
Broadword Implementation of Rank/Select Queries

Sebastiano Vigna
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano, Italy

January 31, 2023

Abstract

Research on succinct data structures (data structures occupying space close to the
information-theoretical lower bound, but achieving speed similar to their standard coun-
terparts) has steadily increased in the last few years. However, many theoretical con-
structions providing asymptotically optimal bounds are unusable in practice because of
the very large constants involved. The study of practical implementations of the basic
building blocks of such data structures is thus fundamental to obtain practical applica-
tions. In this paper we argue that 64-bit and wider architectures are particularly suited
to very efficient implementations of rank (counting the number of ones up to a given po-
sition) and select (finding the position of the i-th bit set), two essential building blocks
of all succinct data structures. Contrarily to typical 32-bit approaches, involving pre-
computed tables, we use pervasively broadword (a.k.a. SWAR—“SIMD in A Register”)
programming, which compensates the constant burden associated to succinct structures
by solving problems in parallel in a register. We provide an implementation named
rank9 that addresses 264 bits, consumes less space and is significantly faster then cur-
rent state-of-the-art 32-bit implementations, and a companion select9 structure that
selects in nearly constant time using only access to aligned data. For sparsely populated
arrays, we provide a simple broadword implementation of the Elias–Fano representa-
tion of monotone sequences. In doing so, we develop broadword algorithms to perform
selection in a word or in a sequence of words that are of independent interest.

1 Introduction
A succinct data structure (e.g., a succinct tree) provides the same (or a subset of the)
operations of its standard counterpart, but occupies space that is asymptotically near to the
information-theoretical lower bound. A classical example is the .2nC 1/-bit representation
of a binary tree with n internal nodes proposed by Jacobson [Jac89]. Recent years have
witnessed a growing interest in succinct data structures, mainly because of the explosive
growth of information in various types of text indexes (e.g., large XML trees).

In this paper we discuss practical implementations of two basic building blocks—rank and
select. Given an array B of n bits, we are interesting in ranking the i -th position (computing
the number of ones up to that position) and selecting the i -th bit set to one.

It is known that with an auxiliary data structure occupying o.n/ bits it is possible to
answer both rank and select queries in constant time (see, e.g., [Gol06] and references therein
for an up-to-date overview). A complementary approach discards the bit vector altogether,
and stores explicitly the positions of all ones in a fully indexable dictionary, which represents
a set of integers making it possible to access the k-th element of the set in increasing order,
and to compute the number of elements of the set smaller than a given integer. These two
operations correspond to selection and ranking over the original bit vector: by using succinct

1

dictionaries, it is possible to reduce significantly the space occupancy with respect to an
explicit bit vector in the sparse case.

We start from concerns similar to those of González, Grabowski, Mäkinen and Navarro [GGMN05]:
it is unclear whether these solutions are usable in practice. The asymptotic notation is of-
ten hiding constants so large that before the asymptotic advantage actually kicks in, the
data structure is too large. In this case, it is rather fair to say that the result is interesting
mathematically, but has little value as a data structure.

This problem is made even worse by the fact that succinct data structure are exactly
designed for very large data sets, which are useless if the access to the data is slow. For
instance, the authors of [GGMN05] argue that word-aligned, O.n/ solutions are extremely
more efficient than the optimal counterparts, and that for perfectly reasonable data sizes
they actually occupy less space. To solve locally (wordwise) rank and select the author use
population counting techniques—precomputed tables containing, say, the number of bits set
to one in each possible byte.

In this paper we depart from this approach, arguing that on modern 64-bit architecture a
much more efficient approach uses broadword programming. The term “broadword” has been
introduced by Don Knuth in the fascicle on bitwise manipulation techniques of the fourth
volume of The Art of Computer Programming [Knu07]. Broadword programming uses large
(say, more than 64-bit wide) registers as small parallel computers, processing several pieces
of information at a time. An alternative, more traditional name for similar techniques is
SWAR (“SIMD Within A Register”), a term coined by Fisher and Dietz [FD99]. One of
the first techniques for manipulating several bytes in parallel were actually proposed by
Lamport [Lam75].

