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1. INTRODUCTION

PageRank [Page et al. 1999] is a ranking technique used by today’s search engines.
It is query independent and content independent—it can be computed offline using
only the web graph (the web graph is the directed graph whose nodes are URLs
and whose arcs correspond to hyperlinks). These features make it interesting when
we need to assign an absolute measure of importance to each web page.

Originally at the basis of Google’s ranking algorithm, PageRank is now just
one of the many parameters used by search engines to rank pages. Albeit no
public information is available on the current degree of utilisation of PageRank in
real-world search engines, it is likely that in certain areas, for instance selective
crawling (deciding which pages to crawl) and inverted index reordering (permuting
documents so that more important documents are returned first), PageRank (or
one of its many variants) is still very useful [Vigna 2007].

PageRank (and more generally link analysis1) is an interesting mathematical sub-
ject that has inspired research in a number of fields. For instance, even basic meth-
ods commonly used in numerical analysis for matrix computations become tricky
to implement when the matrix size is of order 109; moreover, the matrix induced

1It should be noted that link analysis has much older roots: in Section 2 and 3 we highlight
connections with two papers in sociometrics [Katz 1953] and bibliometrics [Pinski and Narin

1976].
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by a web graph is significantly different from those commonly found in physics or
statistics, so many results that are common in those areas are not applicable.

One suggestive way to describe the idea behind PageRank is the following: con-
sider a random surfer that starts from a random page, and at every time chooses
the next page by clicking on one of the links in the current page (selected uniformly
at random among the links present in the page). As a first approximation, we could
define the rank of a page as the fraction of time that the surfer spent on that page.
Clearly, important pages (i.e., pages that happen to be linked by many other pages,
or by few important ones) will be visited more often, which justifies the definition.
However, as remarked by Page et al. [1999], this definition would be too simple
minded, as certain pages (called therein rank sinks, and, in this paper, buckets)
would end up entrapping the surfer. To solve this problem, at every step the surfer
clicks on a link only with probability α: with probability 1− α, instead, the surfer
will restart from another node chosen (uniformly) at random.

A significant part of the current knowledge about PageRank is scattered through
the research laboratories of large search engines, and its analysis “has remained
largely in the realm of trade secrets and economic competition” [Eiron et al. 2004].
We believe, however, that a scientific and detailed study of PageRank is essential
to our understanding of the web (independently of its usage in search engines), and
we hope that this paper can be a contribution in such program.

PageRank is defined formally as the stationary distribution of a stochastic process
whose states are the nodes of the web graph. The process itself is obtained by mixing
the normalised adjacency matrix of the web graph (with some patches for nodes
without outlinks that will be discussed later) with a trivial uniform process that
is needed to make the mixture irreducible and aperiodic, so that the stationary
distribution is well defined. The combination depends on a damping factor α ∈
[0 . . 1), which will play a major role in this paper (and corresponds to the probability
that the surfer follows a link of the current page). When α is 0, the web-graph part
of the process is annihilated, resulting in the trivial uniform process. As α gets
closer to 1, the web part becomes more and more important.

The problem of choosing α was curiously overlooked in the first papers about
PageRank: yet, not only PageRank changes significantly when α is modified [Pretto
2002b; 2002a], but also the relative ordering of nodes determined by PageRank can
be radically different [Langville and Meyer 2004]. The original value suggested by
Brin and Page (α = 0.85) is the most common choice. Intuitively, 1 − α is the
fraction of rank that we agree to spread uniformly on all pages. This amount will
be then funneled through the outlinks. A common form of link spamming creates a
large set of pages that funnel carefully all their rank towards a single page: even if
the set is made of irrelevant pages, they will receive their share of uniformly spread
rank, and in the end the page pointed to by the set will be given a preposterously
great importance.

It is natural to wonder what is the best value of the damping factor, if such a
thing exists. In a way, when α gets close to 1 the Markov process is closer to the
“ideal” one, which would somehow suggest that α should be chosen as close to 1 as
possible. This observation is not new [Langville and Meyer 2004], but there is some
naivety in it. The first issue is of computational nature: PageRank is traditionally
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computed using variants of the Power Method. The number of iterations required
for this method to converge grows with α, and in addition more and more numerical
precision is required as α gets closer to 1. But there is an even more fundamental
reason not to choose a value of α too close to 1: we shall prove in Section 5
that when α goes to 1 PageRank gets concentrated in the recurrent states, which
correspond essentially to the buckets—nondangling nodes whose strongly connected
components have no path toward other components. This phenomenon gives a null
PageRank to all the pages in the core component, something that is difficult to
explain and that is in conflict with common sense. In other words, in real-word
web graphs the rank of all important nodes (in particular, all nodes of the core
component) goes to 0 as α tends to 1.2 We also study the precise limit behaviour
of PageRank as α→ 1, thus solving a conjecture that was left open by Boldi et al.
[2005]; actually, we derive a much stronger result connecting this behaviour to the
Cesàro limit of the transition matrix of the Markov chain underlying PageRank.

Thus, PageRank starts, when α = 0, from an uninformative uniform distribution
and ends, when α→ 1, into a counterintuitive distribution concentrated mostly in
irrelevant nodes. As a result, both for choosing the correct damping factor and for
detecting link spamming, being able to describe the behaviour of PageRank when
α changes is essential.

