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We describe a new statistical test for pseudorandom number generators (PRNGs). Our test can find bias
induced by dependencies among the Hamming weights of the outputs of a PRNG, even for PRNGs that pass
state-of-the-art tests of the same kind from the literature, and in particular for generators based on F2-linear
transformations such as the dSFMT [22], xoroshiro1024+ [1], and WELL512 [19].
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1 INTRODUCTION
Pseudorandom number generators (PRNGs) are algorithms that generate a seemingly random
output using a deterministic algorithm. A 𝑤-bit PRNG is defined by a state space 𝑆 , a transition
(or next-state) computable function 𝜏 : 𝑆 → 𝑆 , and a computable output function 𝜑 : 𝑆 → { 0, 1 }𝑤
that maps the state space into𝑤-bit words. One then considers an initial state, or seed 𝜎 ∈ 𝑆 , and
computes the sequence of𝑤-bit outputs

𝜑 (𝜎), 𝜑 (𝜏 (𝜎)), 𝜑
(
𝜏2 (𝜎)

)
, 𝜑

(
𝜏3 (𝜎)

)
, . . .

The outputs can be used to generate reals in the unit interval, for example multiplying them by
2−𝑤 . Knuth discusses PRNGs at length [8].1

A classic example is given bymultiplicative congruential generators, which are defined by a prime
modulus 𝜇 and a multiplier 𝛼 . Then 𝑆 = Z/𝜇Z, 𝜏 : 𝑥 ↦→ 𝛼𝑥 , and the output function is given by
the binary representation of 𝑥 (one tries to choose 𝜇 close to 2𝑤). Another well-known example is
the class of F2-linear generators [10], in which 𝑆 is a vector of F𝑛2 (i.e., 𝑛 bits) and 𝜏 is an F2-linear
transformation on 𝑆 ; however, usually, the transformation can be expressed by basic F2-linear
operations on words, such as rotations, shift, and XORs, rather than in matrix form. The output
function might pick a word of𝑤 bits from the state: for example, 𝑛 = 𝑘𝑤 for some 𝑘 then the state
can be represented by 𝑘 𝑤-bit words, and the output function can just choose one of those. In some
generators, moreover, the output function is not F2-linear.
Several theoretical properties help in the design of PRNGs: however, once designed a PRNG is

submitted to a set of statistical tests, which try to discover some statistical bias in the output of the
generator. The tests compute, using the output of the generator, statistics whose distribution is
known (at least approximately) under the assumption that the output of the generator is random.
Then, by applying the (complementary) cumulative distribution function to the statistics one
obtains a 𝑝-value, which should be neither too close to zero nor too close to one (see Knuth [8] for
a complete introduction to the statistical testing of PRNGs).

The Hamming weight of a𝑤-bit word 𝑥 is the number of ones in its binary representation. Tests
for Hamming-weight dependencies try to discover some statistical bias in the Hamming weight
of the output of the generator. In particular, such tests do not depend on the numerical values of
1We are here slightly simplifying the presentation: in general, the codomain of the output function can be an arbitrary
finite set; moreover, depending on the detailed definition, the output sequence might start with 𝜑 (𝜏 (𝜎)) .
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the outputs: indeed, sorting the bits of each examined block (e.g., first all zeroes and then all ones)
would not modify the results of the test (albeit the values would now be very small).

Since the number of ones in a random𝑤-bit word has a binomial distribution with𝑤 trials and
probability of success 1/2, in the most trivial instance one examines𝑚 consecutive outputs 𝑥0, 𝑥1,
. . . , 𝑥𝑚−1 and checks that the average of their Hamming weights has the correct distribution (which
will be quickly approximated very well by a normal distribution as𝑚 grows [5]). Tests may also try
to detect dependencies: for example, one can consider (overlapping) pairs of consecutive outputs, and
check that the associated pairs of Hamming weights have the expected distribution [11]. Matsumoto
and Nishimura [17] have introduced a theoretical figure of merit that can predict after how many
samples a F2-linear generator will fail a specific Hamming-weight test. The NIST statistical test
suite for PRNGs [20] contains tests based on Hamming-weight dependencies, too.
In this paper, we introduce a new test for Hamming-weight dependencies that improves sig-

nificantly over the state of the art. We find bias in some old and some new generators for which
tests of this type from TestU01 [12], a well-known framework for statistical testing of PRNGs, were
unable to find bias even using a large amount of output.
All the code used in this paper is available under the GNU General Public License.2 Code for

reproducing the results of this paper has been permanently stored on the Zenodo platform.3

