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Abstract

PageRank is a ranking method that assigns scores to web pages using the limit distribution of
a random walk on the web graph. A fibration of graphs is a morphism that is a local isomorphism
of in-neighbourhoods, much in the same way a covering projection is a local isomorphism of
neighbourhoods. We show that a deep connection relates fibrations and Markov chains with restart,
a particular kind of Markov chains that include the PageRank one as a special case. This fact
provides constraints on the values that PageRank can assume. Using our results, we show that
a recently defined class of graphs that admit a polynomial-time isomorphism algorithm based
on the computation of PageRank is really a subclass of fibration-prime graphs, which possess
simple, entirely discrete polynomial-time isomorphism algorithms based on classical techniques
for graph isomorphism. We discuss efficiency issues in the implementation of such algorithms
for the particular case of web graphs, in which O.n/ space occupancy (where n is the number of
nodes) may be acceptable, but O.m/ is not (where m is the number of arcs).

1 Introduction
PageRank [27] is one of the most well-known measures of importance of a web page: inspired by
previous works on the mutual citations for determining the relevance of scientific papers, it is based on
the intuition that a web page is more important if it is linked to by many important pages. PageRank
is one of the factors used by search engines to determine the order of answers to a query, a problem
of uttermost importance that is often referred to as web ranking, whence the name “PageRank”.

One suggestive metaphor to describe the idea behind PageRank is the following: consider an
iterative process where every web page has a certain amount of money that will at the end be pro-
portional to its importance. Initially, all pages are given the same amount of money. Then, at each
step, every page gives away all of its money to the pages it points to, distributing it equally among
them: this corresponds to the interpretation of links as a way to confer importance. This idea has a
limit, however, because there might exist groups of pages that “suck away” money from the system
without ever returning it back. Since we want to disallow the creation of such oligopolies, we force
every page to give a fixed fraction 1 � ˛ of its money to the State; the money collected this way is
then redistributed among all the pages either equally or according to some criterion, represented as a
vector v whose i -th component is the fraction of money that will be given back to page i .

Such a system can be represented as a Markov chain and, as we will show, it reaches a stationary
state for every ˛ < 1 and for every preference vector v. The distribution of such stationary state is
the PageRank vector.

This formulation of PageRank can be generalised in many ways, for example allowing parallel
links (a choice that will result extremely useful from a technical viewpoint) and considering weighted
versions, so that every page can choose how the money given to its successors should be distributed

�This work is partially supported by MIUR PRIN Project “Automi e linguaggi formali: aspetti matematici e applicativi”
and by EC Project DELIS.
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among them. These generalisations naturally lead to recast PageRank as a special case of a perturbed
Markov chain [19, 29] that we call Markov chain with restart.

The second player in this paper is a particular kind of graph morphism, called graph fibration [2].
The elementary definition we shall give has appeared in many places in the scientific literature, most
notably in symbolic dynamics (left/right covers [22], regular homomorphisms [25]) and spectral
graph theory (divisors [28] and semicovers [14]). However, a graph morphism has an immediate
interpretation as a functor between free categories, and in that case Grothendieck’s oldest notion of
fibration [10] reduces exactly to the elementary definition we shall use.

The main result of the paper shows that the existence of a fibration f W G ! B preserving
the colour on the arcs (i.e., the transition probabilities) implies certain constraints on the value of
PageRank (actually: of the limit distribution of any Markov chain with restart); more precisely, the
limit distribution associated to G must be fibrewise constant. This result provides a surprising link
between a purely combinatorial, discrete construction and the values of a limit process.

In the last part of the paper we study the implications of our results, showing that the class of
Markovian spectrally distinguishable graphs, introduced by Gori, Sarti and Maggini [8] as a class of
graphs possessing polynomial-time isomorphism algorithms, is actually a subclass of fibration-prime
graphs. The latter has very quick isomorphism algorithms, easily derived from partitioning algo-
rithms developed in the eighties [4], and in fact used by Brendan McKay’s program nauty [23] for
computing canonical labellings, automorphism groups and isomorphisms between graphs. Finally,
we discuss the particular case of web graphs, in whichO.n/ space occupancy may be acceptable, but
O.m/ is not (here, n and m are the number of nodes and arcs, respectively).

We discuss results that are at the intersection of several areas: graph theory, Markov chains,
graph-isomorphism algorithms, and ranking of web pages. Thus, we spend a significant part of the
paper to introduce the definitions that are necessary to state our main results. In passing, we make a
number of observations, mainly obtained from mathematical literature, that are apparently not widely
known in the computer science community, and that provide more immediate proofs of some known
results.

2 Graph-theoretical preliminaries
A (directed multi)graph G is defined by a set NG of nodes, a set AG of arcs, and by two functions
sG ; tG W AG ! NG that specify the source and the target of each arc (we shall drop the subscripts
whenever no confusion is possible). Given a set of colours C , we say that a graphG is C -coloured if
it is endowed with a colouring function cG W AG ! C . We use the notation G.i; j / for denoting the
set of arcs from node i to node j , that is, the set of arcs a 2 AG such that s.a/ D i and t.a/ D j ; the
arcs in G.i; j / are said to be parallel to one another. A graph is separated iff it has no parallel arcs1.
A graph is symmetric iff it is endowed with an involution . N / W AG ! AG such that s.a/ D t. Na/ (and
consequently t.a/ D s. Na/) for all arcs a 2 AG . A loop is an arc with the same source and target.
Following common usage, we denote withG.�; i / the set of arcs coming into i , that is, the set of arcs
a 2 AG such that t.a/ D i , and analogously with G.i;�/ the set of arcs going out of i . We write
dC

G .i/ D jG.i;�/j for the outdegree of i in G and d�
G .i/ D jG.�; i /j for the indegree of i in G. The

maximum outdegree (indegree) is denoted by �C
G (��

G).
A path (of length n � 0) is a sequence � D hi0a1i1 � � � in�1anini, where ik 2 NG , ak 2 AG ,

s.ak/ D ik�1 and t.ak/ D ik . We define s.�/ D i0, t.�/ D in, j�j D n and let G�.i; j / D
f� j s.�/ D i; t.�/ D j g (the set of paths from i to j ). We shall usually omit the nodes from
the sequence when at least one arc is present. We say that i leads to j and write i � j when there

1The name originates from the fact that such graphs are separated for the double negation topology in the topos of graphs—
see [32].
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is � 2 G�.i; j / such that j�j > 0. We say that i and j communicate and write i � j whenever
i � j and j � i . It is easy to observe that the reflexive closure of� is an equivalence relation
among nodes, whose classes are called the strongly connected components of the graph. Moreover,
the relation� naturally induces a partial order among such components.

An in-tree is a graph with a selected node r , the root, and such that every other node has exactly
one directed path to the root; if t is a node of an in-tree, we sometimes use t ! r for denoting the
unique path from t to the root. If T is an in-tree, we write h.T / for its height (the length of the longest
path). Finally, we write T � k for the tree T truncated at height k, obtained by deleting all nodes at
distance greater than k from the root.