To proceed further in this direction, it is essential that we have at our disposal
analytical tools that describe this behaviour. To this purpose, we shall provide
closed-form formulae for the derivatives of any order of PageRank with respect to
α. Moreover, we show that the k-th coefficient of the PageRank power series (in
α) can be easily computed during the k-th iteration of the Power Method. The
most surprising consequence, easily derived from our formulae, is that the vectors
computed during the PageRank computation for any α ∈ (0 . . 1) can be used to
approximate PageRank for every other α ∈ (0 . . 1). Of course, the same coefficients
can be used to approximate the derivatives, and we provide some simple bounds to
the precision of the approximation. These observations makes it possible to study
easily the behaviour of PageRank for any node when α changes, storing a minimal
amount of data.3

Another subtle issue that is often overseen in the literature (and was actually
not dealt with in [Boldi et al. 2005]) is the problem of dangling nodes. Dangling
nodes are nodes with no outlinks, that make the row-normalized adjacency matrix
substochastic. To turn it into a stochastic matrix, one can substitute every null row
with a uniform distribution: this is what we propose to do in [Boldi et al. 2005],
actually following common usage [Page et al. 1999; Langville and Meyer 2004].
Indeed, this solution is perfectly sound and natural if the preference vector is itself
uniform, but it is otherwise hardly meaningful, as already noted by Avrachenkov
et al. [2007], because it gives an unfairly high rank to groups of pages that form
oligopolies. An alternative solution consists in using a constant (but not necessarily

2We remark that in 2006 a very precise analysis of the distribution of PageRank was obtained by

Avrachenkov et al. [2007], corroborating the results described by Boldi et al. [2005]. Using their

analysis, the authors conclude that α should be set equal to 1/2.
3Free Java code implementing all the algorithms described in this paper is available for download

at http://law.dsi.unimi.it/.
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uniform) distribution to patch dangling nodes: this idea has been around for some
time, but its impact on the behaviour of PageRank has not been studied before;
in this paper, instead, we work at a higher level of generality, and analyze the
implications of choosing an arbitrary vector to solve the problem of dangling nodes.

2. BASIC DEFINITIONS

Let G be4 a directed graph of n nodes (identified hereafter with the numbers from
0 to n − 1). A node is terminal if it does not have outlinks, except possibly for
loops (or, equivalently, if all arcs incident on the node are incoming). A dangling
node5 is a terminal node without loops.

Given a graph G, the row-normalised matrix of G is the matrix Ḡ such that (Ḡ)ij
is one over the outdegree of i if there is an arc from i to j in G, zero otherwise.

We note that usually G is preprocessed before building the corresponding Markov
chain. Common processing includes removal of all loops (as nodes should not give
authoritativeness to themselves) and thresholding the number of links coming from
pages of the same domain (to reduce the effect of nepotistic link spamming).

If no dangling nodes are present, Ḡ is stochastic and it is the transition matrix of
the natural random walk on G. Otherwise, rows corresponding to dangling nodes
will be entirely made of zeroes and will have to be patched somehow, for instance
substituting them with uniform distributions6. However, more generally we might
substitute rows of zeroes in G with a given fixed distribution, and we shall see that
this change has significant consequences on our analysis.

Let us define d as the characteristic vector7 of dangling nodes (i.e., the vector with
1 in positions corresponding to such nodes and 0 elsewhere). Let v and u be two
distributions, which we will call the preference and the dangling-node distribution,
respectively.

PageRank rv,u(α) is defined (up to a scalar) by the eigenvector equation

rv,u(α)
(
α(Ḡ+ dTu) + (1− α)1Tv

)
= rv,u(α),

that is, as the stationary state of the Markov chain α(Ḡ + dTu) + (1 − α)1Tv:
such chain is indeed unichain [Boldi et al. 2006], so the previous definition is well
given. More precisely, we have a Markov chain with restart [Boldi et al. 2006] in
which Ḡ+dTu is the Markov chain (that follows the natural random walk on non-
dangling nodes, and moves to a node at random with distribution u when starting
from a dangling node) and v is the restart vector. The damping factor α ∈ [0 . . 1)
determines how often the Markov chain follows the graph rather than moving at a
random node according to the preference vector v.

The preference vector is used to bias PageRank with respect to a selected set
of trusted pages, or might depend on the user’s preferences, in which case one
speaks of personalised PageRank [Jeh and Widom 2003]. Clearly, the preference

4We use the same letter to denote a graph and its adjacency matrix.
5The same kind of node is often called a sink in graph-theoretic literature. Our choice follows
the standard PageRank literature, and avoids the usage of ambiguous terms that have been given

different meanings in different papers, in particular w.r.t. the presence of loops.
6In this work, by distribution we mean a vector with non-negative entries and `1-norm equal to
1. The indices for which the distribution is non-zero are called its support.
7All vectors in this work are row vectors.
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Fig. 1. A toy example graph with n = 10 nodes.

vector strongly influences PageRank, but in real-world crawls, which have a large
number of dangling nodes (in particular if the graph contains the whole frontier of
the crawl [Eiron et al. 2004], rather than just the visited nodes) the dangling-node
distribution u can also be very important. In the literature one can find several
alternatives (e.g., u = v or u = 1/n).

Following Boldi et al. [2008], we distinguish clearly between strongly preferential
PageRank, in which the preference and dangling-node distributions are identical
(i.e., u = v) and that corresponds to a topic or personalisation bias, and weakly
preferential PageRank, in which the preference and the dangling-node distributions
are not identical, and, in principle, uncorrelated. The distinction is not irrelevant,
as the concordance between weakly and strongly preferential PageRank can be
quite low [Boldi et al. 2008]. Both strongly and weakly preferential PageRank (and
also pseudoranks defined in Section 7) have been used in the literature to define
PageRank, so a great care must be exercised when comparing results from different
papers.

We are providing a toy example graph, shown in Figure 1. It will be used in the
rest of the paper as a guide.

3. THE MANY NATURES OF PAGERANK

We introduced PageRank as the stationary state of a Markov chain. Actually, due
to the presence of the damping factor, PageRank can be seen as a rational vector
function rv,u(α) associating to each value of α a different rank. As α goes from 0
to 1, the ranks change dramatically, and the main theme of this paper is exactly
the study of PageRank as a function of the damping factor.

Usually, though, one looks at rv,u(α) only for a specific value of α. All algorithms
to compute PageRank actually compute (or, more precisely, provide an estimate
for) rv,u(α) for some α that you plug in it, and it is by now an established use to
choose α = 0.85. This choice was indeed proposed by Page et al. [1999].