2 MOTIVATION
It is known since the early days of F2-linear generators that sparse transition matrices induce some
form of dependency on the Hamming weight of the state. Since the output is computed starting
from the state, these dependencies might induce Hamming-weight dependencies in the output, too.
For example, if the state has very low Hamming weight, that is, very few ones, one might need
a few iterations (or more than a million, in the case of the Mersenne Twister with 19937 bits of
state [16]) before the state contains ones and zeroes approximately in the same amount. This is
however a minor problem because for generators with, say, at least 128 bits of state, the probability
of passing through such states is negligible.
However, what we witness very clearly in the case of almost-all-zeros state might be true in

general: states with few ones might lead to states with few ones, or due to XOR operations states
with many ones might lead to states with few ones. This kind of dependency is more difficult to
detect.
Here we consider as motivation a few generators: xorshift128+ [25] is the stock generator

of most Javascript implementations in common browsers; the SFMT (SIMD-Friendly Mersenne
Twister) [21] is a recent improvement on the classic Mersenne Twister using SIMD instructions, and
we will use the version with 607 bits of state; the dSFMT [22] is another version of the Mersenne
Twister which natively generate doubles, and we will use the version with 521 bits of state; WELL
is a family of generators with excellent equidistribution properties [19], and we will use the version
with 512 bits of state; finally, we consider a new F2-linear transformation, xoroshiro, designed
by the authors, and the associated generators xoroshiro128+ and xoroshiro1024+ [1].4 All these
generators have quite sparse transition matrices (WELL512 having the densest matrix), and one
would expect some kind of Hamming-weight dependency to appear.

To check whether this is true, we can test for such dependencies using TestU01 [12], a well-known
framework for testing generators, which implements tests related to Hamming weights from [11]
and [20] (please refer to the TestU01 guide for a detailed description of the tests). Table 1 shows

2http://prng.di.unimi.it/
3https://zenodo.org/badge/latestdoi/412112034
4The generators combine two words of state using a sum in Z/264Z.

http://prng.di.unimi.it/
https://zenodo.org/badge/latestdoi/412112034
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Table 1. Parameters for statistical tests related to Hamming weights from TestU01 [12]. We consider the
entire output of the generator (i.e., TestU01 parameters 𝑟 = 0, 𝑠 = 32). The parameter 𝑑 of HammingIndep
has been set to zero. The parameter 𝑘 varies among 30, 300, and 1200 for HI and 30, 300, 500 for HC, as in
BigCrush. Moreover, in both cases we tested 𝑘 equal to 128, 256, 512, and 1024 following a suggestion from a
referee.

Label Test parameters
HW0 HammingWeight2 (𝑁 = 1, 𝐿 = 106)
HW1 HammingWeight2 (𝑁 = 1, 𝐿 = 107)
HW2 HammingWeight2 (𝑁 = 1, 𝐿 = 108)
HI𝑘 HammingIndep (𝑁 = 1, 𝐿 = 𝑘)
HC𝑘 HammingCorr (𝑁 = 1, 𝐿 = 𝑘)

Table 2. Results for the TestU01 [12] statistical tests related to Hamming weights. The 𝑛 parameter gives
the number of 32-bit outputs examined. The tests have been run on the lower 32 bits of the output (“L”),
the upper 32 bits (“U”), and interleaving the upper and lower bits (“I”). We report the first test failed by a
generator, where failure is a 𝑝-value outside of the range [0.01 . . 0.99].

𝑛 𝑛 = 109 𝑛 = 1010 𝑛 = 1011 𝑛 = 1012 𝑛 = 1013

SFMT (607 bits) HI512 (I)
xorshift128+ — HI128 (U)
dSFMT (521 bits) — — — — —
WELL512 — — — — —
xoroshiro128+ — — — — HI128 (I)
xoroshiro1024+ — — — — —

the basic parameters of the nine tests we performed. The parameters were inspired by the author
choices in the BigCrush test suite [12], but instead of analyzing 109 or fewer outputs, as happens in
BigCrush, we analyze up to 1013 32-bit values (e.g., 40TB of data), hoping that examining a much
larger amount of data might help in finding bias in the generators. Besides the parameter inspired
by BigCrush, following a suggestion from a referee we also tried a number of power-of-two values
for the 𝐿 parameter of HammingIndep and HammingCorr.
Some of the generators have a 64-bit output, but TestU01 expects generators to return 32-bit

integers, so we tested both the lower 32 bits, the upper 32 bits, and the upper and lower bits
interleaved. (We do not discard any bits, as it is possible in TestU01.) In the case of the dSFMT,
there is a specific call to generate a 32-bit value.