A graph morphism f W G ! H is given by a pair of functions fN W NG ! NH and fA W AG !
AH commuting with the source and target maps, that is, sH B fA D fN B sG and tH B fA D fN B tG
(again, we shall drop the subscripts whenever no confusion is possible). In other words, a morphism
maps nodes to nodes and arcs to arcs in such a way to preserve the incidence relation. In the case of
C -coloured graphs, f is a colour-preserving morphism if cG D cH B f . A morphism is epimorphic
(or an epimorphism) iff fN and fA are both surjective. Unless otherwise stated, morphisms between
trees are required to preserve the root.

2.1 Fibrations
The central concept we are going to deal with is that of graph fibration [2], a particular kind of graph
morphism induced by the notion of fibration between categories.

Definition 1 A fibration between the graphs G and B is a morphism f W G ! B such that for each
arc a 2 AB and for each node i 2 NG satisfying f .i/ D t.a/ there is a unique arc eai 2 AG (called
the lifting of a at i ) such that f .eai / D a and t.eai / D i .

We inherit some topological terminology. If f W G ! B is a fibration, G is called the total graph
and B the base of f . We shall also say thatG is fibred (over B). The fibre over a node h 2 NB is the
set of nodes of G that are mapped to h, and shall be denoted by f �1.h/.

There is a very intuitive characterisation of fibrations based on the concept of local in-isomor-
phism: a fibration is a graph morphism f satisfying the

Local In-Isomorphism Property: If f .i/ D f .j / there exists a (colour-preserving, if G is
coloured) bijection  W G.�; i / ! G.�; j / such that f .s.a// D f .s. .a///, for all a 2
G.�; i /.

Another possible, more geometric way of interpreting the definition of fibration is that given a node
h of B and a path � terminating at h, for each node i of G in the fibre of h there is a unique path
terminating at i that is mapped to � by the fibration; this path is called the lifting of � at i , and it is
denoted by e� i .

In Figure 1, we show two graph morphisms; the morphisms are implicitly described by the colours
on the nodes. The morphism displayed on the left is not a fibration, as the loop on the base has no
counterimage ending at the lower grey node, and moreover the other arc has two counterimages with
the same target. The morphism displayed on the right, on the contrary, is a fibration. Observe that
loops are not necessarily lifted to loops.

Given a graph G and a node i 2 NG , define the in-tree eGi as follows:

� the nodes of eGi are the finite paths of G ending in i ;

� there is an arc from the node � to the node � 0 iff � starts with arc a and continues with path
� 0 for some arc a (if G is coloured, then the arc gets the same colour as a).
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Figure 1: On the left, an example of graph morphism that is not a fibration; on the right, a fibration.
Colours on the nodes are used to implicitly specify the morphisms.

We then define the graph morphism � i
G W eGi ! G by mapping each node � of eGi (i.e., each path of

G ending in i ) to its starting node, and each arc of eGi to the corresponding arc of G. It is immediate
to check that � i

G is a fibration. We call � i
G the universal fibration of G at i , and eGi the universal

total graph of G at i . Such names are motivated by the following properties. If T is an in-tree and
f W T ! G is a fibration that maps the root to node i , than T and eGi are isomorphic. Moreover, every
other fibration with base G factors the universal fibration, that is, for every fibration f W H ! G and
for every node j 2 f �1.i/ there is a unique isomorphism � W eGi ! eH j such that � i

G D f B �j
H B �:

eGi �

�i
G

eH j

�
j
H

H

f

G

Now, by the universal property of universal fibrations it is immediate to see that nodes in the
same fibres have the same universal total graph (we shall not distinguish isomorphic total graphs).
The process can be actually reversed, as to any graph we can associate its minimum base bG, a graph
over whichG is fibred, and that is fibration prime in the sense that it cannot be fibred nontrivially and
epimorphically (i.e., every epimorphic fibration G ! B is an isomorphism).2 As a matter of fact,
the nodes of bG are actually the nodes of G quotiented with respect to the relation of having the same
universal total graph. Hence, all fibrations from G to bG (called minimal fibrations) have the same
node component. Figure 2 shows a graph, its minimum base and the universal total graph of a node.

The construction of bG can be made effective by observing that isomorphism of universal total
graphs between nodes of the same graph is easily computable, by a result of Nancy Norris [26] that
we restate in our terminology:

Theorem 1 If G has n nodes, for all nodes i; j , eGi Š eGj iff eGi � .n � 1/ Š eGj � .n � 1/, that is,
iff there is an isomorphism between the first n � 1 levels of the two trees.

2In fact, the partition induced by the fibres of the minimum base is the coarsest equitable partition, introduced in the late
sixties by the community working on graph spectra. Independently, a tradition was developing in computer science about
graph partitioning, a technique to label graph nodes in a way that is automorphism invariant [31, 5]. Finally, in symbolic
dynamics the minimum base of a deterministically coloured graph is the Fischer cover of the graph seen as a sofic system [22];
equivalently, if the graph is seen as a deterministic automaton all whose states are initial and final, the minimum base is the
minimum automaton.
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Figure 2: A graph (upper left), its minimum base (lower left) and the universal total graph of the
black node (right). Colours on the nodes are used to specify implicitly the minimal fibration and the
universal fibration.

Fibration-prime graphs are node-rigid — all their automorphisms are the identity on the nodes;
moreover the following property holds:

Proposition 1 A graph is fibration prime iff distinct nodes have non-isomorphic universal total
graphs. Moreover, if two fibration-prime graphs have the same set of universal total graphs, then
the graphs are isomorphic, and the node component of all such isomorphisms is unique.

We also recall that every action of a group on a graph induces a fibration, since the orbits satisfy
the local in-isomorphism property; in particular, a graph with an automorphism that is nontrivial on
the nodes cannot be fibration prime.

3 Preliminaries about non-negative matrices and Markov chains
Let S be a finite set of states. A sequence of S -valued random variables .Xk/k2N is said to be a
(homogeneous finite) Markov chain [16] iff for all k > 0 and i0; i1; : : : ; ik 2 S

PrfXk D i0 j Xk�1 D i1; Xk�2 D i2; : : : ; X0 D ikg D PrfXk D i0 j Xk�1 D i1g;
and the right-hand side does not depend on k (whenever the left-hand side is defined). The vector3 p

defined by pi D PrfX0 D ig is the initial distribution, and the matrix P defined by Pij D PrfXk D
j j Xk�1 D ig is the transition matrix of the Markov chain. For any k � 0, let p.k/ be the vector of
the (marginal) probability distribution of Xk , i.e.,�

p.k/

�
i

D PrfXk D ig
and in particular p.0/ D p. As it is easy to verify that pT

.k/
D pTP k , the entire behaviour of the

chain is established by its initial distribution and transition matrix.
Note that kpk D 1, and that P is stochastic, that is, all its rows are distributions or, equivalently,

P 1 D 1, where 1 is the vector whose components are all 1’s. Such a matrix P naturally defines
3In this paper, all vectors are column vectors, the vector norm k � k is L1 and a non-negative vector with norm 1 is a

distribution over the set of its indices.