Many authors have tried to devise a more thorough a posteriori justification for
0.85. It is easy to get convinced that choosing a small value for α is not appropriate,
because too much weight would be given to the “uniform” part of Mv,u(α). On
the other hand, a value of α too close to 1 leads to numerical instability. Using
a disciplined approach, based on the assumption that most PageRank mass must
belong to the core component, Avrachenkov et al. [2007] claim that α should be
1/2.
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In the rest of the paper, we shall use the following matrices:

Pu := Ḡ+ dTu

Mv,u(α) := αPu + (1− α)1Tv.

As a mnemonic, Pu is the patched version of Ḡ in which rows corresponding to
dangling nodes have been patched with u, and Mv,u is the actual Markov chain
whose stationary distribution is PageRank. Note that, here and elsewhere, when
a matrix or a vector is a function of the damping factor α ∈ [0 . . 1), we will use a
notation that reflects this fact.

Noting that rv,u(α)1T = 1, we get

rv,u(α)
(
αPu + (1− α)1Tv

)
= rv,u(α)

αrv,u(α)Pu + (1− α)v = rv,u(α)

(1− α)v = rv,u(α)(I − αPu),

which yields the following closed formula for PageRank8:

rv,u(α) = (1− α)v(I − αPu)−1. (1)

Note that the above formula exhibits PageRank as a linear operator applied to
the preference vector v. In particular, standard methods for solving linear sys-
tems can (and should) be used to compute it much more efficiently than with the
Power Method. For instance, since I − αPu is strictly diagonally dominant, the
Gauss–Seidel method is guaranteed to converge, and in practice it features faster
convergence than the Power Method (see, for example, [Del Corso et al. 2006]).

The reader can see the PageRank vector of our worked-out example in Figure 2
(both v and u are set to the uniform vector). PageRank is represented as a function
of α in Figure 8.

r1/10,1/10(α) =〈 5
(
1− α

)(
α2 + 18α+ 4

)
8α4 + α3 − 170α2 − 20α+ 200

,
2
(
1− α

)(
10 + 2α+ α2

)
8α4 + α3 − 170α2 − 20α+ 200

,

−2
(
1− α

)(
7α2 − 5α− 10

)
8α4 + α3 − 170α2 − 20α+ 200

,
−
(
1− α

)(
11α2 + 8α3 − 10α− 20

)
8α4 + α3 − 170α2 − 20α+ 200

,

−
α4 + 16α3 + 14α2 − 30α− 20(

α+ 1
)(

8α4 + α3 − 170α2 − 20α+ 200
) , −

15α3 + 6α2 − 20α− 20(
α+ 1

)(
8α4 + α3 − 170α2 − 20α+ 200

) ,
2
(
1− α

)(
10 + 2α+ α2

)
8α4 + α3 − 170α2 − 20α+ 200

,
2
(
1− α

)(
10 + 2α+ α2

)
8α4 + α3 − 170α2 − 20α+ 200

,

2
(
1− α

)(
10 + 2α+ α2

)
8α4 + α3 − 170α2 − 20α+ 200

,
2
(
1− α

)(
10 + 2α+ α2

)
8α4 + α3 − 170α2 − 20α+ 200

〉

Fig. 2. The explicit formula of PageRank as a function of α with v = u = 1/10 for
the graph shown in Figure 1.

8A particular case of this formula appears in Lemma 3 of [Haveliwala and Kamvar 2003a], albeit

the factor 1− α is missing, probably due to an oversight.
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The linear operator in (1) can be written as

rv,u(α) = (1− α)v

∞∑
k=0

(αPu)k, (2)

which makes the dependence of PageRank on incoming paths very explicit: PageR-
ank is computed by diffusing the base preference along all outgoing path with decay
α. From this formulation it is also immediate to derive the combinatorial descrip-
tion of PageRank of a node x in terms of a summation of weight of paths coming
into x [Brinkmeier 2006].

Actually, this formulation makes the connection with Katz’s index [Katz 1953]9

immediate: Katz considers a 0-1 matrix G representing “choice” (as in “vote-for”)
of individuals. He then uses (in our notation) a scalar multiple of the vector

1G

∞∑
k=0

αkGk

to establish a measure of authoritativeness of each individual. The attenuation
factor α is used to decrease influence of a vote at larger distance. The latter
formula is very similar to (2) with v = 1G (and, in view of the results reported of
Section 7, also u = v), but of course the lack of normalisation radically changes
the resulting vector.

Even before the work of Katz, Seeley [1949] proposed that given a square matrix
expressing levels of preference between indivuals (zero or one in the basic case),
the authoritativeness of an individual should be defined recursively as the weighted
(by preference) sum of the authoritativeness received from other individuals, where
preferences are normalised so to add up to one. Even if Seeley formulates its
definitions in terms of elementary linear equations, he is computing the dominant
eigenvector of a stochastic matrix obtained from the natural random walk on the
preference graph (i.e., essentially PageRank with α = 1).

The works of Seeley and Katz contain essentially all the ingredients of PageRank,
except for the preference vector. Hubbell [1965] defines an index that depends
on a boundary condition v (in our language, the preference vector) and a (not
necessarily positive) weight matrix W whose rows have `1 norm bounded by one.
Hubbell considers the index given by v(I − W )−1, starting from considerations
about the recursive equation r = v + rW (incidentally, he does not realise that
I −W is not always invertible under his conditions, and in the only given example
he takes care of dividing his matrix by two, thus applying, in practise, a damping
factor). He is already aware of the problems given by dangling nodes and lack of
strong connectivity. The possibility of negative matrix entries (corresponding to
demotion, rather than promotion, of a pointed page) is an interesting extension
hitherto unexplored in web ranking.

A related application of dominant eigenvectors is Pinski and Narin’s [Pinski and
Narin 1976] influence weight : given a square matrix counting the number of refer-
ences among journals, they scale it so that elements in the i-th column are divided
by the i-th row sum, and they propose to use the dominant left eigenvector of such

9We thank David Gleich for having pointed us to this reference.
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matrix (i.e., essentially Seeley’s index) as a measure of influence. Clearly, however,
the different scaling leads to a completely different ranking.

