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Abstract—Given a social network, which of its nodes are
more central? This question was asked many times in sociology,
psychology and computer science, and a whole plethora of
centrality measures (a.K.a. centrality indices, or rankings) were
proposed to account for the importance of the nodes of a network.
In this paper, we approach the problem of computing geometric
centralities, such as closeness [1] and harmonic centrality [2],
on very large graphs; traditionally this task requires an all-
pairs shortest-path computation in the exact case, or a number
of breadth-first traversals for approximated computations, but
these techniques yield very weak statistical guarantees on highly
disconnected graphs. We rather assume that the graph is accessed
in a semi-streaming fashion, that is, that adjacency lists are
scanned almost sequentially, and that a very small amount of
memory (in the order of a dozen bytes) per node is available in
core memory. We leverage the newly discovered algorithms based
on HyperLogLog counters [3], making it possible to approximate
a number of geometric centralities at a very high speed and with
high accuracy. While the application of similar algorithms for the
approximation of closeness was attempted in the MapReduce [4]
framework [5], our exploitation of HyperLogLog counters re-
duces exponentially the memory footprint, paving the way for
in-core processing of networks with a hundred billion nodes using
“just" 2TiB of RAM. Moreover, the computations we describe
are inherently parallelizable, and scale linearly with the number
of available cores.

I. INTRODUCTION

In the last years, there has been an ever-increasing research
activity in the study of real-world complex networks. These
networks, typically generated directly or indirectly by human
activity and interaction, appear in a large variety of contexts
and often exhibit a surprisingly similar structure.

One of the most important notions that researchers have
been trying to capture in such networks is “node centrality”:
ideally, every node (often representing an individual) has some
degree of influence or importance within the social domain
under consideration, and one expects such importance to be
reflected in the structure of the social network. Centrality
in fact has a long history in the context of social sciences:
starting from the late 1940s [1] the problem of singling out
influential individuals in a social group has been a holy grail
that sociologists have been trying to capture for many decades.

Among the types of centrality that have been considered
in the literature (see [6] for a good survey), many have to
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do with the distance to other nodes. If, for instance, the
sum of distances to all other nodes is large, the node is
peripheral, which is the starting point to define Bavelas’s
closeness centrality as the reciprocal of peripherality (i.e., the
reciprocal of the distances to all other nodes).

Interestingly, many of these indices can be recast in terms
of suitable calculations using the sizes of the balls of varying
radius around a node. In a previous work [3] we presented
HyperANF, a tool that can compute the distance distribution
of very large graphs. HyperANF has been used, for instance, to
show that Facebook has just four “degrees of separation" [7].
The goal of this paper is to extends the HyperANF approach
to compute a number of centrality indices based on distances.

Beside large-scale experiment using the full ClueWeb09
graph (almost five billion nodes), we provide an empirical
evaluation of the accuracy of our method through a comparison
with the exact centrality values on a snapshot of Wikipedia
(on larger graphs the exact computation would be unfeasible).
We also provide comparisons with a MapReduce-based [4]
approach [5], showing that a careful combination of Hyper-
LogLog counters, compression and succinct data structure can
provide a speedup of two orders of magnitude, and in fact,
comparing costs, more scalability. We also show how to extend
our techniques to a class of weighted graphs with a tiny loss
in space.

The Java software implementing the algorithms described
in this paper is distributed as free software within the Web-
Graph framework.! Moreover, all dataset we use are publicly
available.

Using our Java tool we are able, for the first time, to
approximate distance-based centrality indices on graphs with
billions of nodes using a standard workstation.