The disappointing results are reported in Table 2: despite the very sparse nature of the transition
matrices of these generators, and the very large amount of data, only problems with the SFMT
(already using 109 values), xorshift128+ (using 1010 values), and xoroshiro128+ (using 1013

values) are reported.5 All other 𝑝-values at 1013 are within the range [0.01 . . 0.99].6

5The latter failure emerged only after testing with additional values of the parameter 𝐿 suggested by one of the referees.
6In two cases we found 𝑝-values slightly outside this range, but a test using 1.2 × 1013 values showed that they were
statistical flukes.
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3 TESTING HAMMING-WEIGHT DEPENDENCIES
In this section, we introduce a new test for Hamming-weight dependencies that will find bias in all
generators from Table 2. For the generators whose bias was detected by TestU01, the test will be
able to obtain similar or better 𝑝-values using an order of magnitude fewer data.

Let us denote with 𝜈𝑥 [9] the Hamming weight of a𝑤-bit word 𝑥 , that is, the number of ones in its
binary representation. We would like to examine the output of a generator and find medium-range
dependencies in the Hamming weights of its outputs.

For example, the current output might have an average weight (close to𝑤/2) with higher-than-
expected probability if three outputs ago we have seen a word with average weight; or, the current
output might have a non-average weight (high or low) with higher-than-expected probability
depending on whether four outputs ago we have seen average weight and five outputs ago we
have seen non-average weight.

We will consider sequences of𝑤-bit values (𝑤 even and not too small, say ≥ 16) extracted from
the output of the generator. Usually,𝑤 will be the entire output of the generator, but it is possible
to run the test on a subset of bits, break the generator output into smaller pieces fed sequentially to
the test, or glue (a subset of) the generator output into larger pieces.
The basic idea of the test is that of generating a vector whose coordinates should appear to be

drawn from independent random variables with a standard normal distribution, given that the
original sequence was random; apply a unitary transformation, obtaining a transformed vector; and
derive a 𝑝-value using the fact that the coordinates of the transformed vector should still appear
to be drawn from independent random variables with a standard normal distribution [24], given
that the original sequence was random. The transform will be designed in such a way to make
dependencies as those we described emerge more clearly.
First of all, we first must define a window we will be working on: thus, we fix a parameter 𝑘

and consider overlapping 𝑘-tuples of consecutive𝑤-bit values (ideally, the number of bits of state
should be less than 𝑘𝑤 ). We will write ⟨𝑥0, 𝑥1, . . . , 𝑥𝑘−1⟩ for such a generic 𝑘-tuple.
Now we need to classify outputs as “average” or “extremal” with respect to their Hamming

weight. We thus consider an integer parameter ℓ ≤ 𝑤/2, and the map

𝑥
𝑑↦→


0 if 𝜈𝑥 < 𝑤/2 − ℓ ;
1 if𝑤/2 − ℓ ≤ 𝜈𝑥 ≤ 𝑤/2 + ℓ ;
2 if 𝜈𝑥 > 𝑤/2 + ℓ .

In other words, we compute the Hamming weight of 𝑥 and categorize 𝑥 in three classes: left tail
(before the 2ℓ + 1 most frequent weights), central (the 2ℓ + 1 central, most frequent weights), right
tail (after the 2ℓ + 1 most frequent weights). The standard choice for ℓ is the integer such that the
overall probability of the 2ℓ + 1 most frequent weights is closest to 1/2. For example, for𝑤 = 32 we
have ℓ = 1, whereas for𝑤 = 64 we have ℓ = 2.
We thus get from the 𝑘-tuple ⟨𝑥0, 𝑥1, . . . , 𝑥𝑘−1⟩ a signature ⟨𝑑 (𝑥0), 𝑑 (𝑥1), . . . , 𝑑 (𝑥𝑘−1)⟩ of 𝑘 trits

(base-3 digits), which we will identify with its value as a number in base 3:

𝑘−1∑︁
𝑖=0

𝑑 (𝑥𝑖 )3𝑘−1−𝑖 .

Now, given a sequence of𝑚 𝑤-bit values, for each signature 𝑠 we compute the average number
of ones in the word appearing after a 𝑘-tuple with signature 𝑠 in the sequence. More precisely, a
subsequence of the form ⟨𝑥0, 𝑥1, . . . , 𝑥𝑘⟩ contributes 𝜈𝑥𝑘 to the average associated with the signature
⟨𝑑 (𝑥0), 𝑑 (𝑥1), . . . , 𝑑 (𝑥𝑘−1)⟩.
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This bookkeeping can be easily performed using 3𝑘 integer variables while streaming the genera-
tor output. For a large𝑚, this procedure yields 3𝑘 valueswith approximately normal distribution [5],7
which we normalize to a standard normal distribution; we denote the resulting row vector with
𝒗 = ⟨𝑣0, 𝑣1, . . . , 𝑣3𝑘−1⟩.89

We now apply to 𝒗 a Walsh–Hadamard-like transform, multiplying 𝒗 by the 𝑘-th Kronecker
power10 𝑇𝑘 of the unitary base matrix

𝑀 =
©«

1√
3

1√
2

1√
6

1√
3 0 − 2√

6
1√
3 − 1√

2
1√
6

ª®®¬ . (1)