4. POWER SERIES

Equation (2) can be actually rewritten as follows:

rv,u(α) = v + v

∞∑
k=1

αk
(
P ku − P k−1u

)
. (3)

This formula suggests a way to study PageRank as a power series of α. If we
want to follow this route, we must overcome two difficulties: first of all, we must
compute explicitly the coefficients of the power series10; and then, we must discuss
how good is the approximation obtained by truncating the series at a given step.
Both problems will be solved by a surprisingly simple relationship between the
power series and the Power Method that will be proved in this section. To obtain
our main result, we will need the following lemma (that can be easily restated in
any R-algebra):

Lemma 1. Let C be a set of square matrices of the same size, and Z ∈ C such
that for every A ∈ C we have AZ = Z. Then for all A ∈ C , λ ∈ R and for all n
we have

(λA+ (1− λ)Z)n = λnAn + (1− λ)

n−1∑
k=0

λkZAk,

or, equivalently,

(λA+ (1− λ)Z)n = (I − Z)λnAn + Z
(
I +

n∑
k=1

λk
(
Ak −Ak−1

))
.

Proof. By an easy induction. The first statement is trivial for n = 0. If we
multiply both members by λA+ (1− λ)Z on the right-hand side we have

λn+1An+1 + (1− λ)

n−1∑
k=0

λk+1ZAk+1 + λn(1− λ)Z + (1− λ)2
n−1∑
k=0

λkZ

= λn+1An+1 + (1− λ)

n−1∑
k=0

λk+1ZAk+1 + λn(1− λ)Z + (1− λ)2
1− λn

1− λ
Z

= λn+1An+1 + (1− λ)

n∑
k=0

λkZAk.

The second statement can then be proved by expanding the summation and col-
lecting monomials according to the powers of λ.

We are now ready for the main result of this section, which equates analytic
approximation (the index at which we truncate the PageRank power series) with
computational approximation (the number of iterations of the Power Method):

10Note that the coefficients are vectors, because we are approximating a vector function.
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Theorem 1. The approximation of PageRank computed at the n-th iteration of
the Power Method with damping factor α and starting vector v coincides with the
n-th degree truncation of the power series of PageRank evaluated in α. In other
words, for every n,

vMn
v,u = v + v

n∑
k=1

αk
(
P ku − P k−1u

)
.

Proof. Apply Lemma 1 to the case when A = Pu, Z = 1Tv and λ = α. We
have:

Mn
v,u =

(
αPu + (1− α)1Tv

)n
= (I − 1Tv)λnPnu + 1Tv

(
I +

n∑
k=1

λk
(
P ku − P k−1u

))
,

hence, noting that v1Tv = v,

vMn
v,u = v(I − 1Tv)λnPnu + v1Tv

(
I +

n∑
k=1

λk
(
P ku − P k−1u

))
= v + v

n∑
k=1

λk
(
P ku − P k−1u

)
.

As a consequence:

Corollary 1. The difference between the k-th and the (k−1)-th approximation
of PageRank (as computed by the Power Method with starting vector v), divided by
αk, is the k-th coefficient of the power series of PageRank.

The previous corollary is apparently innocuous; however, it has a surprising con-
sequence: the data obtained computing PageRank for a given α, say11 α0, can
be used to compute PageRank for any other α1, obtaining the same result that
we would have obtained after the same number of iterations of the Power Method
with α = α1. Indeed, by saving the coefficients of the power series during the
computation of PageRank with a specific α it is possible to study the behaviour of
PageRank when α varies (this result was used by Brezinski and Redivo-Zaglia [2006]
to extrapolate PageRank values when α ≈ 1). Even more is true, of course: using
standard series derivation techniques, one can approximate the k-th derivative. A
useful bound for approximating derivatives will be given in Section 6.2.

The first few coefficients of the power series for our worked-out example are shown
in Table I. Figure 3 shows the convergence of the power series toward the actual
PageRank behaviour for a chosen node. Finally, in Figure 4 we display the approx-
imation obtained with truncating the power series after the first 100 terms. For
this experiment we used a 41 291 594-nodes snapshot of the Italian web gathered by
UbiCrawler [Boldi et al. 2004] and indexed by WebGraph [Boldi and Vigna 2004].
We chose four nodes with different behaviours (monotonic increasing/decreasing,
unimodal concave/convex) to show that the approximation is excellent in all these
cases; it is also curious to notice that apparently most nodes have one of these four

11Actually, to compute the coefficients one can even use α0 = 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Paolo Boldi et al.

Coefficient

α0 〈0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100〉
α1 〈0.371,−0.058,−0.028,−0.028, 0.015,−0.034,−0.058,−0.058,−0.058,−0.058〉
α2 〈−0.253, 0.070,−0.033,−0.018,−0.048, 0.003, 0.070, 0.070, 0.070, 0.070〉
α3 〈0.260,−0.055, 0.030,−0.021, 0.032,−0.026,−0.055,−0.055,−0.055,−0.055〉
α4 〈−0.207, 0.050,−0.029, 0.013,−0.040, 0.012, 0.050, 0.050, 0.050, 0.050〉

Table I. The coefficients of the first terms of the power series for rv,u(α).
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Fig. 3. Approximating r(α) for a specific node (cross-shaped points) using Maclaurin polynomials
of different degrees (shown in the legend).

behavious, an empirical observation that probably deserves some deeper investiga-
tion.

5. LIMIT BEHAVIOUR

Power series offer an easy numerical way to study the behaviour of PageRank as
a function of α, but as α gets closer to 1 the approximation needs more and more
terms to be useful (the other extremal behaviour, i.e., α = 0, is trivial, since
rv,u(0) = v). Thus, this section is devoted to a formal analysis of the behaviour of
PageRank when α is in a neighbourhood of 1.