II. NOTATION

In this paper, we use the following notation: G = (V, E) is
a directed graph with n = |V| nodes and m = |E| arcs; we
write x — y as a shortcut for (x, y) € E. The length of the
shortest path from x to y is denoted by d(x, y) and called the
distance between x and y; we let d(x, y) = oo if there is no
directed path from x to y. The nodes reachable from x are
the nodes y such that d(x, y) < oco. The nodes coreachable
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from x are the nodes y such that d(y, x) < co. We let GT be
the transpose of G (i.e., the graph obtained by reverting all
arc directions in G). The ball of radius » around x is

PBo(x,r) ={yldx.y) =t}

III. GEOMETRIC CENTRALITIES

We call geometric those centrality measures” whose basic
assumption is that importance depends on some function of
the distances. These are, in fact, some of the oldest measures
defined in the literature.

A. Closeness centrality

Closeness was introduced by Bavelas in the late forties [8];
the closeness of x is defined by

1
>, d(y,x)

The intuition behind closeness is that nodes with a large sum of
distances are peripheral. By reciprocating the sum, nodes with
a smaller denominator obtain a larger centrality. We remark
that for the above definition to make sense, the graph needs
be strongly connected. Lacking that condition, some of the
denominators will be oo, resulting in a rank of zero for all
nodes which cannot coreach the whole graph.

(D

In fact, it was not probably in Bavelas’s intentions to apply
the measure to non-connected graphs, but nonetheless the
measure is sometimes “patched” by simply not including pairs
with infinite distance, that is,

1
Zd(y,x)<oo d(y, X) ’

for the sake of completeness, one further assumes that nodes
with an empty coreachable set have centrality 0 by definition.
These apparently innocuous adjustments, however, introduce
a strong bias toward nodes with a small coreachable set.

B. Lin’s centrality

Nan Lin [9] tried to patch the definition of closeness for
graphs with infinite distances by weighting closeness using
the square of the number of coreachable nodes; his definition
for the centrality of a node x with a nonempty coreachable
set 18

[y 1 d(y,x) < oo}
Zd(y,x)<oo d(y,x) ’

Nodes with an empty coreachable set have centrality 1 by
definition.

2Most centrality measures proposed in the literature were described only for
undirected, connected graphs. Since the study of web graphs and online social
networks has posed the problem of extending centrality concepts to networks
that are directed, and possibly not strongly connected, in the rest of this paper
we consider measures depending on the incoming arcs of a node, so distances
will be taken from all nodes to a fixed node. If necessary, these measures can
be called “negative”, as opposed to the “positive” versions obtained by taking
the transpose of the graph.

The rationale behind this definitions is the following: first,
we consider closeness not the inverse of a sum of distances,
but rather the inverse of the average distance, which entails a
first multiplication by the number of coreachable nodes. This
change normalizes closeness across the graph. Now, however,
we want nodes with a larger coreachable set to be more
important, given that the average distance is the same, so we
multiply again by the number of coreachable nodes.

Lin’s index was somewhat surprisingly ignored in the fol-
lowing literature. Nonetheless, it seems to provide a reasonable
solution for the problems caused by the definition of closeness.

C. Harmonic centrality

As we noticed, the main problem with closeness lies in
the presence of pairs of unreachable nodes. In [10], we have
proposed to replace the reciprocal of the sum of distances
in the definition of closeness with the sum of reciprocals
of distances. Conceptually, this corresponds to replacing the
reciprocal of a denormalized average of distances with the
the reciprocal of a denormalized harmonic mean of distances,
analogously to what Marchiori and Latora proposed to do with
the notion of average distance [11]. Indeed, in case a large
number of pairs of nodes are not reachable from each other, the
average of finite distances can be misleading: a graph might
have a very low average distance while it is almost completely
disconnected (e.g., a perfect matching has average distance
1/2). The harmonic mean has the useful property of handling
oo cleanly (assuming, of course, that oco~! = 0). For example,
the harmonic mean of distances of a perfect matching is n —1:
in fact, for every node there is exactly another node at a non-
infinite distance, and its distance is 1; so the sum of the inverse
of all distances is n, making the harmonic average equal to
nn—1)/n=n-—1.

We thus obtain the harmonic centrality of x:

1 1
Y==Y. 2)
2 A0y 4O
The difference with (1) might seem minor, but actually it is
a radical change. Harmonic centrality is strongly correlated
to closeness centrality in simple networks, but naturally also
accounts for nodes y that cannot reach x. Thus, it can be

fruitfully applied to graphs that are not strongly connected.