Assuming that 𝑇𝑘 is indexed using sequences of trits as numerals in base 3, the transform can be
implemented recursively in the same vein as the fast Walsh–Hadamard transform (or any transform
based on Kronecker powers), as if we write 𝒗 =

[
𝒗0 𝒗1 𝒗2] , where 𝒗0, 𝒗1, and 𝒗2 are the three

subvectors indexed by signatures starting with 0, 1, and 2, respectively, we have by definition𝑇0 = 1
and

𝒗𝑇𝑘 =
[
𝒗0 𝒗1 𝒗2] ©«

1√
3𝑇𝑘−1

1√
2𝑇𝑘−1

1√
6𝑇𝑘−1

1√
3𝑇𝑘−1 0 − 2√

6𝑇𝑘−1
1√
3𝑇𝑘−1 − 1√

2𝑇𝑘−1
1√
6𝑇𝑘−1

ª®®¬
=

[
1
√

3
(
𝒗0 + 𝒗1 + 𝒗2) 𝑇𝑘−1

1
√

2
(
𝒗0 − 𝒗2) 𝑇𝑘−1

1
√

6
(
𝒗0 − 2𝒗1 + 𝒗2) 𝑇𝑘−1

]
. (2)

A detailed C implementation of 𝑇𝑘 will be described in Section 4.3.
We will denote the transformed vector by 𝒗 ′ = 𝒗𝑇𝑘 , and we shall write 𝑣 ′𝑖 for the transformed

values. Since𝑇𝑘 is unitary, the 𝑣 ′𝑖 ’s must appear still to be drawn from a standard normal distribution,
and we can thus compute 𝑝-values for each of them. We combine 𝑝-values by dividing the indices
of the vector 𝒗 ′ in 𝐶 categories 𝒞1, 𝒞2, . . . , 𝒞𝐶 using the number of nonzero trits contained in
their base-3 representation, that is, the number of nonzero trits in the associated signature: 𝒞𝑗 ,
1 ≤ 𝑗 < 𝐶 , contains indices with 𝑗 nonzero trits, whereas 𝒞𝐶 contains all remaining indices, whose
base-3 representation has at least 𝐶 nonzero trits (𝐶 ≤ 𝑘 ; usually, 𝐶 = ⌊𝑘/2⌋ + 1). We discard 𝑣 ′0.
Given a category, say of cardinality 𝑐 , we have thus a 𝑝-value 𝑝𝑖 for each 𝑣 ′𝑖 in the category;

we then consider the minimum of the 𝑝-values, say, 𝑝 , and compute a final category 𝑝-value by
composing with the cumulative distribution function of the minimum of 𝑐 independent uniform
random variables in the unit interval [3, Eq. (2.2.2)], obtaining the category 𝑝-value 1 − (1 − 𝑝)𝑐 .
Finally, we take the minimum category 𝑝-value over all categories, and apply again the same
cumulative distribution function with parameter 𝐶 , since we are taking the minimum over 𝐶

7In practice, one must size𝑚 depending on the number of signatures, so that each signature has a sufficiently large number
of associated samples. Implementations can provide quickly the user with a preview output using the value zero for random
variables associated with non-appearing signatures, warning the user that final 𝑝-values too close to one might be artifacts.
8Breaking the generator output in smaller pieces provides obviously a finer analysis of the distribution of each piece, but a
test with parameters 𝑘 and 𝑤 “covers” 𝑘𝑤 bits of output: if we analyze instead values made of 𝑤/2 bits, to cover 𝑘𝑤 bits of
output we need to increase the length of tuples to 2𝑘 , with a quadratic increase of memory usage.
9There is also a transitional variant of the test: we see the sequence of 𝑤-bit values as a stream of bits, xor the stream with
itself shifted forward by one bit, and run the test on the resulting 𝑤-bit values. In practice, we look for Hamming-weight
dependencies between bit transitions.
10For a definition of the Kronecker product, see [26, Section 4.3].
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categories: this yields the final 𝑝-value of the test. Formally,

𝑝 = 1 −
(
1 − min

1≤ 𝑗≤𝐶

(
1 −

(
1 −min

𝑖∈𝒞𝑗

𝑝𝑖

) |𝒞𝑖 |
))𝐶

.

The point of the transform 𝑇𝑘 is that while 𝑣𝑖 represents the (normalized) average number of
ones after 𝑘 previous outputs with density pattern described by the trit representation of 𝑖 , 𝑣 ′𝑖
represents a combination of the average number of ones after 𝑘 previous outputs satisfying different
constraints: in the end, a unitary transformation is just a change of coordinates.