When α → 1−, the transition matrix Mv,u(α) tends to Pu: this fact seems to
suggest that choosing α close to 1 should give a “truer” or “better” PageRank: this
is a widely diffused opinion (as we shall see, most probably a misconception). In any
case, as we remarked in the introduction there are some computational obstacles
to choosing a value of α too close to 1. The Power Method converges more and
more slowly [Haveliwala and Kamvar 2003b] as α→ 1−, a fact that also influences
the other methods used to compute PageRank (which are often themselves variants
of the Power Method [Page et al. 1999; Haveliwala 1999; Golub and Greif 2006;
Kamvar et al. 2003]). Indeed, the number of iterations required could in general
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Fig. 4. Examples of approximations obtained using a Maclaurin polynomial of
degree 100, for nodes with different behaviours (the points were tabulated by com-
puting PageRank explicitly with 100 regularly spaced values of α).

be bounded using the separation between the first and the second eigenvalue, but
unfortunately the separation can be abysmally small if α = 1, making this technique
not applicable. Moreover, if α is large the computation of PageRank may become
numerically ill-conditioned (essentially for the same reason [Haveliwala and Kamvar
2003a]).

Even disregarding the problems discussed above, we shall provide convincing
reasons that make it inadvisable to use a value of α close to 1, unless Pu is suitably
modified. First observe that, since rv,u(α) is a rational (coordinatewise) bounded
function defined on [0 . . 1), it is defined on the whole complex plane except for a
finite number of poles, and the limit

r∗v,u = lim
α→1−

rv,u(α)

exists. In fact, since the resolvent I/α − Pu has a Laurent expansion12 around 1
in the largest disc not containing 1/λ for another eigenvalue λ of Pu, PageRank is

12A different expansion around 1, based on vector-extrapolation techniques, has been proposed

by Serra-Capizzano [2005].
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Fig. 5. The real and imaginary parts of PageRank of node 0 of the graph shown in Figure 1,

plotted for all complex values with real and imaginary parts smaller than 10. Poles appear as
spikes.

analytic in the same disc; a standard computation yields

(1− α)(1− αPu)−1 = P ∗u −
∞∑
n=0

(
α− 1

α

)n+1

Qn+1
u ,

where Qu = (I − Pu + P ∗u)−1 − P ∗u and

P ∗u = lim
n→∞

1

n

n−1∑
k=0

P ku

is the Cesàro limit of Pu [Iosifescu 1980], hence

r∗v,u = vP ∗u.

Figure 5 exhibits PageRank of a node as a complex function.
The above equation proves the conjecture left open in [Boldi et al. 2005], actually

providing a wide generalization of the conjecture itself, as there is no hypothesis
(not even aperiodicity) on Pu.13

It is easy to see that r∗v,u is actually one of the invariant distributions of Pu

(because limα→1− Mv,u(α) = Pu). Can we somehow characterise the properties
of r∗v,u? And what makes r∗v,u different from the other (infinitely many, if Pu is
reducible) invariant distributions of Pu?

The first question is the most interesting, because it is about what happens to
PageRank when α → 1−; in a sense, fortunately, it is also the easiest to answer.
Before doing this, recall some basic definitions and facts about Markov chains.

13Dániel Fogaras [Fogaras 2005] provided immediately after our paper [Boldi et al. 2005] was

presented a proof of the conjecture for the uniform, periodic case using standard analytical tools.
Unaware of Fogaras’s proof, Bao and Liu provided later a similar, slightly more general proof for

a generic preference vector in [Bao and Liu 2006].
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— Given two states x and y, we say that x leads to y iff there is some m > 0
such that there is a non-zero probability to go from x to y in m steps.

— A state x is transient iff there is a state y such that x leads to y but y does
not lead to x. A state is recurrent iff it is not transient.

— In every invariant distribution p of a Markov chain, if px > 0 then x is
recurrent [Iosifescu 1980].

Let us now introduce some graph-theoretical notation. Let G be a graph.

— Given a node x of G, we write [x]G for the (strongly connected) component
of G containing x.

— The component graph of G is a graph whose nodes are the components of G,
with an arc from [x]G to [y]G iff there are nodes x′ ∈ [x]G and y′ ∈ [y]G such that
there is an arc from x′ to y′ in G. The component graph is acyclic, apart for the
possible presence of loops.

— If x, y are two nodes of G, we write x  G y iff there is a directed (possibly
empty) path from x to y in G.

The above definitions are straightforwardly extended to the situation where G is
the transition matrix of a Markov chain; in such a case, we assume as usual that
there is an arc from x to y if and only if Gxy > 0.

Clearly, a node is recurrent in Pu iff [x]Pu is terminal; otherwise said, x is re-
current (in the Markov chain Pu) iff x  Pu y implies y  Pu x as well. Note that
nodes with just a loop are recurrent.

We now turn to our characterisation theorem, which identifies recurrent states
on the basis of G, rather than Pu. The essence of the theorem is that, for what
concerns recurrent states, the difference between G and Pu is not significant, except
for a special case which, however, is as pathological as periodicity in a large web
graph.

To state and prove comfortably the next theorem, we need a definition:

Definition 1. A component is said to be a bucket component if it is terminal in
the component graph, but it is not dangling (i.e., if it contains at least one arc,
or, equivalently, if the component has a loop in the component graph). A bucket
(node) is a node belonging to a bucket component.

Note that given a component [x] of a graph, it is always possible to reach a
terminal component starting from [x]; such a component must be either dangling
or a bucket. We shall use this fact tacitly in the following proof.

Actually, much more is true:

Proposition 1. Let G and Pu be defined as above. Then, buckets of G are
recurrent in Pu.

Proof. If x is a bucket of G and x Pu y, a path from x to y cannot traverse a
dangling node of G (because x is a bucket), so actually x G y, which implies that
y is in the same component as x, so y  G x as well (and y  Pu x a fortiori).