IV. HYPERBALL

In this section, we present HyperBall, a general framework
for computations that depend on the number of nodes at
distance at most ¢ or exactly ¢ from a node. HyperBall uses
the same dynamic programming scheme of algorithms that
approximate neighborhood functions, such as ANF [12] or
HyperANF [3], but instead of aggregating at each step the
information about all nodes into a single output value (the
neighborhood function at 7) HyperBall makes it possible to
perform a different set of operations (for example, depending
on the centrality to be computed). We have tried to make
the treatment self-contained, albeit a few details will be only
sketched here, when they can be deduced from the description
of HyperANF [3].



A. HyperLogLog counters

HyperLogLog counters, as described in [13] (which is based
on [14]), are used to count approximately the number of
distinct elements in a stream. For the purposes of the present
paper, we need to recall briefly their behavior. Essentially,
these probabilistic counters are a sort of approximate set
representation to which, however, we are only allowed to pose
questions about the (approximate) size of the set.

Let Z be a fixed domain and & : 2 — 2°° be a fixed hash
function mapping each element of Z into an infinite binary
sequence. For a given x € 2°°, let h,(x) denote the sequence
made by the leftmost # bits of /(x), and A’ (x) be the sequence
of remaining bits of x; A, is identified with its corresponding
integer value in the range {0,1,...,2" —1}. Moreover, given
a binary sequence w, we let p*(w) be the number of leading
zeroes in w plus one (e.g., p7(00101) = 3). Unless otherwise
specified, all logarithms are in base 2.

Algorithm 1 The Hyperloglog counter as described in [13]:
it allows one to count (approximately) the number of distinct
elements in a stream. o, is a constant whose value depends
on p and is provided in [13]. Some technical details have been
simplified.

0 h:2 — 2%, ahash function from the domain of items
1 M [—] the counter, an array of p = 2% registers
2 (indexed from 0) and set to —oo

3

4 function add(M : counter, x: item)

5  begin

6 i < hp(x);

7 M[i] < max{M[i]. p* (h®(x))}

8 end; // function add

9

10 function size(M : counter)

11  begin

2z (X 2—MU])_1;

13 return E = o, p?Z

14  end; // function size

15

16 foreach item x seen in the stream begin

17 add(M ,x)

18 end;

19 print size(M)

The value E printed by Algorithm 1 is [13][Theorem 1] an
asymptotically almost® unbiased estimator for the number n
of distinct elements in the stream; for n — oo, the relative
standard deviation (that is, the ratio between the standard
deviation of E and n) is at most 8,/./p < 1.06/./p, where
B p 1s a suitable constant. Moreover, even if the size of the
registers (and of the hash function) used by the algorithm

3For the purposes of this paper, in the following we will consider in practice
the estimator as it if was unbiased, as suggested in [13].

is unbounded, one can limit it to loglog(n/p) + w(n) bits
obtaining almost certainly the same output (w(n) is a function
going to infinity arbitrarily slowly); overall, the algorithm
requires (1 4+ o(1)) - ploglog(n/p) bits of space (this is the
reason why these counters are called HyperLogLog). Here and
in the rest of the paper we tacitly assume that p > 16 and
that registers are made of [loglogn] bits.

B. Estimating balls

The basic idea used by algorithms such as ANF [12] and
HyperANF [3] is that that %Bg(x,r), the ball of radius r
around node x, satisfies

B (x,0) ={x}
Bo(x,r+1) = | Zo(y.r) Uix}.
xX—y

We can thus compute HBg(x,r) iteratively using sequential
scans of the graph (i.e., scans in which we go in turn through
the successor list of each node). One obvious drawback of this
solution is that during the scan we need to access randomly
the sets Bg(x,r — 1) (the sets HBg(x,r) can be just saved
on disk on an update file and reloaded later). For this to be
possible, we need to store the (approximated) balls in a data
structure that can be fit in the core memory: here is where
probabilistic counters come into play; to be able to use them,
though, we need to endow counters with a primitive for the
union. Union can be implemented provided that the counter
associated with the stream of data AB can be computed
from the counters associated with A and B; in the case of
HyperLoglog counters, this is easily seen to correspond to
maximizing the two counters, register by register.