As a simple example, let us write the index 𝚤 of a transformed value 𝑣 ′𝚤 as a sequence of trits 𝑡1, 𝑡2,
. . . , 𝑡𝑘 . If the trits are all zero, looking at (2) one can see that we are just computing the normalized
sum of all values, which is of little interest: indeed, we discard 𝑣 ′0.
On the contrary, if a single trit, say in position 𝚥, is equal to 1, 𝑣 ′𝚤 is given by the sum of all 𝑣𝑖 ’s

in which the 𝚥-th trit of 𝑖 is 0 (𝚥 steps before we have seen few zeros) minus the sum of all 𝑣𝑖 ’s in
which the 𝚥-th trit of 𝑖 is 2 (𝚥 steps before we have seen many zeros): if the Hamming weight of the
output depends on the Hamming weight of the output 𝚥 steps before, the value of 𝑣 ′𝚤 will be biased.
Intuitively, if the transition matrix is very sparse we expect vectors with low or high Hamming
weight to be mapped to vectors with the same property.

If instead a single trit in position 𝚥 is equal to 2 wewill detect a kind of bias in which the Hamming
weight of the current value depends on whether the Hamming weight of the output 𝚥 steps before
was extremal or average: more precisely, whether the value is larger when the Hamming weight of
the output 𝚥 steps before was average and smaller when the Hamming weight of the output 𝚥 steps
before was extremal (and vice versa). Intuitively, we expect that the shift/rotate-XOR of states with
a very small or very large number of ones will have a small number of ones (in the first case, by
sparsity, in the second case, by cancellation).
More complex trit patterns detect more complex dependencies: the most interesting patterns,

however, usually are those with few nonzero trits, as a zero trit acts as a “don’t care about that
previous output”: this property is immediate from (2), as the first 3𝑘−1 output values, which
correspond to a “don’t care” value in the first position, are obtained by applying recursively 𝑇𝑘−1
over the renormalized sum of 𝒗0, 𝒗1, and 𝒗2, thus combining the values associated with signatures
identical but for the first trit.

This is also why we assemble 𝑝-values by categories: by putting indices with a higher chance of
giving low 𝑝-values in small categories, the test becomes more sensitive.

3.1 Results
We ran tests with𝑤 = 32 or𝑤 = 64 and 𝑘 ranging from 8 to 19, depending on the state size. We
performed the tests incrementally, that is, for increasingly larger values of𝑚, and stopped after a
petabyte (1015 bytes) of data or if we detected a 𝑝-value smaller than 10−20.

Table 3 reports some generators failing our test. All generators considered other than xorshift
pass BigCrush, except for linearity tests [2, 4, 14] (called MatrixRank and LinearComp in TestU01).
We report the faulty signature, that is, the pattern of dependencies that caused the low 𝑝-value:
it provides interesting insights into the structure of the generator. Indeed, we can see that for
generators that cycle through their state array, combining a small part of the state, the test can
locate exactly the dependencies from those parts: for example, the Hamming-weight the output of
xorshift1024 depends, not surprisingly, from the Hamming weight of the first and last word of
state.

First, we examine a xorshift generator [13] with 128 bits of state, and its variant xorshift128+
that we discussed in Section 2. We can find bias in the latter using just 6GB of data. Analogously,
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we find bias in a xorshift generator using 1024 bits of state, and in the SFMT [21] with 607 bits of
state using just 400MB of data. On these extremely simple generators, the performance of the test
is thus in line with that of the tests in TestU01.

However, once we turn to the other generators in Table 2 the situation is different: we can find
bias in all generators, sometimes using an order of magnitude less data than in Table 2.

Our test can also findHamming-weight dependencies in some generators of theMersenne Twister
family with small-to-medium size. First of all, we consider the 64-bit Tiny Mersenne Twister [23],
which has 127 bits of state and a significantly more complex structure than the other generators in
Table 3. Moreover, contrarily to other members of the Mersenne Twister family, the output function
of the Tiny Mersenne Twister contains a non-F2-linear operation—a sum in Z/264Z. To find the
bias, we had to resort to a slightly more detailed analysis, using𝑤 = 32 and breaking up the 64-bit
output of the generator into two 32-bit words. We report a range of results because we tried a few
parameters published by the authors.
We also analyzed the classic Mersenne Twister [16] at 521 and 607 bits. We used Matsumoto

and Nishimura’s library for the dynamic creation of Mersenne Twisters [15], and generated eight
different instances of each generator: this is why we report in Table 3 a range of values and multiple
signatures. The 607-bit version performs much worse than the 521-bit version (in fact, all instances
we tested failed even the classical Gap test from BigCrush). But, more importantly, we found huge
variability in the test results depending on the parameter generated by the library: in some cases,
the 607-bit Mersenne Twister performs in our test similarly to a xorshift128 generator, which
has a simpler structure and a much smaller state.
Finally, we were able to find bias in WELL512 [19]. In this case, we noticed that the 𝑝-value

was slowly drifting towards zero at about 1 PB of data, so we continued the test until it passed the
threshold 10−20.