The previous proposition shows that patching dangling nodes cannot make buck-
ets nonrecurrent. Our next theorem provides a complete characterization of the
recurrent nodes in Pu:
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Theorem 2. Let G and Pu be defined as above. Then:

(1 ) if at least one bucket of G is reachable from the support of u then a node is
recurrent for Pu iff it is a bucket of G; hence, given an invariant distribution p for
Pu, px > 0 implies that x is a bucket of G;

(2 ) if no bucket of G is reachable from the support of u, all nodes reachable from
the support of u form a bucket component of Pu; hence, a node is recurrent for Pu

iff it is in a bucket component of G or it is reachable from the support of u.

Proof. For the left-to-right implication of (1), suppose that a bucket is reachable
from the support of u, let x be a non-bucket node and consider any terminal y such
that x G y. We distinguish two cases:

— if y is a bucket, y  Pu x does not hold (from y you can only reach nodes of
[y]G both in G and in Pu), so x is not recurrent;

— otherwise, if y is dangling (note that it might happen that x = y); but by
hypothesis we can go in Pu from y to a node in the support of u that reaches in G
(and a fortiori in Pu) a bucket z, so x  Pu z, but z can only reach nodes in [z]G
both in G and in Pu; thus, also in this case z  Pu x does not hold, and x is not
recurrent.

For case (2), take two nodes x and y of G reachable from the support of u. There
are two dangling nodes x′ and y′ such that x G x′ and y  G y′. Since x′  Pu y
and y′  Pu x (being x and y in the support of u), we conclude that x and y
are in the same component of Pu, which is necessarily a bucket, so they are both
recurrent.

If, on the other hand, x is not reachable from the support of u and is not a
bucket, take a dangling node x′ reachable from x and a node y in the support of u:
we then have x  G x′  Pu y but not y  Pu x, so x is not recurrent. As above,
the case in which all terminal nodes reachable from x are buckets is trivial.

For the standard weakly preferential assumption u = 1/n, and indeed whenever
the vector u is strictly positive, the statement can be quite simplified:

Corollary 2. Assume that u > 0 (i.e., ux > 0 for every x). Then:

(1 ) if G contains a bucket then a node is recurrent for Pu iff it is a bucket of G;

(2 ) if G does not contain a bucket all nodes are recurrent for Pu.

The statement of the previous theorem may seem a bit unfathomable. The
essence, however, could be stated as follows: except for extremely pathological cases
(graphs whose only terminal components are dangling nodes, or, more generally,
graphs with no bucket reachable from the support of u), the recurrent nodes are
exactly the buckets. Buckets are often called rank sinks, as they absorb all the
rank circulating through the graph, but we prefer to avoid the term “sink” as it
is already quite overloaded in the graph-theoretical literature. To help the reader
understand Theorem 2, we show a pictorial example in Figure 6.

As we remarked, a real-world graph will certainly contain at least one bucket
reachable from u, so the first statement of the theorem will hold. This means that
most nodes x will be such that (r∗v,u)x = 0. In particular, this will be true of
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Fig. 6. Illustration of Theorem 2. The picture represents the component DAG of a graph

(gray=non-terminal component; black=dangling component; white=bucket component); the
curve indicates the part of the graph reachable from the support of u, and squared compo-

nents indicate recurrent components. (Left) A situation covered by Theorem 2(1). (Right) The

pathological situation covered by Theorem 2(2).

all the nodes in the core component [Kumar et al. 2000]: this result is somehow
surprising, because it means that many important web pages (that are contained in
the core component) will have rank 0 in the limit (see, for instance, node 0 in our
worked-out example). A detailed analysis of this limit behaviour has been given by
Avrachenkov et al. [2007].

This is a rather convincing justification that, contradicting common beliefs,
choosing α too close to 1 does not provide any good PageRank. Rather, PageRank
becomes “sensible” somewhere in between 0 and 1. If we are interested in studying
PageRank-like phenomena in the neighbourhood of 1, PageRank variants such as
TruRank [Vigna 2005] should be used instead.

To clarify the above discussion, let us apply it to our toy example (always as-
suming u = v = 1/10). Node 3 is the only dangling node of the graph, but nodes
4 and 5 form a bucket component; all the other nodes are actually in a unique
non-terminal component. Thus, the nonzero elements of Pu correspond exactly to
the arcs of G and to the arcs connecting node 3 to every node in the graph, as
shown in Figure 7 (left), where dotted arcs are those that were not present in G.
Figure 7 (right) represents the component graph, and the dotted area encloses the
components that are actually merged together by patching the dangling node. We
are in the conditions of the first item of Corollary 2, and correspondingly Figure 8
shows that PageRank for nodes 4 and 5 grows, whereas for all other nodes it goes
to 0 as α→ 1−. Note, however, the maximum attained by node 0 at α ≈ 0.7.

6. DERIVATIVES

The reader should by now be convinced that the behaviour of PageRank with re-
spect to the damping factor is nonobvious: rv,u(α) should be considered a function
of α, and studied as such.

The standard tool for understanding changes in a real-valued function is the
analysis of its derivatives. Correspondingly, we are going to provide mathematical
support for this analysis.
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Fig. 7. The components of the graph in Figure 1 after the only dangling node has been patched

with uniform distribution u = 1/10 (the arcs induced by the patching process are dashed) and the
corresponding component graph. The dashed line in the component graph gathers components

that are merged by the patching process. The only bucket component is { 4, 5 }.
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Fig. 8. The behaviour of the components of r1/10,1/10(α) (we only show some of them, for the

sake of readability). They all go to zero except for nodes 4 and 5—the only nodes belonging to a
bucket component. Note, however, the maximum attained by node 0 at α ≈ 0.7.
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6.1 Exact formulae

The main objective of this section is providing exact formulae for the derivatives

of PageRank. Define r′v,u(α), r′′v,u(α), . . . , r
(k)
v,u(α) as the first, second, . . . , k-th

derivative of rv,u(α) with respect to α.
We start by providing the basic relations between these vector functions:

Theorem 3. The following identities hold:

(1 ) r′v,u(α) = (rv,u(α)Pu − v)(I − αPu)−1;

(2 ) for all k > 0, r
(k+1)
v,u (α) = (k + 1)r

(k)
v,u(α)Pu(I − αPu)−1.