Algorithm 2, named HyperBall, describes our strategy to
compute centralities. We keep track of one HyperLogLog
counter for each node; at the z-th iteration of the main loop,
the counter c¢[v] is in the same state as if it would have been
fed with Bg(v,t), and so its expected value is |Bg(v,1)].
During the execution of the loop, when we have finished
examining node v the counter a is in the same state as if
it would have been fed with %Bg(v,t + 1), and so its value
will be |Bg(v,t + 1)] in expectation.

This means, in particular, that it is possible to compute an
approximation of

Ky ld(x,y) =1t}
(the number of nodes at distance ¢ from x) by evaluating
%6 (v.1 + 1) — |PBe(v.1)].

The computation would be exact if the algorithm had kept
track of the set Bg(x,t) for each node, something that is
obviously not possible; using probabilistic counters makes this
feasible, at the cost of tolerating some approximation in the
computation of cardinalities.

The idea of using differences between ball sizes to estimate
the number of nodes at distance ¢ appeared also in [15],
where it was used with a different kind of counter (Martin—
Flajolet) to estimate the 90% percentile of the distribution of



distances from each node. An analogous technique, always
exploiting Martin—Flajolet counters, was adopted in [5] to
approximate closeness. In both cases the implementations
were geared towards MapReduce [4]. A more sophisticated
approach, which can be implemented using breadth-first visits
or dynamic programming, uses all-distances sketches [16]: it
provides better error bounds, but it requires also significantly
more memory.

Algorithm 2 HyperBall in pseudocode. The algorithm uses,
for each node v € n, an initially empty HyperLoglog counter
¢[v]. The function union(—, —) maximises two counters regis-
ter by register. At line 19, one has the estimate of |ZAg (v, )|
from c[v] and the estimate of |%g(v,t + 1)| from a.

0  c¢[-], an array of n HyperLogLog counters
1

2 function union(M : counter, N: counter)
3 foreach i < p begin

4 M|i] < max(M[i], N[i])

5 end

6 end; // function union

7

8  foreach v € n begin

9 add(c[v], v)

10 end;

11 ¢t <« 0;

12 do begin

13 foreach v € n begin

14 a < c[v];

15 foreach v — w begin

16 a < union(c[w], a)

17 end;

18 write (v,a) to disk

19 do something with @ and c[v]
20 end;

21 Read the pairs (v,a) and update the array c[—]
22 t<—t+1
23 until no counter changes its value.

HyperBall is run until all counters stabilize (e.g., the last
iteration must leave all counters unchanged). As shown in [3],
any alternative termination condition may lead to arbitrarily
large mistakes on pathological graphs.

V. ESTIMATING CENTRALITIES

It should be clear that exactly three ingredients for each
node x are necessary to compute closeness, harmonic, and
Lin’s centrality:

o the sum of the distances to x;
o the sum of the reciprocals of the distances to x;
« the size of the coreachable set of x.

The last quantity is simply the value of each counter c[v] in
HyperBall at the end of the computation on GT. The other

quantities can be easily computed in a cumulative fashion
nothing that

Yody.x) =) tl{yld(y.x) =1}
y

t>0

=Y t(|Bgr (x.0)| — | Bgr (x.1 = 1))).

t>0
and
S oy hoagn =1
y#x d(y.x) t>0t

1
= > ~(1Bor (.0 = | Zgr (x.t = D).

t>0

We can thus obtain estimators for the first two ingredients by
storing a single floating point value per node, and cumulating
the values for each node during the execution of HyperBall.
Note that we have to run the algorithm on the franspose of
G, since we need to estimate the distances fo x, rather than
from x.