5



a separated graph with node set S , and with arcs coloured on .0 : : 1� corresponding to non-null
transitions.

More generally, any non-negative square matrix M naturally defines a separated RC-coloured4

graph G where NG is the set of indices of M whereas AG D f hi; j i j Mij > 0 g, s.hi; j i/ D i ,
t.hi; j i/ D j and cG.hi; j i/ D Mij . Conversely, given an RC-coloured graph G, one can consider
the matrix M having NG as set of indices, and Mij D P

a2G.i;j / cG.a/. This correspondence
restricts to a bijection between the set of separated RC-coloured graphs and the set of non-negative
square matrices. In the following, when no confusion is possible we will denote both a matrix and
the corresponding graph with the same letter and we will say that a graph RC-coloured is stochastic
iff the associated matrix is.5

Essentially, a stochastic graph is a convenient way to represent the transition matrix of a Markov
chain, with the additional freedom of being able to specify multiple arcs between states. Note that
traditionally graphs have been used to define random walks [20]—a typical example of a Markov
chain: in that case, the states of the chain are the nodes of an undirected graph, and the transitions
from a node to its neighbours are equiprobable. In our setting, this is equivalent to representing the
undirected graph as a a symmetric graph and setting the colour of an arc a to 1=dC.s.a//. More
generally, every (not necessarily symmetric) graph G without sinks6 can be coloured as above. We
call the colouring so obtained the natural random-walk colouring and the associated Markov chain
the natural random walk on G.

As we have already observed, the behaviour of a Markov chain mainly depends on the properties
of its transition matrix. For this reason, in the next section we will recall some basic facts about
non-negative matrices.

3.1 Non-negative matrices
Given a non-negative matrix M , we say that M is primitive if there exists a positive integer k such
that all entries of M k are positive and thatM is irreducible if, for any i and j , there exists a positive
integer k such that .M k/ij > 0. It is easy to verify that M is irreducible iff its graph is strongly
connected (i.e., iff it has one single strongly connected component). The period of an index i is
defined as gcd

˚
k > 0 j .M k/i i > 0

�
; an index is said to be aperiodic if its period is 1. It is well

known that indices in the same strongly connected component have the same period, so that, in
particular, it is possible to define the period of an irreducible matrix. Moreover, if Mi i > 0 (i.e.,
if there is a loop at i ) then the strongly connected component including i is aperiodic. A matrix is
primitive iff it is irreducible and aperiodic.

An important result on irreducible matrices (see, e.g., [30]) is the Perron–Frobenius Theorem,
stating that every non-negative irreducible matrix M has a positive eigenvalue, equal to its spectral
radius �.M/, associated with a positive eigenvector. If M is reducible a weaker statement holds:
�.M/ is a (possibly null) eigenvalue of M and there exists a non-negative eigenvector associated
with it.

Indices can be classified as follows. An index i is said to be inessential if there exists a j such
that i � j , but j 6� i , or if i leads to no index at all (this happens if the i -th row of M is null),
otherwise it is said to be essential. It is easy to check that indices in the same strongly connected
component are all of the same kind, and that the essential components are the maximal elements of
the partial order induced by �. In particular, the indices of an irreducible matrix are all essential.
Note also that if every row of M has at least a positive entry, then there exists at least one essential
index (hence, one essential component). In particular, this implies that any stochastic matrix has at

4We use RC to denote the set of positive real numbers.
5We observe that sometimes “stochastic graph” is used to mean a graph generated by some stochastic process; here, on the

other hand, the graph, and its colouring, are fixed.
6A node i of a graph G is a sink if G.i; �/ D ∅.
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least one essential index.
Finally, a non-negative matrix is said to be unichain if all its essential indices form one single

strongly connected component; observe that a unichain matrix with no inessential indices is irre-
ducible.

3.2 Invariant and limit distribution
Going back to Markov chains, a chain is said to be irreducible, primitive, cyclic or unichain according
to whether the transition matrix P is of this kind. Analogously, the states in S can be classified
into periodic, essential or inessential according to the properties of the indices of the corresponding
matrix.

A distribution p is invariant for P if pTP D pT (that is, if p is a left eigenvector of P ). Also,
given a distribution p, when limk!1 pTP k is defined, it is called the limit distribution of p under
P . Observe that if limk!1 P k is defined, then limk!1 pTP k D pT .limk!1 P k/, but the left-
hand side of previous identity can be defined even if the right hand side is not. A way to understand
the limit behaviour of the chain is to consider the Cesàro limit

P � D lim
n!1

1

n

n�1X
kD0

P k ;

that, as it is well known [16], is always defined and is equal to limk!1 P k whenever the latter is
defined (in such a case, the latter is denoted by P1). In particular, it holds that

P �P D PP � D .P �/2 D P �

a fact that allows to draw very general conclusions about the invariant and limit distribution of the
chain, as summarised by the following

Proposition 2 Let P be a stochastic matrix. A distribution p is invariant for P iff pT D qTP � for
some q. Moreover p is the limit distribution of a given q under P iff pT D qTP �. Finally, the limit
limk!1 qTP k is defined for every distribution q iff limk!1 P k is defined.

Notice that a simple consequence of the previous proposition is that there is always at least one
invariant distribution.

Due to the previous considerations, the long-term behaviour of a Markov chain is completely
specified by the Cesàro limit of its transition matrix. The limit depends on the properties of P .
Indeed, P is unichain iff the Cesàro limit satisfies P � D 1pT , where the positive entries of p

correspond to the normalised left Perron eigenvector of the irreducible submatrix of P corresponding
to essential indices [24]. By Proposition 2, this is equivalent to the following two conditions: there
is a unique invariant distribution; there is a unique limit distribution (albeit it might happen that for
some distribution q the limit limk!1 qTP k is not defined). If we consider also the periodicity of
indices, this leads to

Proposition 3 If P is a unichain stochastic matrix such that its essential indices are aperiodic, then
limk!1 P k D 1pT , where p is the unique invariant distribution of P , and limk!1 qTP k D p for
every distribution q.

We conclude by noting in passing that the literature on stochastic processes uses a slightly differ-
ent terminology. Since

PrfXk D i for infinitely many k j X0 D ig
is equal to 1 or 0 according to whether i is essential or inessential, respectively, it is usual to call
essential states recurrent and inessential ones transient. Moreover, if the initial distribution of a
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Markov process is invariant, then the process is stationary. On the other hand, if the transition matrix
is irreducible and the Markov chain is stationary, then the initial distribution is the only invariant
distribution. For this reason, the invariant distribution of an irreducible Markov chain is also named
stationary.

