.170 21.682 1.493

Table 4: Compression rate summary, window size set to 8, and (maximum) reference
count set to 3. The level for the Apostolico–Drovandi method is set to 8. Every table
cell contains the data for the graph and its transpose.
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� DBLP15 is a bibliography service from which a scientific collaboration network can
be extracted: in this network each node represents a scientist and we interpret the
co-authorship relation as a social tie, indicating that two scientists are connected
if they have worked together on an article. We refer to this symmetric graph as
the DBLP social network : as of now, it contains 326 186 scientists and 1 615 400
co-authorship relations. This particular social network has been studied in the past
(e.g., see [31]), and it has been shown that it shares many properties of a typical
social network, including the small-world property.

� One of the most popular social graphs is the graph of movie actors, also known
as the Hollywood graph, where two actors are joined by an edge whenever they
appeared in a movie together. We used the Internet Movie Database16 to build a
symmetric graph with 1 139 905 nodes (actors and actresses) and 113 891 327 arcs.

� LiveJournal17 is a virtual community social site started in 1999; in this social
network friendship is nonsymmetric—a user x can register y among his friends
without asking y permission. We considered the same 2008 snapshot of LiveJournal
used in [4] for their experiments18, consisting of 5 363 260 nodes and 100 060 170
directed friendship arcs.

It is easy to reproduce on these graphs the intrinsic orderings used for web graphs
presented in the previous section (lex, Random, Gray), but it is more difficult to provide
the mixed orderings (lhbhGray and shbhGray) because there is no notion of “host” to refer
to. Of course, one may use some external information (like in [4], where the authors used
for LiveJournal the geographic information deduced from zip codes). Here we prefer to
stick to intrinsic information only, and use a clustering algorithm to simulate the notion
of host: more precisely, we fix a parameter k (the number of clusters) and use the graph
clustering tool METIS [32] to partition the graphs into k clusters, interpreting each
cluster as a “host”.

This approach introduces yet another parameter, and finding the optimal number
of clusters becomes an issue that can be solved either a priori by finding the value k�

of k optimising the structure of clusters themselves, or a posteriori by looking at the
compression ratio produced at the end. Note that, in principle, k� may depend not
only on the graph, but also on other compression parameters (e.g., the window size or
the maximum reference count), and it may be different depending on whether we are
considering lhbh or shbh. In our experiments, though, there is no apparent dependence
on other data, and k� seems to depend only on the graph: Figure 2 shows the compression
ratio (bits/link) for the social graphs as a function of k, both for the case of lhbh and shbh,
and with window size set to 8 and reference count set to 3 or 1. We considered various
values of k ranging from k D 8 to k D 16384. As the reader can see, independently of
all other parameters, the optimal k among those that we tested is k� D 4 096 for DBLP,

15http://www.informatik.uni-trier.de/~ley/db/
16http://www.imdb.com/
17http://www.livejournal.com/
18The dataset was kindly provided by the authors of [4].
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Graphs lex Gray shbhGray lhbhGray Random [29]
dblp 8.480 8.536 6.779 6.890 22.256 7.393
hollywood 6.293 6.291 5.505 5.685 16.247 7.644
livejournal 14.414 14.333 11.206 11.319 23.568 15.036
livejournal (tr.) 14.055 13.976 11.040 11.176 23.402 14.717

Table 5: Compression rate summary, window size set to 8, and (maximum) reference
count set to 3. The level for the Apostolico–Drovandi method is set to 8.

Graphs lex Gray shbhGray lhbhGray Random [29]
dblp 8.097 8.131 6.660 6.762 22.256 6.723
hollywood 6.045 6.062 5.333 5.518 16.247 7.478
livejournal 14.143 14.055 11.072 11.195 23.568 14.843
livejournal (tr.) 13.836 13.749 10.924 11.069 23.402 14.672

Table 6: Compression rate summary, window size set to 8, and (maximum) reference
count set to 1. The level for the Apostolico–Drovandi method is set to 10000.

k� D 32 for the Hollywood graph and k� D 16384 or even larger for LiveJournal and its
transpose.