If we accept the minimum possible precision (16 regis-
ters per HyperLogLog counter), the core memory necessary
for running HyperBall is just 16 bytes per node (assuming
n < 2%, plus four Booleans per node to keep track of
modifications, and ancillary data structures that are orders of
magnitude smaller. A machine with 2TiB of core memory
could thus compute centralities on networks with more than a
hundred billion nodes, prompting the title of this paper.

Note that even if we use a small number of registers per
HyperLoglog counter, by executing HyperBall multiple times
we can increase the confidence in the computed value for each
estimator, leading to increasingly better approximations.

As in the case of the average distance [3], the theoretical
bounds are quite ugly, but the derived values we compute
are very precise, as shown by the concentration of the values
associated several runs. Multiple runs in this case are very
useful, as they make it possible to compute the empirical
standard deviation.

A. Representing and scanning the graph

In the previous section we have estimated the core memory
usage of HyperBall without taking the graph size into account.
However, representing and accessing the graph is a nontrivial
problem, in particular during the last phases of the compu-
tation, where we can keep track of the few nodes that are
modifying their counter, and propagate new values only when
necessary.

Here we exploit two techniques: compression, to represent
the graph as a bit stream in a small amount of disk space, so
that we are able to access it from disk efficiently using memory
mapping; and succinct data structures, to access quickly the
bitstream in a random fashion.

In particular, for compression we use the WebGraph frame-
work [17], which is a set of state-of-the-art algorithms and
codes to compress web and social graphs. WebGraph rep-
resents a graph as a bitstream, with a further 64-bit pointer



for each node if random access is necessary. We recall that
WebGraph uses the BV compression scheme [17], which
applies three intertwined techniques to the successor list of
a node:

e successors are (partially) copied from previous nodes
within a small window, if successors lists are similar
enough;

e successors are intervalized, that is, represented by a left
extreme and a length, if significant contiguous successor
sequences appear;

e successors are gap-compressed if they pass the previous
phases: instead of storing the actual successor list, we
store the differences of consecutive successors (in increas-
ing order) using suitable instantaneous codes.

Thus, a graph compresses well when it exhibits similarity
(nodes with near indices have similar successor lists) and
locality (successor lists have small gaps).

To store the pointers in memory, we use a succinct encoding
based on a broadword implementation [18] of the Elias-Fano
representation of monotone sequences [19]. This way, the cost
of a pointer is logarithmic in the average length per node of
the bitstream, and in real-world graphs this means about one
byte of core memory per node, which is an order of magnitude
less than the memory used by HyperBall.

B. Error bounds

The estimate B (x.1) for |Bg(x,t)| obtained by Hyper-
Ball follow the bounds given in Section IV-A. Nonetheless, as
soon as we consider the differences %Bg(x,t + 1) — Bg(x,t),
the bounds on the error become quite ugly. A similar problem
occurs when estimating the distance distribution and its statis-
tics: by taking the difference between points of the cumulative
distribution, the bound on the relative standard deviation is
lost [3].

Note that in part this is an intrinsic problem: HyperBall es-
sentially runs in quasi-linear expected time O(pm logn) [16],
and due to known bounds on the approximation the diame-
ter [20] it is unlikely that it can provide in all cases a good
approximation of the differences (which would imply a good
approximation of the eccentricity of each node, and in the end
a good approximation of the diameter).

Nonetheless, for a number of reasons the estimates of the
differences on real-world graphs turn out to be very good.
First of all, for very small numbers the HyperLogLog counters
compute a different estimator (not shown in Algorithm 1) that
is much more accurate. Second, on social and web graphs (and
in general, for small-world graphs) the function |%g(x,1?)|
grows very quickly for small values of ¢, so the magnitude of
the difference is not far from the magnitude of the ball size,
which makes the relative error on the ball size small with
respect to the difference. Third, once most of the nodes in
the reachable set are contained in HBg(x,t), the error of the
HyperLoglog counter tends to stabilize, so the bound on the
relative standard deviation “transfers” to the differences.