4 Markov chains with restart
We are finally going to introduce formally the raison d’être of this paper: PageRank. First note that
the link structure of the web can be represented by the web graph, whose nodes are web pages and
arcs correspond to links. One could try to assign a greater rank to pages that have a higher component
in the limit distribution of the natural random walk on the web graph. However, such an approach
presents some problems: what initial distribution should be chosen? Will the limit distribution be
unique? How fast will the process converge to the limit? A way [27] to overcome all these problems
is to perturb the random walk so to make it unichain and to be able to tune its convergence speed.

Here we extend this idea from the random walk related to PageRank to any Markov chain; in this
way we can highlight several connections of PageRank and derived ranking schemes with previous
research on perturbed Markov chains, providing easy and structured proofs of several useful results.

Perturbation theory of linear operators is a classic field [19] and several results are known for the
case of Markov chains [29]. A case of particular interest regards analytic perturbations, i.e., the study
of P."/ D P C "P1 C "2P2 C "3P3 C : : : , where P and P."/ are stochastic matrices, for a small
enough " > 0 and for some matrices P1; P2; P3; : : : ; when 0 D P2 D P3 D : : : , the perturbation is
said to be linear.

Given a stochastic matrix P , a distribution v, and a real ˛ 2 Œ0 : : 1/, we define the matrix

R.P; v; ˛/ D ˛P C .1 � ˛/1vT :

It is easy to see that R.P; v; ˛/ constitutes a linear perturbation of P for P1 D 1vT � P and
" D 1 � ˛. A Markov chain with transition matrix R.P; v; ˛/ has the following interpretation as
a stochastic process: at every time step the next state is chosen with probability ˛ according to the
transition probabilities given by P or, with probability 1 � ˛, the chain is “restarted” at state i with
probability vi . For this reason we call such a process a Markov chain with restart. As anticipated, the
introduction of the perturbation is justified by the following

Theorem 2 For every stochastic matrix P and distribution v, if ˛ 2 Œ0 : : 1/, then

� for every j such that vj > 0, j is essential and aperiodic for R.P; v; ˛/;

� R.P; v; ˛/ is unichain and all its essential indices are aperiodic.

Proof. Let R D R.P; v; ˛/. If j is such that vj > 0, then due to the contribution of .1� ˛/1vT it is
immediate to conclude that Rij > 0 for every index i , hence j is essential; moreover there is a loop
in j , so it is also aperiodic. Let now i be an essential index of R and consider a j such that vj > 0

(such index must exist, since v is a distribution); again, due to the contribution of .1 � ˛/1vT , there
is an arc from i to j , but j � i in R, otherwise i would be inessential; hence i and j are in the same
strongly connected component.

Theorem 2 together with Proposition 3 imply that, for every stochastic matrix P , any Markov
chain with restart having transition matrix R.P; v; ˛/ has a unique limit (and invariant) distribution
r.P; v; ˛/.

In this setting, PageRank as defined in [27] is the limit distribution r.W; 1=jNW j; 0:85/, where
W is the web graph endowed with the natural random-walk colouring7. More generally, PageRank

7Provided that W has no sinks; otherwise, sinks must be patched by adding links to all other nodes.
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has been studied as the limit distribution r.W; v; ˛/ when v is an arbitrary preference vector [12] or
considering the damping factor ˛ as a real parameter [1].

We now recast some known results, originally obtained studying PageRank, in our more general
framework. First of all, observe that Theorem 2 can be obtained (albeit in a more algebraic and less
intuitive way) noting that the perturbation induces a strong separation in the spectrum of the matrix:
if 1 � �2 � � � � � �k is the spectrum of P , then the spectrum of R.P; v; ˛/ is known [13, 6] to be

1 > ˛�2 � � � � � ˛�k :

Moreover, the fact that the second largest eigenvalue of R.P; v; ˛/ is less then or equal to ˛ < 1

implies ���qT R.P; v; ˛k/ � r.P; v; ˛/
��� D O.˛k/

independently of q. This is a very relevant fact from the application point of view, as the limit
distribution can be efficiently obtained by successive (left) multiplication of q.k/ by R.P; v; ˛/ (the
well-known Power Method [24]).

Viewing r.P; v; ˛/ as the invariant distribution, one can also obtain the closed form [13]

r.P; v; ˛/ D .1 � ˛/vT .I � ˛P /�1; (1)

where .I � ˛P /�1 is defined since I � ˛P is non-singular for every ˛ < 1.
The behaviour of such invariant distribution and its relationship with ˛ has been deeply investi-

gated in [1], where the following Maclaurin expansion was obtained

r.P; v; ˛/ D vT C
1X

kD1

˛kvT .P k � P k�1/

together with a closed form for the derivatives of any order with respect to ˛. Incidentally, we observe
that such results could also be directly obtained from [29] where a Maclaurin expansion is given for
the more general perturbation ˛P C .1 � ˛/P1, where P1 is stochastic and unichain.

The behaviour of r.P; v; ˛/ at the boundary values of ˛ is given by

r.P; v; 0/ D vT and lim
˛!1�

r.P; v; ˛/ D vTP � (2)

where the first identity is trivial and the second one (which, by the way, confirms a conjecture stated
in [1]) can be obtained as follows. The resolvent of a stochastic matrix P is the linear operator
R.�;P / D .�I � P/�1, defined for every � which is not an eigenvalue of P ; it can be expanded
into a Laurent series around every eigenvalue of P [33, Chapter VIII, Section 8]. In particular, the
expansion around 1 is

R.�;P / D P �

�� 1
C

1X
kD0

.� � 1/kQkC1

for a suitable matrixQ. This implies that

lim
�!1C

.� � 1/R.�;P / D P �;

whence, by applying (1), we get the limit (2).
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5 Markov chains with restart and fibrations
It is now time to present our main result. We are going to relate fibrations and Markov chains with
restart, by showing that the limit distribution (and thus PageRank values) along a fibre must be con-
stant. This provides, by means of a purely combinatorial construction, an exact constraint on a limit
process.

Given an RC-coloured graphG and a non-negative vector v overNG , we define the formal power
series vector z.G; v; ˛/ as

z.G; v; ˛/ D .1 � ˛/vT

1X
kD0

˛kGk:

If the spectral radius of G is not greater than 1 and ˛ 2 Œ0 : : 1/, then the series converges to .1 �
˛/vT .I � ˛G/�1. Recalling (1), this implies the following

Theorem 3 For every stochastic graphG, distribution v and ˛ 2 Œ0 : : 1/, the vector z.G; v; ˛/ is the
unique invariant distribution of the matrix R.G; v; ˛/, that is, z.G; v; ˛/ D r.G; v; ˛/.