Tables 5 and 6 present the compression ratio for the three datasets according to the
different intrinsic ordering considered, using the optimal values k� described above for
lhbh and shbh.

5.3 Discussion

Our experiments highlight a number of very interesting points.

� The effectiveness of intrinsic methods depends on the graph. As we dis-
cussed, the fact that lex or Gray ordering should improve compression is intuitive,
but has little formal justification. Indeed, on some graphs we have a visible decrease
in compression.

� Intrinsic methods are extremely effective on transposed graphs. Our data
for standard web graphs confirm what has been previously reported [2], but our
new data for transposed graphs show that here the situation is reversed: intrinsic
methods improve very significantly the compression of transposed web graphs.
With infinite reference chains, the transpose of uk requires just one bit per link.
This is a phenomenon that clearly needs a combinatorial explanation.

We modified WebGraph so that we could get access to detailed statistics about
which compression technique is responsible for the increase in compression. Moving
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Figure 2: For each of the social graphs under consideration (left-to-right, top-to-bottom:
DBLP, Hollywood, LiveJournal and transposed LiveJournal), we show the number of
bits/link as a function of k (the number of clusters), for loose/strict host-by-host Gray
ordering and with reference count set to 3/1 (window size was set to 8).

20



from URL to Gray ordering, the number of copied arcs of the uk graph (arcs that
are not recorded explicitly, but rather represented differentially) jumps from � 2G
to� 3G. Thus, more than 80% of the arcs of the graph is not represented explicitly.
Another visible effect is that of shifting the distribution of gaps—very small values
(say, below 10) are much more frequent, which also increases compression.

We believe that such a major improvement in the transpose depends on the rep-
etition in patterns of predecessors being much more frequent than in patterns of
successors. For instance, all pages of level k are often pointed to by pages of level
k C 1 (e.g., general topics of a site). This makes the predecessor list of level-k
pages large and very similar. The same phenomenon does not happen for succes-
sors because usually at level k the pointers at level k C 1 are distinct. Moreover,
URL ordering does not gather level k pages nearby—rather, it sorts URLs so that
a level k page is followed by all its subpages. On the contrary, manual inspection
of the URL permutation induced by strict host-by-host Gray ordering shows that
pages on the same level of the hierarchy are grouped together.

� Mixed methods work better. Essentially in all cases, our new orderings out-
perform old methods.

� The Apostolico–Drovandi method [29] is extremely effective, but not
on transposed graphs and social networks. The compression rates on large
graphs are slightly better than those obtained using our best permutation (except
for uk at high compression), but significantly worse on most transposed graphs. In
particular, on the transpose of uk (our largest dataset) we reach 1 bit/link, whereas
the Apostolico–Drovandi method gives 1:348bits/link. The results on social net-
works are always much worse than our best permutation, a phenomenon suggesting
that their method is oriented towards networks with tight, almost disconnected
clusters (i.e., web sites).

� Social graphs exhibit different compression but similar behaviour. Our
experiments on social graphs show that they react to node ordering much in the
same way as web graphs, although the resulting compression ratio is worse and
anyway extremely dependent on the graph considered, as already noted in [4]. It
is interesting to note that our best result on LiveJournal is 11:072 bit/link, that is
only 16% more than the 9:559 bit/link obtained in [4] for the same graph using the
more sophisticated compression scheme BL, which however is just a compression
scheme, and not a data structure.

6 Conclusions

We have presented some experiments about the effect of permutations on the compression
of web graphs and social networks. Albeit our results are clearly preliminary, they high-
light a number of issues that have not been tackled in the literature. First of all, we have
provided two new permutations that significantly and uniformly increase WebGraph’s
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compression rates. Second, we have shown that transposed graphs behave in a radically
different manner when permuted with our techniques, giving rise to extreme compression
rates. Third, we have shown that our methods are also effective for compressing social
networks, although the outcome is less dramatic, which hints at significant structural
differences.
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