We thus expect (and observe) that the estimation of the size
of the nodes at distance ¢ to be quite accurate, in spite of the
difficulty of proving a theoretical error bound.

From a practical viewpoint, the simplest way of controlling
the error is generating multiple samples, and computing the
empirical standard deviation. This is, for example, the way in
which the results for the “degrees of separation” in [7] were
reported. By generating several samples, we can restrict the
confidence interval for the computed values.

In Section VIII we report experiments on a relatively small
graph on which centralities could be computed exactly to show
that the precision obtained on the final values is very close to
the theoretical prediction for a single counter.

VI. COMPUTING WITH WEIGHTS ON THE NODES

It is very natural, in a number of contexts, to have weights on
the nodes that represent their importance. Centrality measures
should then be redefined taking into account weights in the
obvious way: the sum of distances should become

> w(y)d(y. x),

y
the sum of inverse distances should become

and the size of the coreachable set should become

> w).

d(y,x)<oo

There is no direct way to incorporate weights in the dynamic
programming algorithm, but weights can be easily simulated
if they are integers. Suppose that the weighting function is
w:V — {l,...,W}, and assume that each node x € V is
associated with a set Z(x) = {x1,...,Xy()} of replicas of
the node (with the proviso that distinct nodes have disjoint
replicas).

Then the weighted ball of radius r around x can be defined
recursively as:

W (x,0) = Z(x)
Ho(x.r+1)=2x)0 | #a(y.r).

x—>y

It is easy to see that

|WG(X,7' + 1)| - |WG(X,7’)| =

2

yid(x,y)=r

w(y).

Attention must be paid, of course, to the sizing of the counters
in this case. Instead of loglogn bits, counters with

log logz w(x) < loglog(Wn) = log(logn + log W)
P

bits will have to be used. We note, however, that since the
increase factor ) . w(x)/n passes through two logarithms, it
is unlikely that more than 6 or at most 7 bits will be ever
necessary.



VII. COMPUTING WITH DISCOUNT FUNCTIONS

If we look at harmonic centrality from a more elementary
perspective, we can see that when measuring the centrality
of a node we start by considering its (in)degree, that is, how
many neighbors it has at distance one. Unsatisfied by this raw
measure, we continue and take into consideration nodes at
distance two. However, their number is not as important as
the degree, so before adding it to the degree we discount its
importance it by 1/2. The process continues with nodes at
distance three, discounted by 1/3 until all coreachable nodes
have been considered.

The essence of this process is that we are counting nodes
at larger and larger distances from the target, discounting
their number based on their distance. One can generalize this
idea to a family of centrality measures. The idea, similar to
the definition of discounted cumulative gain in information
retrieval [21], is that with each coreachable node we gain
some importance. However, the importance given by the node
is discounted by a quantity depending on the distance that, in
the case of harmonic centrality, is the reciprocal 1/d. Another
reasonable choice is a logarithmic discount 1/log(d + 1),
which attenuates even more slowly the importance of far
nodes, or a quadratic discount 1/d?. More generally, the
centrality of x based on a non-increasing discount function

f:N—=>Ris
>

d(y,x)<00,y#x

fd(y,x)).
It can be approximated by HyperBall nothing that

Yoo Sl =) fOy [ dy.x) =1}
d(y,x)<00,y#x t>0

=Y fO)(Bgr (x.0)| — | Bgr (x.1 = 1))).

t>0

We are proposing relatively mild discount functions, in
contract with the exponential decay used, for example, in
Katz’s index [22]. This is perfectly reasonable, since Katz’s
index is based on paths, which are usually infinite. Discount-
based centralities are necessarily given by finite summations,
so there is no need for a rapid decay. By choosing a constant
discount function we would estimate the importance of each
node just by the number of nodes it can coreach (i.e., in the
undirected case, by the size of its connected component).