Proof. Multiplying both sides of (1) by I−αPu and differentiating memberwise:

r′v,u(α)(I − αPu)− rv,u(α)Pu = −v (4)

r′v,u(α)(I − αPu) = rv,u(α)Pu − v (5)

r′v,u(α) = (rv,u(α)Pu − v)(I − αPu)−1. (6)

This proves the first item; multiplying again both sides by I − αPu and differenti-
ating memberwise we obtain:

r′′v,u(α)(I − αPu)− r′v,u(α)Pu = r′v,u(α)Pu

r′′v,u(α)(I − αPu) = 2r′v,u(α)Pu

r′′v,u(α) = 2r′v,u(α)Pu(I − αPu)−1.

which accounts for the base case (k = 1) of an induction for the second statement.
For the inductive step, multiplying both sides of the inductive hypothesis by I−αPu

and differentiating memberwise:

r(k+2)
v,u (α)(I − αPu)− r(k+1)

v,u (α)Pu = (k + 1)r(k+1)
v,u (α)Pu

r(k+2)
v,u (α)(I − αPu) = (k + 2)r(k+1)

v,u (α)Pu

r(k+2)
v,u (α) = (k + 2)r(k+1)

v,u (α)Pu(I − αPu)−1

which accounts for the inductive step.

Moreover, we can explicitly write a closed formula for the generic derivative:

Corollary 3. For every k > 0

r(k)v,u(α) = k!v
(
P ku − P k−1u

)
(I − αPu)−(k+1).

Proof. The formula can be verified by induction on k, using Theorem 3 and (1).

6.2 Approximating the derivatives

The formulae obtained in Section 6 do not lead directly to an effective algorithm
that computes derivatives: even assuming that the exact value of rv,u(α) is avail-
able, to obtain the derivatives one should invert I −αPu (see Theorem 3), a heavy
(in fact, unfeasible) computational task. However, in this section we shall provide

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 · Paolo Boldi et al.

a way to obtain simultaneous approximations for PageRank and its derivatives,
and we will show how these approximations converge to the desired vectors. The
technique we describe is essentially an extension of the Power Method that infers
values of the derivatives by exploiting the connection pointed out in Theorem 1.

First of all, note that the k-derivative can be obtained by deriving formally (2).
To simplify the notation in the following computations, we rewrite (2) with a more
compact notation:

rv,u(α) = v + v

∞∑
n=1

αn
(
Pnu − Pn−1u

)
=

∞∑
n=0

anα
n,

where a0 = v and, for n > 0, an = v
(
Pnu −Pn−1u

)
. By formal derivation, we obtain

r(k)(α) =

∞∑
n=0

nk anα
n, (7)

where we dropped the dependency on v and u to make notation less cluttered, and
nk denotes the falling factorial nk = n(n− 1)(n− 2) · · · (n− k+ 1). The Maclaurin
polynomials of order t (that is, the t-th partial sum of the series (7)) will be denoted
by Jr(k)(α)Kt.

Theorem 4. If t ≥ k/(1− α),∥∥r(k)(α)− Jr(k)(α)Kt
∥∥ ≤ δt

1− δt
∥∥Jr(k)(α)Kt − Jr(k)(α)Kt−1

∥∥,
where

1 > δt =
α(t+ 1)

t+ 1− k
.

Note that α ≤ δt < 1 and that δt → α monotonically, so the theorem states that
the error at step t is ultimately bounded by the difference between the t-th and
the (t − 1)-th approximation. The difference between the two approximations is
actually the t-th term, so we can also write∥∥r(k)(α)− Jr(k)(α)Kt

∥∥ ≤ δt
1− δt

αttk ‖at‖.

As a corollary,

Corollary 4.
∥∥r(k)(α)− Jr(k)(α)Kt

∥∥ = O(tkαt).

Note, however, that in practice Theorem 4 is much more useful than the last corol-
lary, as convergence is usually quicker than O(tkαt) (much like the actual, error-
estimated convergence of the Power Method for the computation of PageRank is
quicker than the trivial O(αt) bound would imply).

Proof (of Theorem 4). We have to bound∥∥r(k)(α)− Jr(k)(α)Kt
∥∥ =

∥∥∥∥ ∞∑
n=t+1

nk anα
n

∥∥∥∥.
Since∥∥v(Pn+1

u −Pnu
)∥∥ ≤ ∥∥v(Pnu−Pn−1u

)∥∥‖Pu‖, and (n+1)k αn+1 =
α(n+ 1)

n+ 1− k
nk αn,
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the terms of the power series obey the following upper bound:

(n+ 1)k αn+1‖an+1‖ ≤
α(n+ 1)

n+ 1− k
nk αn‖an‖.

Thus, for every n ≥ t ≥ 0 we have the bound

nk αn‖an‖ ≤
(
α(t+ 1)

t+ 1− k

)n−t
tk αt‖at‖ = δn−tt tk αt‖at‖.

Hence, if t is such that δt < 1, we have∥∥r(k)(α)− Jr(k)(α)Kt
∥∥ ≤ ∞∑

n=t+1

δn−tt tk ‖at‖αt =
δt

1− δt
tk ‖at‖αt.

The above results suggest a very simple way to compute any desired set of deriva-
tives. Just run the Power Method and, as suggested in Section 4, gather the co-
efficients of the PageRank power series. Multiplying the n-th coefficient by nk is
sufficient to get the coefficient for the k-derivative, and after k/(1−α) steps it will
be possible to estimate the convergence using (4).

The same considerations made before apply: by storing the coefficients of the
Maclaurin polynomials it will be possible to approximate every derivative for every
value of α, albeit the approximation will be worse as the derivative index raises and
as α→ 1.