A comparison between Table 2 and Table 3 shows clearly that our new test is significantly more
powerful than the tests of the same kind available in TestU01, as it can detect bias on F2-linear
generators for which no such bias was previously detectable. In fact, to the best of our knowledge
this is the first time that Tiny Mersenne Twister, the dSFMT at 521 bits, and WELL512 fail a test
that is not a linearity test.
It is worth noting that in the first submission of this paper xoroshiro128+ did not present

failures in Table 2. We were able to find a low 𝑝-value (≈ 3 × 10−11) only specifying the value 128
for the parameter 𝐿, as suggested by a referee. Larger values of 𝐿 (e.g., 256, 300,. . . ) do not yield a
failure. This is in sharp contrast with our test, where testing with 𝑘 ′ > 𝑘 will preserve the failures
found in dimension 𝑘 , because if 𝑠 is a 𝑘-dimensional failing signature, then 0𝑘′−𝑘𝑠 will be a failing
𝑘 ′-dimensional signature, with some small adjustments due to the different scaling to the standard
normal distribution and the different size of categories. In other words, increasing the dimension
of the test will not prevent the test from detecting bias that was previously detectable at a lower
dimension: the same does not happen for the HammingIndep test of TestU01.

4 IMPLEMENTATION DETAILS
We will now discuss some implementation details. To be able to perform our test in the petabyte
range, it must be engineered carefully: in particular, the main loop enumerating the output of the
generator and computing the values 𝑣𝑖 must be as fast as possible. Counting the number of ones in
a word can be performed using single-clock specialized instructions in modern CPUs. The 𝑣𝑖 ’s are
stored in an array of 3𝑘 elements indexed by the value of a signature as a numeral in base 3, as
required by the recursive implementation of 𝑇𝑘 (see Section 4.3). One can keep track very easily of
the current trit signature value by using the update rule 𝑠 ← ⌊𝑠/3⌋ + 𝑡 · 3𝑘−1, where 𝑡 is the next trit.
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Table 3. Detailed results of the test described in Section 3 for 𝑤 = 64. We report the number of bytes
generating a 𝑝-value smaller than 10−20. We report also the trit signature which caused the low 𝑝-value.
Ranges (represented using the arrow symbol →) appear when we tried several variants: a missing right
extreme means that some instances did not fail the test within the 1PB limit.

Generator 𝑝 = 10−20 @ Faulty signature
xorshift128 8 × 108 00000021
xorshift128+ 6 × 109 00000012 (transitional)
xorshift1024 6 × 108 2000000000000001
xorshift1024+ 9 × 109 2000000000000001 (transitional)
xoroshiro128 1 × 1010 00000012
xoroshiro128+ 5 × 1012 00000012
xoroshiro1024 5 × 1012 1100000000000001
xoroshiro1024+ 4 × 1013 1100000000000001 (transitional)
Tiny Mersenne Twister (127 bits) 8 × 1013 → 00000202 (𝑤 = 32)

Mersenne Twister (521 bits) 4 × 1010 → 1000000100000000
2000000100000000

Mersenne Twister (607 bits) 4 × 108 → 4 × 1010 1000000001000000000
2000000001000000000

SFMT (607 bits) 4 × 108 001000001000
dSFMT (521 bits) 6 × 1012 1001000100100010
WELL512 3 × 1015 2001002200000000

We can replace the division with the fixed-point computation
⌊ (⌈

232/3
⌉
𝑠
)
/232⌋ (this strategy

works up to 𝑘 = 19 using 64-bit integers), so by precomputing
⌈
232/3

⌉
and 3𝑘−1 the costly operations

in the update of 𝑠 can be reduced to two independent multiplications.

4.1 Small counters
Themain implementation challenge, however, is that of reducing the counter update area to improve
the locality of access to the counters, and possibly making it fit into some level of the processor
cache.11 In a naive implementation, we would need to use two “large” 64-bit values to store the
number of appearances of signature 𝑠 , and the sum of Hamming weights of the following words.
Instead, we will use a single “small” 32-bit value, with a fourfold space saving. In particular, we
will use 13 bits for the counter and 19 bits for the summation. This is a good choice as the largest
Hamming weight for𝑤 = 32 or𝑤 = 64 is 64, so if the counter does not overflow, the summation
will not, either.12

We fix a batch size and update the small values blindly through the batch. At the end of the batch,
we update the large counters using the current values of the small counters and zero the latter
ones. At the same time, we check that the sum of the small counters is equal to the batch size: if
not, a counter overflowed. Otherwise, we continue with the next batch, possibly computing the
transform and generating a 𝑝-value.