For instance, a broadword algorithm for sideways addition (counting the number of ones
in a register—of course, part of computing ranks) was presented in the second edition of the
textbook “Preparation of Programs for an Electronic Digital Computer”, by Wilkes, Wheeler,
and Gill, in 1957. One of the contributions of this paper is a broadword counterpart to select
bits in a word.

The main advantage of broadword programming is that we gain more speed as word width
increases, with almost no effort, because we can process more data in parallel. Note that, in
fact, broadword programming can even be used to obtain better asymptotic results: it was a
basic ingredient for the success of fusion trees in breaking the information-theoretical lower
bound for integer sorting [FW93].

Using broadword programming, we are able to fulfil at the same time the following ap-
parently contradictory goals:

� address 264 bits1

� use less space;

� obtain faster implementations.

A second concern we share with the authors of [GGMN05] is that of minimising cache
misses, as memory access and addressing is the major real bottleneck in the implementation
of rank/select queries on large-size arrays. To that purpose, we interleave data from different
tables so that usually a single cache miss is sufficient to find all information related to a
portion of the bit array (we wish to thank one of the anonymous referees for pointing out
that the idea already appeared in [GRRR06]).

We are also very careful of avoiding tests whenever possible. Branching is a very expensive
operation that disrupts speculative execution, and should be avoided when possible. All the
broadword algorithms we discuss contain no test and no branching.

1All published practical implementations we are aware of address 232 bits; this is a serious limitation, in
particular for compressed structures.

2

We concentrate on 64-bit and wider architecture, but we cast all our algorithms in a 64-bit
framework to avoid excessive notation: the modification for wider registers are trivial. We
have in mind modern processors (in particular, the very common Opteron processor) in which
multiplications are extremely fast (actually, because the clock is slowed down in favour of
multicores), so we try to use them sparingly, but we allow them as constant-time operations.
While this assumption is debatable on a theoretical ground, it is certainly justified in practice,
as experiments show that on the Opteron replacing multiplications by shifts and additions,
even in very small number, is not competitive.

The C++/Java code implementing all data structures in this paper is available under the
terms of the GNU Lesser General Public License at http://sux.di.unimi.it/.

2 Notation
Consider an array b of n bits numbered from 0. We write bi for the bit of index i , and define

rankb.p/ D
X

0�i<p

bi 0 � p � n;

that is, as the number of ones up to position p, excluded, and

selectb.r/ D maxfp < n j rankb.p/ � r g; 0 � r < rankb.n/;

that is, as the position of the one of index r , where ones are numbered starting from 0. When
b is clear from the context, we shall omit it.

Note that in the literature there is some variation in the choice of indexing (starting from
one or zero) and in the exact definition of these two primitives (including or not the one at
position p in rank.p/).

To be true, we couldn’t find the 0-based definitions given above in the literature, but they
are extremely natural for several reasons:

� As it always happen with modular arithmetic, starting with 0 avoids falling into “off-
by-one hells”. This consideration is of course irrelevant for a theoretical paper, but we
are in a different mindset.

� In this way, rank.p/ can be interpreted as rankŒ0 : : p/—counting the ones in the
semiopen interval Œ0 : : p/. Counting from zero and semiopen intervals are extremely
natural in programming (actually, Dijkstra felt the need to write a note on the sub-
ject [Dij82]).

� We can define easily, and without off-by-ones, operators such as countbŒp : : q/ D

rank.q/ � rank.p/.

In any case, it is trivial to compute other variations of rank and select by suitably offseting
the arguments and the results.

We use a nb to denote integer division of a by b,� and� to denote right and left (zero-
filled) shifting, &, j and ˚ to denote bit-by-bit not, and, or, and xor; x denotes the bit-by-bit
complement of x. We pervasively use precedence to avoid excessive parentheses, and we use
the same precedence conventions of the C programming language: arithmetic operators come
first, ordered in the standard way, followed by shifts, followed by logical operators; ˚ sits
between j and &.