Combining this observation and that of Section VI, we
conclude that HyperBall can compute a class of centralities
that could be called discounted-gain centralities:*

> w)f(y.x).
d(y,x)<oo,y#x
VIII. EXPERIMENTS

We decided to perform three kinds of experiments:

¢ A small-scale experiment on the same graphs for which
explicit timings are reported in [5], to compare the

4These are called spatially decaying in [23].

TABLE I
COMPARATIVE TIMINGS PER ITERATION BETWEEN THE HADOOP
IMPLEMENTATION DESCRIBED IN [5] RUNNING ON 50 MACHINES AND
HYPERBALL ON A MACBOOK PRO LAPTOP (2.6 GHZ INTEL 17, 8 GIB
RAM, 8 CORES) AND ON A 32-CORE, 64 GIB RAM WORKSTATION USING
2.3 GHz AMD OPTERON 6276 PROCESSORS. TIMINGS FOR THE HADOOP
IMPLEMENTATION WERE DEDUCTED FROM FIGURE 4(B) OF [5]. NOTE
THAT THE BETTER PROCESSOR AND THE SSD DISK OF THE MACBOOK
PRO MAKE IT ALMOST TWICE FASTER (PER CORE) THAN THE
WORKSTATION. ALL COMPUTATIONS PROVIDE & 13% RELATIVE
STANDARD DEVIATION.

Size (nodes/arcs) | Hadoop [5] | MacBook | 32 cores

|
20K /40M 250s 2s 1s
59K /282M 1750s 10s 4s
177K / 197TM 2875s 70s 23s

absolute speed of a MapReduce-based approach using the
Hadoop open-source implementation and of an in-core
approach. Note that the graphs involved are extremely
unrealistic (e.g., they have all diameter 2 and are orders
of magnitude denser than typical web or social graphs).
This experiment was run using p = 64 registers per Hy-
perLogLlog counter, corresponding to a relative standard
deviation of 13.18%, which is slightly better than the one
used in [5] (13.78%, as communicated by the authors),
to make a comparison of the execution times possible.

e A medium-size experiment to verify the convergence
properties of our computations. For this purpose, we
had to restrict ourselves to a graph for which exact
values could be computed using n breadth-first visits. We
focused on a public snapshot of Wikipedia. This graph
consists of 4206785 nodes and 101 355853 arcs (with
average degree 24 and the largest strongly connected
component spanning about 89% of the nodes). We per-
formed 100 computations using p = 4096 registers per
counters, corresponding to a theoretical relative standard
deviation of 1.62% for each computation. The exact
computation of the centralities required a few days using
40 cores.

« A large-scale experiment using the largest ClueWeb09°
graph; ClueWeb(9 is, at the time of this writing, the
largest web graph publicly available, one order of mag-
nitude larger that previous efforts in terms of nodes. It
contains 4 780 950 903 nodes and 7 939 647 896 arcs. The
purpose of this experiment was to show our methods in
action on a very large dataset.’

In Table I we report the timings for an iteration on the same
set of Kronecker graphs used in [5]. A standard workstation
with 32 cores using HyperBall is at least 150 times faster than

5Available at http://law.di.unimi.it/

A dataset gathered in 2009 within the U.S. National Science Foundation’s
Cluster Exploratory (CIuE) program. The ClueWebl2 graph will be even
larger, but it is presently still under construction. See http://lemurproject.org/
clueweb09/

"We remark that due to the way in which the graph has been collected
(e.g., probably starting from a large seed) the graph is significantly less dense
than a web graph obtained by breadth-first sampling or similar techniques.
Moreover, the graph contains the whole set of discovered nodes, even if only
about 1.2 billion pages were actually crawled. As a result, many statistics are
off scale: the harmonic diameter [11], [24] is &~ 15131 (typical values for
breadth-first web snapshots are ~ 20) and the giant component is just 0.6%
of the whole graph.
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Fig. 1. Relative errors in the computation of centrality measures on Wikipedia: we averaged the values computed in 5, 10, 15, ..., 100 runs and computed

the relative error with respect to the real value (the latter were obtained by running an exact implementation). The boxes represent the 1st (lower edge), 2nd
(i.e., the median; midline) and 3rd (upper edge) quartile; the whiskers correspond to an interval of length 20" around the mean. For comparison, each plot
contains the curve of the theoretical relative standard deviation for each single HyperLoglog counter over the given number of samples.

a Hadoop-based implementation using using 50 machines;
even a MacBook Pro with 8 cores is at least 50 times faster.