11When 𝑘 is large, this is not possible, but we provide the option of improving memory access using large pages of the
Translation Lookaside Buffer where available.
12With a similar argument, when 𝑤 = 16 one can choose 14 bits for the counter and 18 bits for the summation.
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4.2 Batch sizes
How large should a batch be?We prefer larger batches, as access to large counters will be minimized,
but too large a batch will overflow small counters. This question is interesting, as it is related to
the mean passage time distribution of the Markov chain having all possible signatures as states, and
the probability of moving from signature 𝑠 to signature ⌊𝑠/3⌋ + 𝑡 · 3𝑘−1 given by the probability of
observing the trit 𝑡 . Let this probability be 𝑝 for the central values (trit 1), and (1 − 𝑝)/2 for the
extremal values (trits 0 and 2). We are interested in the following question: given a 𝑘 , 𝑝 , and a batch
size 𝐵, what is the probability that a counter will overflow? This question can be reduced to the
question: given 𝑘 , 𝑝 and a batch size 𝐵, what is the probability that the Markov chain after 𝐵 steps
passes through the all-one signature more than 213 times?13 We want to keep this probability very
low (say, 10−100) as to not interfere with the computation of the 𝑝-values from the test; moreover,
in this way, if we detect a counter overflow we can simply report that we witnessed an event that
cannot happen with probability greater than 10−100, given that the source is random, that is, a
𝑝-value.
Note that, in principle, we could use general results about Markov chains [6, Theorem 7.4.2]

which state that in the limit the number of passages is normally distributed with mean and variance
related to those of the recurrence time distribution, which can, in turn, be computed symbolically
using the Drazin inverse [7, 18].
Since, however, no explicit bound is known for the convergence speed of the limit above, we

decided to compute exactly the mean passage time distribution for the all-ones signature. To do
this, we model the problem as a further Markov chain with states 𝑥𝑐,𝑠 , where 0 ≤ 𝑐 ≤ 𝑏, 𝑏 is a given
overflow bound, and 0 ≤ 𝑗 < 𝑘 .
The idea is that we will define transitions so that after 𝑢 steps the probability of being in state

𝑥𝑐,𝑗 will be the probability that after examining 𝑢 𝑤-bit values our current trit signature has a
maximal suffix of 𝑗 trits equal to one, and that we have counted exactly 𝑐 passages through the
all-ones signature (𝑏 or more, when 𝑐 = 𝑏), with the proviso that the value 𝑗 = 𝑘 − 1 represents
both maximal suffixes of length 𝑘 − 1 and of length 𝑘 (we can lump them together as receiving a
one increases the passage count in both cases). We use an initial probability distribution in which
all states with 𝑐 ≠ 0 have probability zero, and all states with 𝑐 = 0 have probability equal to the
steady-state probability of 𝑗 , which implies that we are implicitly starting the original chain in the
steady state. However, as argued also in [6], the initial distribution is essentially irrelevant in this
context.
We now define the transitions so that the probability distribution of the new chain evolves in

parallel with the distribution of passage times of the original chain (with the probability for more
than 𝑏 passages lumped together):
• all states 𝑥𝑐,𝑗 have a transition with probability 1 − 𝑝 to 𝑥𝑐,0;
• all states 𝑥𝑐,𝑗 with 𝑗 < 𝑘 − 1 have a transition with probability 𝑝 to 𝑥𝑐,𝑗+1;
• all states 𝑥𝑐,𝑘−1 with 𝑐 < 𝑏 have a transition with probability 𝑝 to 𝑥𝑐+1,𝑘−1;
• there is a loop with probability 𝑝 on 𝑥𝑏,𝑘−1.

It is easy to show that after 𝑢 steps the sum of the probabilities associated with the states 𝑥𝑏,− is
exactly the probability of overflow of the counter associated with the all-one signature. We thus
iterate the Markov chain (squaring the transition matrix is possible only for small 𝑘) until, say at
step 𝐵, we obtain a probability of, say, 3−𝑘𝑝: we can then guarantee that, given that the source is
random, running our test with batches of size 𝐵 we can observe overflow only with probability at
most 𝑝 .
13It is obvious that the the all-ones signature has the highest probability in the steady-state distribution, and that by
bounding its probability of overflow we obtain a valid bound also for all other signatures.
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This approach becomes unfeasible when we need to iterate the Markov chain more than, say,
107 times. However, at that point we use a very good approximation: we apply a simple dynamic-
programming scheme on the results for 106 steps to extend the results to a larger number of steps.
The idea is that if you know the probability 𝑞𝑢,𝑐 that the counter for the all-ones signature is 𝑐 after
𝑢 steps, then approximately

𝑞𝑢+𝑣,𝑐 =
∑︁
𝑓 +𝑔=𝑐

𝑞𝑢,𝑓 · 𝑞𝑣,𝑔 for 0 ≤ 𝑐 < 𝑏,

𝑞𝑢+𝑣,𝑏 =
∑︁

𝑓 +𝑔≥𝑏
𝑞𝑢,𝑓 · 𝑞𝑣,𝑔 .