The series z.G; v; ˛/ can be expressed in terms of the paths in G. First notice that the colour
function c of the graph can be extended by multiplication to all paths by setting

c.hi0a1i1 � � � ik�1ak iki/ D
Y
j

c.aj /:

The definition is motivated by the fact that, if G is separated and stochastic, then

c.hi0a1i1 � � � ik�1ak iki/ D PrfXk D ik; Xk�1 D ik�1; : : : ; X1 D i1 j X0 D i0g
where .Xk/k2N is any Markov chain with transition matrix G. Note that, in particular, for a 0-length
path � , we have c.�/ D 1. Then, for every i; j 2 NG and k 2 N we have�

Gk
�

ij
D

X
�2G�.i;j /;j�jDk

c.�/;

and hence
zj .G; v; ˛/ D .1 � ˛/

X
�2G�.�;j /

˛j�jvs.�/ c.�/ (3)

for every node j 2 NG .
The values of the formal series z.�;�;�/ are preserved by fibrations, provided that the vectors

involved are suitably transformed. Given a fibration f W G ! B and a non-negative vector u over
NB , we define the lifting of u along f as the vector uf overNG such that

�
uf

�
i

D uf .i/.

Theorem 4 For every colour-preserving fibration f W G ! B and non-negative vector u over NB ,

z.G;uf ; ˛/ D z.B;u; ˛/f

Proof. We must prove that zi .G;u
f ; ˛/ D zf .i/.B;u; ˛/ for every node node i of G. Let us ex-

tend f to paths and consider its restriction to G�.�; i /, which maps paths in G�.�; i / to paths in
B�.�; f .i//. The restriction is a bijection because f is a fibration, and thus paths lift uniquely.
Hence,X

�2G�.�;i/

˛j�j�uf
�

s.�/
c.�/ D

X
�2G�.�;i/

˛jf .�/juf .s.�// c.f .�// D
X

�2B�.�;f .i//

˛j�jus.�/ c.	/;

and the result follows from (3).

In particular, this implies that z.G;uf ; ˛/ is fibrewise constant. We conclude that the same must be
true of the limit distribution:
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Theorem 5 Let G be stochastic, f W G ! B be a colour-preserving fibration and u a non-negative
vector over NB such that uf is a distribution over NG . Then the limit distribution r.G;uf ; ˛/ is
fibrewise constant for every ˛ 2 Œ0 : : 1/.

5.1 Applications to PageRank
The most immediate application of these results to PageRank is an easy consequence of Theorem 5:
if a graph G contains two nodes that are in the same fibre of some colour-preserving fibration, then
they have the same PageRank for all ˛, provided that the preference vector is fibrewise constant and
G is endowed with its the natural random-walk colouring.

A more general result can indeed be obtained. Suppose you have two graphsG1 and G2 with n1

and n2 nodes respectively, colour them with their natural random-walk colouring, and suppose they
are epimorphically fibred over the same graphB with two fibrations f1 W G1 ! B and f2 W G2 ! B

that respect the colouring. For instance, if f1 and f2 are outdegree-preserving fibrations and B is
not coloured, you can colour B so that f1 and f2 respect the colouring: this is possible, because if
f1.a1/ D f2.a2/ (for some a1 2 AG1

and a2 2 AG2
) then the outdegree of s.a1/ is the same as the

outdegree of s.a2/, so a1 and a2 must have the same colour.
Assume now that i1 2 NG1

and i2 2 NG2
are two nodes that are identified by the two fibrations

(i.e., f1.i1/ D f2.i2/), and consider the vectors u1 D 1=n1 and u2 D 1=n2 over NB . By Theorem 3
and Theorem 4,

ri1
�
G1;u

f1

1 ; ˛
� D zi1

�
G1;u

f1

1 ; ˛
� D zf .i1/.B;u1; ˛/ D

D n1

n2

zf .i2/.B;u2; ˛/ D n1

n2

zi2

�
G2;u

f2

2 ; ˛
� D n1

n2

ri2
�
G2;u

f2

2 ; ˛
�
:

In particular, the PageRank values of i1 and i2, computed with uniform preference vector, coincide
up to the multiplicative constant n1=n2.

6 Fibrations and stochastic graphs
The results of the previous section make it clear that it is interesting to build fibrations having a
stochastic graph as total graph; however, if f W G ! B is a colour-preserving fibration, and G is
stochastic,B needs not be stochastic itself. Since we are interested in stochastic graphs that are fibred
over a common base, we approach the problem of characterising RC-coloured graphs B over which
stochastic graphs can be fibred. To this aim, initially we shall require the fibration to preserve colours
only up to a multiplicative constant.

Formally, given an RC-coloured graphB , we want to establish necessary and sufficient conditions
under which there exists a stochastic graphG and an epimorphic fibration f W G ! B that preserves
colours up to a multiplicative constant � > 0, that is, c.f .a// D � � c.a/ for all a 2 AG . The
constraints we provide will turn out to be a special consequence of a more general property on the
eigenvectors of the matrices G and B , that will be discussed in Section 6.1.

The first step towards this goal is a combinatorial description of all possible fibrations over B .
There is a standard representation for fibrations [14, 2] that extends the results about the classical
representation of coverings by voltage assignments [9]: an epimorphic fibration over B whose fibre
over h has cardinality nh is described by:

1. a nonempty set Fh of cardinality nh for each node h of B;

2. a function 'a W Fk ! Fh for each arc a 2 B.h; k/.
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h k

j2

j1

j0

i3

i2

i1

i0

a

i0 D ’ a .j0 /

i2 D ’ a .j1 /

i3 D ’ a .j2 /

Figure 3: An example of the construction of G (upper part) from B (lower part); fibers Fh and Fk

are enclosed in dotted ellipses (nh D 4 and nk D 3).

Essentially, for each node of B we fix a fibre Fh. Then, we know that we must add to G exactly jFkj
copies of each arc of B ending in k, and each copy must end in a distinct element of Fk (as we need
to lift uniquely that arc to each element of Fk). Our only freedom now is to decide which node will
be the source of each copy, and the source is provided exactly by the function 'a, which defines the
source of the copy associated with each element of Fk . We assume for simplicity that the Fh’s are
pairwise disjoint.

Geometrically, we are stacking jFhj nodes of the graph G over h, as illustrated in the example of
Figure 3. Then, for each arc a of B going from h to k and every node j 2 Fk , we add an arc eaj inG,
setting its target to j , and we freely choose its source 'a.j / in Fh.8 Clearly, if we want to preserve
colours up to multiplication by �, a copy of arc a will have to be coloured by c.a/=�.

These data define a total graphG that has nodes
S

h Fh, and arcs
S

k B.�; k/�Fk . An arc ha; j i
goes from 'a.j / to j . Finally, we define the fibration f W G ! B that maps every node i 2 Fh to h,
and every arc ha; j i to a.

If we additionally impose thatG is stochastic, we must require that for all nodes of G, the sum of
the colours of the outgoing arcs is exactly 1, that is, for all nodes h of B and all i 2 Fh we requireX

k2NB

X
a2B.h;k/

X
j 2Fk

c.a/ Œ'a.j / D i �=� D 1; (4)

where we used Iverson’s notation (a predicate between brackets has value 1 if true, 0 if false).
The condition we have given is not easily manageable. However, we can derive a much more

interesting necessary condition. Let us sum over i 2 Fh:X
i2Fh

X
k2NB

X
a2B.h;k/

X
j 2Fk

c.a/ Œ'a.j / D i � D �nh:

Rearranging the summation order, we get toX
k2NB

X
a2B.h;k/

c.a/
X
i2Fh

X
j 2Fk

Œ'a.j / D i � D �nh:

8The data defining a fibration actually induce a presheaf on B� , and this correspondence extends to an equivalence between
the category of fibrations over B and the category of presheaves on B�; see [2].
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Figure 4: A graph over which no stochastic graph can be fibred.