7. PAGERANK AS A FUNCTION OF THE PREFERENCE VECTOR

The dependence of PageRank on the preference vector v and on the dangling-node
distribution u is also a topic that deserves some attention. With this aim, let us
define the pseudorank [Boldi et al. 2008] (in G) of a distribution x and damping
factor α ∈ [0 . . 1) as

x̃(α) = (1− α)x
(
I − αḠ

)−1
.

For every fixed α, the pseudorank is a linear operator and the above definition can
be extended by continuity to α = 1 even when 1 is an eigenvalue of Ḡ, always using
the fact that I/α− Ḡ has a Laurent expansion around 1; once more,

lim
α→1−

x̃(α) = xḠ∗.

When α < 1 the matrix I−αḠ is strictly diagonally dominant, so the Gauss–Seidel
method can still be used to compute pseudoranks efficiently.

Armed with this definition, we state the main result of [Boldi et al. 2008] (an
application of the Sherman–Morrison formula to equation (2)):

rv,u(α) = ṽ(α)− ũ(α)
dṽ(α)T

1− 1
α + dũ(α)T

. (8)

The above formula makes the dependence on the preference and dangling-node
distributions very explicit.

In particular, we notice that the dependence on the dangling-node distribution
is not linear, so we cannot expect strongly preferential PageRank to be linear in
v, because in that case v is also used as dangling-node distribution. Nonetheless,
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once the pseudoranks for certain preference vectors have been computed, the above
formula makes it possible to compute PageRank using any convex combination of
such preference vectors.

However, if we let u = v in (8) (getting back the formula obtained by Del Corso
et al. [2006])14, we obtain

rv(α) = ṽ(α)

(
1− dṽ(α)T

1− 1
α + dṽ(α)T

)
, (9)

where we used rv(α) in place of rv,v(α) for brevity. As observed by Del Corso et al.
[2006], this formula shows that the strongly preferential PageRank with preference
vector v is actually equal, up to normalization, to the pseudorank of v. Hence,
in particular, even though strongly preferential PageRank is not linear, if v =
λx + (1− λ)y, then

rv(α) = ṽ(α)

(
1− dT ṽ(α)

1− 1
α + dT ṽ(α)

)
=

λx̃(α)

(
1− dT ṽ(α)

1− 1
α + dT ṽ(α)

)
+ (1− λ)ỹ(α)

(
1− dT ṽ(α)

1− 1
α + dT ṽ(α)

)
,

so the two vectors

rv(α) = rλx+(1−λ)y(α) and λx̃(α) + (1− λ)ỹ(α)

are parallel to each other (i.e., they are equal up to normalization) because pseu-
doranks are linear. This simple connection provides a way to compute the strongly
preferential PageRank with respect to the preference vector v = λx + (1 − λ)y
just by combining in the same way the pseudoranks of x and y, and `1-normalising
the resulting vector. Note that the same process would not work if rx(α) and
ry(α) were known in lieu of x̃(α) and ỹ(α), as there is no way to recover the
(de)normalisation factors.

7.1 Iterated PageRank

A rather obvious question raising from the view of PageRank as an operator on
preference vectors is the behaviour of PageRank with respect to iteration. What
happens if we compute again PageRank using a PageRank vector as preference
vector? We start by approaching the question using weakly preferential PageRank,
as the linear dependence on v makes the analysis much easier. To avoid cluttering

too much the notation, let us denote with r
[k]
v,u(α) the k-th iteration of weakly

preferential PageRank, that is,

r[0]v,u(α) = v

r[k]v,u(α) = r
r
[k−1]
v,u (α),u

(α).

14The reader should note that our formula has some difference in signs w.r.t. the original paper,

where it was calculated incorrectly.
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Clearly,

r[k]v,u(α) = (1− α)kv(I − αPu)−k = (1− α)kv

∞∑
n=0

(
n+ k − 1

k − 1

)
αnPnu .

This shows that iterating PageRank is equivalent to choosing a different damping
function in the sense of [Baeza-Yates et al. 2006]. The factor (I −αPu)−k strongly
resembles the corresponding term in the derivative as obtained in Corollary 3. And
indeed, a simple computation shows that for k > 0

r(k)v,u(α) =
k!

(1− α)k+1
r[k+1]
v,u (α)

(
P k − P k−1

)
, (10)

so there is a tight algebraic connection between iteration and derivation. One
interesting point is that it might be much quicker to iterate a Gauss–Seidel method
and apply the above formula than using the Power Method and the bounds of
Theorem 4, at least for small k (albeit upper bounding numerical errors could be
difficult).

The same observations hold for pseudoranks: indeed, the above computations
are valid also for pseudoranks just by setting u = 0 (it is easy to check that all
results of Section 6 are still valid in this case). However, the situation is completely
different for strongly preferential PageRank, where the nonlinear dependency on v
makes it difficult to derive similar results: we leave this problem for future work.

There is a final property about equation (10) that we want to highlight. Even
if this observation can be stated for the derivatives of any order, let us limit our-
selves to first-order derivatives only. Consider the following definition: for every
distribution x, let us define the gain vector associated to x as

∆x = x(P − I).

The gain at each node is the difference between the score that the node would obtain
from its in-neighbours and the score that the node actually has; this difference is
negative if the node has a score higher than the one its in-neighbours would attribute
to it (we might say: if the node is overscored), and positive otherwise (i.e., if the
node is underscored).

In the case of first-order derivatives, equation (10) reduces to

r′v,u(α) =
1

(1− α)2
r[2]v,u(α)(P − I).

That is, the derivative vector r′v,u(α) is parallel to r
[2]
v,u(P − I) = ∆r

[2]
v,u. In

other words, the first derivative of PageRank at a node is negative iff the node
is overscored by the second iterated PageRank; note that there is a shift, here,
between the order of differentiation and the number of iterations.

8. CONCLUSIONS

We have presented a number of results which outline an analytic study of PageRank
with respect to its many parameters. Albeit mainly theoretical in nature, they
provide efficient ways to study the global behaviour of PageRank, and dispel a few
myths (in particular, about the significance of PageRank when α gets close to 1).
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