The approximation is due to the fact that the equations above implicitly assume that the Markov
chain is reset to its steady-state distribution after 𝑢 steps, but experiments at smaller sizes show
that the error caused by this approximation is, as expected, negligible for large 𝑢. We thus initialize
𝑞𝑢,𝑐 for 𝑢 = 106 with exact data, and then we iterate the process above to obtain the probabilities
𝑞2ℎ𝑢, 𝑐 . These probabilities are then combined in the same way to approximate the probabilities
associated with every multiple of 𝑢; at that point we can find the desired batch size by a binary
search governed by the condition that the probability associated with the overflow bound 𝑏 is
below a suitable threshold (e.g., 10−100/3𝑘 ).14

In the end, we computed the ideal batch size as described above for 1 ≤ 𝑘 ≤ 19 and included the
result into our code (for example, when𝑤 = 64 one obtains 15 × 103 for 𝑘 = 1, 23 × 106 for 𝑘 = 8,
and 109 for 𝑘 = 16). Combining all ideas described in this section, our test for Hamming-weight
dependencies with parameters 𝑤 = 64 and 𝑘 = 8 can analyze a terabyte of output of a 64-bit
generator in little more than 3 minutes on an Intel® Core™ i7-8700B CPU @3.20GHz. The 𝑘 = 16
test is an order of magnitude slower due to the larger memory accessed.

4.3 Implementing the transform 𝑇𝑘

In figure 1 we show an in-place, recursive C implementation of the transform𝑇𝑘 defined in Section 3.
The code is similar to analogous code for the Walsh–Hadamard transform or similar transforms
based on Kronecker powers.
The code assumes that the 3𝑘 -dimensional vector 𝒗 is represented in the array v. The value

associated with each signature is stored in a position equal to the signature (considered, as usual,
as a base-3 numeral). In particular, the first 3𝑘−1 values correspond to signatures of the form 0𝑠 , the
following 3𝑘−1 values to signatures of the form 1𝑠 , and the last 3𝑘−1 values to signatures of the form
2𝑠 . The function transform() must be invoked on v with the additional parameter sig set to 3𝑘−1.

We first note that if 𝑘 = 1 the function will just execute once the body of the for loop, resulting
in the in-place multiplication of the 3-dimensional vector 𝒗 by the base matrix𝑀 , as expected.
In the general case, the code scans the three subarrays v, p1, and p2, of length 3𝑘−1, which as

discussed above correspond to signatures starting with 0, 1, and 2, respectively. With the notation
of (2), these subarrays correspond to the subvectors 𝒗0, 𝒗1, and 𝒗2, respectively, and it is immediate
that the three subvectors appearing in the final result of (2) are computed in place by the for loop.
After that computation, the recursion applies by induction the transform with one dimension less
to each of the three subarrays in place. We conclude that transform() implements correctly in
place the transform 𝑇𝑘 .

14It is worth noting that, based on the computations above, the normal approximation [6] is not very accurate even after a
billion steps.



11

void transform(double v[], int sig) {
double * const p1 = v + sig, * const p2 = p1 + sig;

for (int i = 0; i < sig; i++) {
const double a = v[i], b = p1[i], c = p2[i];
v[i] = (a + b + c) / sqrt(3.0);
p1[i] = (a - c) / sqrt(2.0);
p2[i] = (2*b - a - c) / sqrt(6.0);

}

if (sig /= 3) {
transform(v, sig);
transform(p1, sig);
transform(p2, sig);

}
}

Fig. 1. The code for the (in-place) transform described in Section 3. It should be invoked with sig equal to
3𝑘−1.

5 CONCLUSIONS
We have described a new test for Hamming-weight dependencies based on a unitary transform.
Properly implemented, the test is very powerful: for example, it finds in a matter of hours bias in
the dSFMT with 521 bits of state and in xoroshiro1024+; it can even find bias in WELL512, even
though its transition matrix is much denser, and in the Tiny Mersenne Twister. For these generators
no bias was previously known beyond linearity tests. In particular, the Hamming-weight tests in
TestU01 [12], a state-of-the-art testing framework, are unable to find any bias in several generators
of Table 3, whereas all those generators fail our test.
Our test is very effective on F2-linear generators with relatively sparse transitions matrices, in

particular when𝑤𝑘 is not smaller than the number of bits of state of the generator. In practice, the
best results are obtained on generators with less than a few thousand bits of state.
Similar to linearity tests, a failure in our test is an indication of lesser randomness, but in

general the impact will depend on the application. We do not expect dependencies like those
in xorshift128+ or the SFMT to be pernicious, but they highlight a weakness of the associated
F2-linear transformation.
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