We use Lk to denote the constant whose ones are in position 0, k, 2k, . . . that is, the
constant with the lowest bit of each k-bit subword set (e.g, L8 D 0x01010101010101010101).
This constant is very useful both to spread values (e.g., 12 � L8 D 0x1212121212121212)
and to sum them up, as it generates cumulative sums of k-bit subwords if the values con-
tained in each k-bit subword, when added, do not exceed k bits. (e.g., 0x030702 � L8 D

3

0x30A0C0C0C0C0C0C0902—look carefully at the three rightmost bytes). We use Hk to
denote Lk� k � 1, that is, the constant with the highest bit of each k-bit subword set (e.g,
H8 D 0x8080808080808080).

Our model is a RAM machine with d -bit words that performs logic operations, additions,
subtractions and multiplications in unit time using 2-complement arithmetic. We note that
albeit multiplication can be proven to require O.log d/ basic operations, modern processors
have very fast multiplication (close to one cycle), so designing broadword algorithms without
multiplications turns out to generate slower code.

3 rank9

We now introduce the layout of our data structure for ranking, which follows a traditional
two-level approach but uses broadword sideways addition (Algorithm 1) for counting inside
a word and interleaving to reduce cache misses. We assume the bit array b is represented as
an array of words of 64 bits. The bit of position p is located in the word of index p n 64 at
position p mod 64, and we number bits inside each word in little-endian style.

To each subsequence of eight words starting at bit position p, called a basic block, we
associate two words:

� the first word (first-level count) contains rank.p/;

� the second contains the seven 9-bit values (second-level counts) rank.pC64k/�rank.p/,
for 1 � k � 7, each shifted left by 9.k � 1/ bits.

First and second level counts are stored in interleaved form—each first-level count is followed
by its second-level counts. When we have to rank a position p living in the word w D p n 64,
we have just to sum the first-level count of the sequence starting at w n 8, possibly a second-
level count (if w mod 8 ¤ 0) and finally invoke sideways addition on the word containing
p, suitably masked. Note that this apparently involves a test, but we can get around the
problem as follow:

s� .t C .t � 60& 8// � 9& 0x1FF;

where s is the second-level count and t D w mod 8 � 1. When w mod 8 D 0, the expression
t� 60& 8 has value 8, which implies that s is shifted by 63, obtaining zero (we are not using
the most significant bit of s).

We call the resulting structure rank9 (the name, of course, is inspired by the fact that
it stores 9-bit second-level counts). It requires just 25% additional space, and ranks are
evaluated with at most two cache misses, as when the first-level count is loaded by the L1
cache, the second-level count is, too. No tests or precomputed tables are involved.2

The only dependence on the word length d is in the first cumulative phase of sideways
addition. We need to cumulate at least b bits, where b is a power of two enough large to
express d , that is, b D dlog de. Thus, this phase requires O.log log d/ step. However, since
Algorithm 1, with suitable constants, works up to d D 256, it can be considered constant
time to all practical purposes (as we will never have 2256 bits).

4 Interlude: k-bit comparisons
Given x and y, consider them as sequences of 64nk (un)signed k-bit values. We would like to
operate on them so that, in the end, each k-bit block contains 1 in the leftmost position iff the
corresponding pair of k-bit values is ordered. At that point, it is easy to count how many ones

2Of course, if more than 64 bits per word are available, more savings are possible: for instance, for 128-bit
processors rank16, which uses 16-bit second-level counts, requires just 12:6% additional space.

4

Algorithm 1 The classical broadword algorithm for computing the sideways addition of x
in O.log log d/ steps. The first step leaves in each pair of bits the number of ones originally
contained in that pair. The following steps gather partial summations and, finally, the
multiplication sums up them all.

0 x D x � ..x & 0xAAAAAAAAAAAAAAAA/� 1/

1 x D .x & 0x3333333333333333/C ..x� 2/& 0x3333333333333333/
2 x D .x C .x� 4//& 0x0F0F0F0F0F0F0F0F
3 x � L8� 56

are present using a multiplication. Knuth describes a broadword expression to this purpose,
using the properties of the median (a.k.a. majority) ternary operator [Knu07]. Here, to make
the paper self-contained we provide an elementary independent construction which uses the
same number of operators, but has the (small) advantage that no subexpression appears
twice except for positive literals. This makes our formulation ideal for macro expansion in
C.