In Figure 1 we report the results of the second set of
experiments, which fully confirm our empirical observations
on the behavior of the difference estimator: on average, the
relative error on the computed centrality indices is very close
to the theoretical prediction for each single HyperLoglLog
counter, and, in fact, almost always significantly smaller.

It is interesting to observe that the estimation on the number
of coreachable nodes (depending on the value of a single
counter at the end of the computation) is extremely more
concentrated. This is due both to the lack of differences, which
reduces the error, and to the fact that most nodes (89%) lie in
the giant strongly connected component, so their coreachable

set is identical, and this induces a collapse of the quartiles of
the error on the median value.

On the same dataset, Table II reports figures showing that
increasing the number of cores leaves essentially unmodified
the time per arc per core (i.e., linear scalability). The only
significant (30%) increase happen at 32 cores, and it is likely
to be caused by the nonlinear cost of caching.

Finally, we ran HyperBall on ClueWeb09 using a work-
station with 40 Intel Xeon E7-4870 at 2.40 GHz and 1TiB
of RAM (with the same hardware, we could have analyzed
a graph with 50 billion nodes using p = 16). We report
the results in Table III. We performed three experiments with
different levels of precision, and in the one with the highest
precision we fully utilized the in-core memory: the timings



TABLE 11
TIME PER ARC PER CORE OF A HYPERBALL ITERATION, TESTED ON THE
WIKIPEDIA GRAPH WITH p = 4096.

cores | Time per arc per core |

1 906 ns
2 933 ns
4 967 ns
8 1018 ns
16 1093 ns
32 1389 ns
TABLE III

TIMINGS FOR A FULL 40-CORE COMPUTATION (= 200 ITERATIONS) ON
CLUEWEB(9 USING A DIFFERENT NUMBER p OF REGISTERS PER
HYPERLOGLOG COUNTER. THE AMOUNT OF MEMORY DOES NOT
INCLUDE 7.2 GIB OF SUCCINCT DATA STRUCTURES THAT STORE

POINTERS TO THE MEMORY-MAPPED ON-DISK BITSTREAMS
REPRESENTING THE GRAPH AND ITS TRANSPOSE.

P | Memory | Overall time | Per iteration (avg.)
16 73 GiB 96 m 27s
64 234 GiB 141 m 40s
256 | 875GiB 422 m 120s

show that increasing the precision scales even better than
linearly, which is to be expected, because the cost of scanning
the graph is constant whereas the cost of computing with
greater precision grows linearly with the number of registers
per HyperLogLog counter. Thus, for a fixed desired precision a
greater amount of in-core memory translates into higher speed.

IX. CONCLUSIONS

We have described HyperBall, a framework for in-core
approximate computation of centralities based on the number
of (possibly weighted) nodes at distance exactly ¢ or at most
t from each node x of a graph. With 2TiB of memory,
HyperBall makes it possible to compute accurately and quickly
harmonic centrality for graphs up to a hundred billion nodes.
We obtain our results with a mix of approximate set repre-
sentations (by HyperLoglog counters), efficient compressed
graph handling, and succinct data structures to represent
pointers (that make it possible to access quickly the memory-
mapped graph representation).

We provide experiments on a 4.8 billion node dataset,
which should be contrasted with previous literature: the largest
dataset in [5] contains 25 million nodes, and the dataset of [15]
contains 1.4 billion nodes.® Moreover, both papers provide
timings only for a small, &~ 177 000-nodes graph, whereas we
report timings for all our datasets.
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