Now, the double internal summation is trivially nk , and once we move it outside, the summation over
a just gives Bhk . Thus, we arrive at X

k2NB

Bhknk D �nh; (5)

which is an eigenvalue problem of the form Bn D �n, where n is a vector of fibre cardinalities. In
other words, we have proved the following

Theorem 6 Given an RC-coloured graph B , if there exist a stochastic graph G and an epimorphic
fibration f W G ! B that preserves colours up to a multiplicative constant � > 0, then B has a
positive integer eigenvector associated with � whose h-th component is the cardinality of the fibre
over h (i.e., jf �1.h/j).
Observe that the necessary condition of the previous theorem is satisfied, for instance, when B is
irreducible and has rational entries. On the other hand, the condition is not sufficient: the existence
of a positive integer eigenvector of B does not guarantee the existence of a fibration from a stochastic
graph, as equations (4) on sets may not be satisfiable. Consider for example the graph B in Figure 4.
The vector n D h3; 1iT is a solution of equation (5) for � D 1. However, there is no way to define
the functions 'a so to satisfy (4).

Finally, we note that B cannot have two positive eigenvectors associated with distinct �’s, since
the following proposition holds.

Proposition 4 Let A be a non-negative matrix, and assume Ax D �x for some x > 0. Then �
equals the spectral radius �.A/ of A.

Proof. Note that necessarily � is real and non-negative. Let v be a non-negative eigenvector as-
sociated with the spectral radius � D �.A/. Then there is an " > 0 such that x � "v > 0, so
An.x � "v/ � 0. This entails

�nkxk D kAnxk D kAn.x � "v/C "Anvk � k"Anvk D "�nkvk;
so �n D O.�n/, and since � � � we have � D �.

So, in particular, if f W G ! B and g W H ! B are two epimorphic fibrations that respect colours up
to factors � and �, respectively, then necessarily � D �. This fact allows one to rescale the colouring
of B in a unique way (dividing by � D �): this observation explains why we consider only fibrations
that do respect colours.

6.1 A deeper look
Actually, the computation we carried over has a much more general meaning when we look at it the
other way around: if w is a right eigenvector of G associated with the eigenvalue �, the equation
Gw D �w can be rewritten as the system of equationsX

j 2NG

X
a2G.i;j /

c.a/wj D �wi ;
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where i 2 NG . Summing over i 2 f �1.h/ for any node h of B we obtain (after a rearrangement)X
j 2NG

X
i2f �1.h/

X
a2G.i;j /

c.a/wj D �
X

i2f �1.h/

wi :

The two internal summations actually correspond (because of the lifting property) to a summation
over arcs of B: X

j 2NG

X
a2B.h;f .j //

c.a/wj D �
X

i2f �1.h/

wi :

If we now break the summation over j as a double summation over the nodes of B and over their
fibres, we obtain X

k2NB

X
j 2f �1.k/

X
a2B.h;f .j //

c.a/wj D �
X

i2f �1.h/

wi ;

and this finally leads us toX
k2NB

X
a2B.h;k/

c.a/
X

j 2f �1.k/

wj D
X

k2NB

Bhk

X
j 2f �1.k/

wj D �
X

i2f �1.h/

wi :

The last equation exactly states that the vector u over NB defined by uh D P
i2f �1.h/wi is an

eigenvector of B associated with the eigenvalue �, provided that it is nonzero. In other words,

Theorem 7 Given an RC-coloured graph G and a colour-preserving fibration f W G ! B , if w is
a right eigenvector of G associated with the eigenvalue �, then the vector u defined by

uh D
X

i2f �1.h/

wi ;

is a right eigenvector of B for �, provided that u ¤ 0.

The previous theorem is a dual counterpart of the classic result about lifting of eigenvectors used in
spectral graph theory [28], which states that a left eigenvector u of B associated with the eigenvalue
� can be lifted to an eigenvector for the same eigenvalue by copying its coordinates fibrewise. Now,
Theorem 6 can be obtained as a special consequence of Theorem 7, noting that being stochastic is
equivalent to having 1 as a right eigenvector associated with the eigenvalue 1.

6.2 Computing over the base
Theorem 4 gives a precise relation between the formal series z.G;uf ; ˛/ and z.B;u; ˛/ whenever
f W G ! B is a colour-preserving fibration. If G is stochastic and uf is a distribution overNG , then
z.G;uf ; ˛/ is indeed the limit distribution of any Markov chain with restart having transition matrix
R.G;uf ; ˛/; hence, if we are interested in computing such a distribution, we can actually perform
the computation over B , which might be much smaller. Here we must be careful, however: B is not
itself stochastic, and u is not a distribution, so z.B;u; ˛/ does not admit a stochastic interpretation. In
particular, algorithms that are commonly used to compute r.�;�;�/, like [11, 7, 21, 18, 17], cannot
in general be applied to this case. However, by Theorem 6, the matrixB admits a positive eigenvector
associated with the eigenvalue 1 and this allows us to proceed as follows.

It is possible to transform any RC-coloured graph B to obtain a stochastic graph B 0 (having the
same underlying graph as B), whenever the matrix associated with B admits a positive eigenvector
w. It is sufficient to define the colouring function c0 of B 0 by setting for each arc a

c0.a/ D 1

�

wt.a/

ws.a/

c.a/;

where � is the spectral radius of B and c is its colouring function. The resulting graph is indeed
stochastic:
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Proposition 5 If B is an RC-coloured graph whose matrix admits an eigenvector w > 0, then the
graph B 0 is stochastic.

Proof. By Proposition 4, the eigenvalue associated with w is the spectral radius � of the matrix B .
Moreover, it is easy to show that

B 0 D 1

�
Diag.w/�1 B Diag.w/

where B 0 denotes, as usual, the matrix associated with the graph B 0 and, as it is immediate to see, is
stochastic.

The following theorem illustrates how the formal series z.�;�;�/ changes when transforming a
graph B (whose matrix has a positive eigenvector) into the stochastic graph B 0.

Theorem 8 If B is an RC-coloured graph such that its matrix admits an eigenvector w > 0, then,
for every non-negative vector u over NB ,

z.B;u; ˛/ D 1 � ˛
1 � ˛�Diag.w/�1 z.B 0;Diag.w/u; ˛�/;

where � is the spectral radius of B .

Proof. First of all, notice that for every path �

cB0.�/ D 1

�j�j
wt.�/

ws.�/

cB .�/:

Thus, by equation (3), we get

zh.B
0;u; ˛/

.1 � ˛/ D
X

�2B�.�;h/

˛j�jus.�/ cB0.�/ D

D wh

X
�2B�.�;h/

�
˛

�

�j�j us.�/

ws.�/

cB.�/ D wh

zh.B;Diag.w/�1u; ˛=�/

1 � ˛=� ;

hence the result.

As a consequence of the previous observations, we obtain the following

Theorem 9 Let G be a stochastic graph, f W G ! B be a colour-preserving epimorphic fibration,
and v be a fibrewise constant distribution over NG . Let w D .wk/k2NB

be the vector whose k-th
entry is wk D jf �1.k/j. Then, for every node i of G,

ri .G; v; ˛/ D 1

wf .i/

rf .i/.B
0;Diag.w/u; ˛/;

where u is such that v D uf .

Proof. First note that B 0 is a stochastic graph (since f being epimorphic implies w > 0) and
Diag.w/u is a distribution over NB , hence the right-hand side is well-defined. Applying Theorem 3
and Theorem 4, we have

ri .G;u
f ; ˛/ D zi .G;u

f ; ˛/ D zf .i/.B;u; ˛/;
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Figure 5: Two graphsG andB (with a fibration f W G ! B), and the corresponding stochastic graph
B 0.

whence the result is obtained by applying Theorem 8 (with � D 1) and again Theorem 3 to B 0.
Given a stochastic graph G and a distribution v over NG , the previous theorem suggests that we
should try to compute a fibration f W G ! B such that v is fibrewise constant, so to compute
the limit distribution on a smaller graph. Indeed, there is a minimum B with such a property, as
the theorems given in Section 2.1 extend immediately [2] to graphs coloured on the nodes (where
colours of the nodes represent the preference vector v of the Markov chain with restart) and fibrations
preserving all colours. We shall see in Section 7 that B can actually be computed quite efficiently.

6.3 A worked-out example
Consider the graphG shown in Figure 5 (left), endowed with its natural random-walk colouring. The
graph is fibred over B , shown in Figure 5 (centre), via the colour-preserving fibration f W G ! B

defined on the nodes by f �1.0/ D f0; 1g, f �1.1/ D f2; 3g and f �1.2/ D f4; 5; 6; 7g (any definition
on the arcs is fine). Now suppose you want to compute the PageRank corresponding to the preference
vector

v D h1=20; 1=20; 1=20; 1=20; 1=5; 1=5; 1=5; 1=5; 1=5iT :

Since this vector is fibrewise constant, we can apply Theorem 9, with u D h1=20; 1=20; 1=5iT ,
w D h2; 2; 4iT and B 0 obtained by recolouringB , as shown in Figure 5 (right).

In other words, we apply the standard PageRank computation to the graphB 0 using the preference
vector Diag.w/u D h1=10; 1=10; 4=5i; a direct computation gives

r.B 0;Diag.w/u; ˛/ D
˝
˛2 C 8˛ C 1; 8˛2 C ˛ C 1; ˛2 C ˛ C 8

˛
10.˛2 C ˛ C 1/

:

Hence, for example, applying Theorem 9,

r2.G; v; ˛/ D 1

2
r1.B

0;Diag.w/u; ˛/ D 8˛2 C ˛ C 1

20.˛2 C ˛ C 1/
:

7 The computation of the minimum base and graph isomorphisms
As observed at the end of Section 6.2, Theorem 9 suggests that, given a Markov chain with restart
specified by a stochastic graph G and a distribution v, we should try to obtain a minimal fibration
f W G ! B such that v is fibrewise constant, so to compute the limit distribution on a smaller graph.
Formally, we are considering the following problem
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Problem MINIMUM BASE LABELLING

Input A graph G and a preference vector v over NG

Output A labelling ` W NG ! f 0; 1; : : : ; k�1 g such that, for any two nodes i; j 2 NG , `.i/ D `.j /

iff i and j are in the same fibre of any minimal fibration for which v is fibrewise constant.

An algorithm for MINIMUM BASE LABELLING produces canonical labellings iff its output is auto-
morphism invariant.

This problem is actually equivalent to the well-known partition refinement problem, assuming
that the initial partition is the one induced by the preference vector v. Starting from ideas appearing
in Hopcroft’s minimal-automaton construction [15], Cardon and Crochemore [4] devised a partition-
refinement algorithm that in our terminology computes the minimum base labelling of a directed
graph. Their algorithm does not per se provide canonical labellings, but it can be easily adapted to
do so, and works in time O..nCm/ logn/, for an uncoloured graph with n nodes andm arcs9).

Indeed, this idea is not new, and has been used earlier [5, 23] by people working on graph iso-
morphism. This comes as no surprise, since graph isomorphism between fibration-prime graphs can
be solved in polynomial time. As a matter of fact, by Proposition 1, if we establish a canonical order
on labelled trees, we can canonically sort the nodes of a fibration prime graph; once the nodes are
sorted, the isomorphism problem for fibration-prime graphs can be solved with a linear check.

For general graphs, in one of the seminal papers on the subject [5], Corneil and Gottlieb essen-
tially propose to build the minimum base first, and then to reason on the fibres separately. If the
minimum bases are not isomorphic, of course, isomorphism is impossible. Brendan McKay pushed
this idea much further writing one of the fastest graph-isomorphism solvers, nauty [23], which is
also able to compute generators for the automorphism group. nauty starts by building the coars-
est equitable partition of the nodes, which in our language is the minimum base for the symmetric
representation of the graph. If the fibres are trivial, the algorithm can canonically sort the vertices
and perform a check. Otherwise, the algorithm starts a backtracking procedure, trying to break fi-
bres by choosing selected elements. The time required for the construction of the minimum base is
O.n2 log n/ for a graph with n nodes.

The connection between graph isomorphism and minimum bases has recently resurfaced, albeit
unnoticed, in a paper by Gori, Sarti and Maggini [8]. They propose a polynomial isomorphism
algorithm for a class of graphs defined in terms of PageRank: a graph with n nodes is said to be
Markovian spectrally distinguishable if there are values ˛0, ˛1, : : : , ˛n�1 of the damping factor
whose associated PageRank vectors form an invertible matrix. This class is in fact subsumed by
fibration-prime graphs, since

Theorem 10 A Markovian spectrally distinguishable graph is fibration prime.

Proof. A nonprime graph is nontrivially fibred over its minimum base, and by Theorem 5 it contains
at least two nodes whose PageRank values are the same for all values of the damping factor. As a
consequence, it is impossible to build an invertible matrix using a set of PageRank vectors (at least
two columns will always be equal).

The converse of the previous theorem does not hold. The graph shown in Figure 6 is fibration prime
(check the universal total graphs at depth three), and nonetheless the PageRank vector is

	
˛ C 1

2.2C ˛/
;

1

2.2C ˛/
;
1

4
;
1

4


T

;

9We observe that in [4] the authors give an O.m log n/ bound, but there seems to be a mistake in the computation of the
bound, which is more correctly O..n C m/ log n/.
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Figure 6: A fibration-prime graph that is not Markovian spectrally distinguishable. Nodes 2 and 3
have the same PageRank, independently of ˛.

so node 2 and 3 have the same PageRank (independently of ˛). We conclude that the class of Marko-
vian spectrally distinguishable graphs is strictly smaller than the class of fibration-prime graphs.

All in all, we conclude that the isomorphism of fibration-prime graphs (and a fortiori of Marko-
vian spectrally distinguishable graphs) is decidable in time O..n C m/ log n/ using purely discrete
means. The space used by the above algorithms is O.m C n/. The PageRank-based algorithm pro-
posed by Gori et al. comes with no detailed complexity analysis (the authors just notice that the
overall algorithm must run in polynomial time), whereas we can obtain an almost linear upper bound.

The algorithms considered so far actually deal with uncoloured graphs only. The original paper
about nauty does not discuss coloured graphs, whereas Cardon and Crochemore’s does; however,
the authors assume to be able to enumerate in linear time all arcs with a given colour. This is in
contrast with a more realistic model in which arcs are enumerated in linear time, and then a constant-
time colouring function provides the colour for each arc. Cardon and Crochemore’s algorithm can
be easily patched to work with the latter model, but in this case the time bound becomes O..n C
m logm/ logn/. The algorithm used by nauty can be adapted similarly.

7.1 Space O.n/
When dealing with very large web graphs, maybe using a compressed representation (see, e.g., [3]),
it is not always possible to use space O.m/. In this section we discuss how to implement a minimum
base algorithm in additional space O.n/ (besides the space required to store the graph), paying of
course a price in terms of computation time.

Let us start with a simple informal description of the algorithm. Throughout the algorithm k is
the number of labels, and ` W N ! f 0; 1; : : : ; k � 1 g is a surjective labelling of nodes: at the end
of the algorithm, two nodes will have the same label iff they have the same universal total graph or,
equivalently, if they are in the same fibre of any minimal fibration.

Let G be a C -coloured graph with colouring function c W A ! C , and assume a linear order on
the colours. The algorithm performs a refinement step until no more refinement is possible:

1. Set k D 1 and ` to the unique functionN ! f0g.

2. For each node i , if G.�; i / D fa0; a1; : : : ; ad �.i/�1 g, then let m.i/ be the multiset

m.i/ D ˚hc.a0/; `.s.a0//i; hc.a1/; `.s.a1//i; : : : ; hc.ad �.i/�1/; `.s.ad �.i/�1//i
� I

update ` so that two nodes i and j have the same label iff m.i/ D m.j /.

3. If k D n or the codomain of ` has not changed, stop; otherwise, set k to the cardinality of the
codomain of ` and restart from (2).

We assume a standard model in which it is possible to iterate over the list of incoming arcs in
linear time. Thus, the crux of the algorithm is the update of the labelling function `. Since we have a
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problem of uniqueness, a possible approach is enumerating the multisets m.i/ in sorted order: equal
elements will be enumerated consecutively, making it trivial to update `.

To accomplish the task, we must define an easily computable order on multisets of pairs inC �N.
The pairs themselves can be easily ordered lexicographically, since C is ordered, and by choosing for
each multiset a sorted canonical representative we will be able to compare multisets in a lexicographic
fashion.

The first point to examine, thus, is the time required to compute the canonical representative for
all multisets. Note that we are sorting, for each node x, a list of d�.i/ elements, which can be easily
done in time O.d�.i/ log d�.i//. This gives an overall bound ofX

i2N

O.d�.i/ log d�.i// D O.nCm logm/:

for the construction of canonical representatives.
We now sort the canonical representatives using a merge sort, carefully counting the number of

times a canonical representative is used: after each comparison one element is emitted, and each
element is emitted exactly once. We conclude that no more than m list elements are ever compared,
so the most important cost in a merging phase is the time required to build all canonical forms (since
we want to obtain space O.n/, we cannot build all representatives and reuse them for all phases):
multiplying by log n (the number of merging phases) and recalling Theorem 1 we get the following

Theorem 11 A mergesort-based algorithm for the construction of the minimum base with on-demand
canonical representative construction uses time O.q.n C m logm/ logn/ and space O.n C ��/,
where �� is the maximum indegree of G and q is the number of refinement steps.

The presence of�� is due to the fact that at some point the list for the node with largest indegree will
have to be built. If the graph is separated, �� � n, and the bound reduces to O.n/. A similar bound
can be obtained for quicksort if the implementation uses actual medians as pivots. The number of
refinement steps q in the worst case is O.n/, but experimentation with actual web graphs shows that
it is actually much smaller, making the algorithm feasible even for very large graphs.

We remark that the labels assigned by this algorithm are canonical, as they correspond to the
lexicographic order of the universal total graphs.

8 Experimental results and conclusions
The discussion of the previous section highlights a rather interesting fact: there is an entirely discrete
algorithm (the construction of the minimum base) whose output, by Theorem 4, imposes constraints
on the values of the limit distribution of a Markov chain. Thus, a limit process is constrained by a
discrete process computable in polynomial time. Of course, the condition provided by Theorem 4 is
sufficient only, but nonetheless it is fascinating that the discrete structure of the underlying graph can
impose such a significant constraint on the limit distribution. Moreover, Theorem 9 can be used, at
least in principle, to reduce the efforts required to compute the limit distribution by performing the
actual computation on the base, which may be much smaller.

One may wonder whether this idea can be fruitfully applied for the computation of PageRank of
real-world web graphs; actually, it might be the case that such graphs are themselves fibration-prime,
which would make Theorem 9 useless in practice. On the contrary, some preliminary experiments
performed on real datasets show that real web graphs exhibit a minimum base that is about 3 times
smaller than the corresponding graph (see Table 1). Moreover, experiments show that the time re-
quired by our algorithm to compute the minimum base makes the use of Theorem 9 a viable option.
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Dataset Number of nodes Number of fibres Average fibre size
WebBase 118,142,155 41,705,767 2.83
.it 41,291,594 15,245,587 2.71
.uk 39,459,925 14,154,663 2.79

Table 1: Experimental results about the dimension of the minimum base for some real-world Web
snapshots.
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As an aside, we observe that fibre sizes roughly follow a power-law distribution, as shown in
Figure 7; we don’t have any theoretical explanation of this fact, which certainly needs further inves-
tigation.

There is more, however: if we interrupt the minimum base construction algorithm at step k (in
the O.n/ version) we obtain a partitioning of the nodes into classes sharing the first k levels of
their universal total graph. Thus, in the case of a Markov chain with restart, the difference of the
limit distribution for two nodes in the same class is bounded by ˛k . Once again, we have a purely
combinatorial computation that imposes constraints on the values of the limit distribution.

Acknowledgement. We would like to acknowledge Dániel Fogaras who provided us a first proof
of the limit in (2), for the special case of uniform v and primitive P , thus being the first confirming
the conjecture stated in [1].
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