We recall the expression for computing in parallel the differences modulo 2k of each k-bit
subword:

..x jHk/ � .y &Hk//˚ ..x ˚ y/&Hk/:

If all k-bit subwords contain values smaller than 2k�1, the most significant bit of each subword
will be set to one iff the corresponding subwords of x and y are strictly ordered. After anding
with Hk and some simple manipulation we have:�
..x jHk/ � .y &Hk//˚ ..x ˚ y/&Hk/

�
&Hk

D ..x jHk/ � .y &Hk/&Hk/˚ ..x ˚ y/&Hk/

D
�
..x jHk/ � .y &Hk//˚ x ˚ y

�
&Hk ;

so we define
x <k y WD

�
..x jHk/ � .y &Hk//˚ x ˚ y

�
&Hk :

It is immediate to check that x <k y does work if either x; y < 2k�1 or x; y � 2k�1. Thus,
we are just left to fix manually the remaining cases: if x < 2k�1 and y � 2k�1, however, we
already known the result, so oring the value ..x&Hk/& .y&Hk//&Hk D x&y&Hk would
fix that case; analogously, anding it with ..x &Hk/& .y &Hk//&Hk D .x j y/&Hk would
fix the dual case. Since in the end the bits in Hk are all that matters, we are interested in
computing

.x <k y/& .x j y/&Hk j .x & y &Hk/

D

��
..x jHk/ � .y &Hk//˚ x ˚ y

�
& .x j y/ j .x & y/

�
&Hk

D

��
..x jHk/ � .y &Hk//& .x j y/

�
˚ x ˚ y j .x & y/

�
&Hk ;

where the last passage follows by distributing & over ˚ and reducing the resulting terms. To
reduce further, we use De Morgan to turn j into &; so since .x j y/& .x j y/ D x ˚ y we have��

..x jHk/ � .y &Hk//& .x j y/
�
˚ x ˚ y

�
& .x j y/&Hk

D

��
..x jHk/ � .y &Hk//& x ˚ y

�
˚ ..x ˚ y/& .x j y//&Hk

D

��
..x jHk/ � .y &Hk// j x ˚ y

�
˚ x & y

�
&Hk :

5

We now notice that if we replace & with j in the term x & y, we flip the value of the term
exactly when x D y. However, in that case the value of the remaining part is just depending
on ..x jHk/ � .y &Hk//, so we can compensate the flip by removing the outermost negation
(when x ¤ y this removal has no effect). We thus define

x <u
k y WD

��
..x jHk/ � .y &Hk// j x ˚ y

�
˚ .x j y/

�
&Hk :

This eight-operator formula has the nice property that no subexpression (except for positive
literals and constants) appears twice, so it can be used for macro expansion without caching
intermediate values. Exhaustive search shows that, given x, y and .x jHk/ � .y &Hk/, this
eight-operator formula is the shortest possible. If we need �u

k
, we just interchange the rôles

of x and y and complement the result:

x �u
k y WD

��
..y jHk/ � .x &Hk// j y ˚ x

�
˚ .y j x/

�
&Hk

D

��
..y jHk/ � .x &Hk// j x ˚ y

�
˚ .x & y/

�
&Hk :

Analogously,

x �k y WD
�
..y jHk/ � .x &Hk//˚ y ˚ x

�
&Hk

D
�
..y jHk/ � .x &Hk//˚ x ˚ y

�
&Hk :

In the particular case x D 0 (i.e., we want to know which k-bit blocks contain nonzero
data), x >u

k
0 simplifies considerably, getting to a four-operator formula (analogously to

what happens in [Knu07]), that we obtain easily as a by-product; actually, is much easier to
simplify x �u

k
Lk :

x >u
k 0 D x �

u
k Lk D

��
..x jHk/ � .Lk &Hk// j Lk ˚ x

�
˚ .Lk & x/

�
&Hk

D

��
..x jHk/ � Lk/ j Lk ˚ x

�
˚ .Lk & x/

�
&Hk

D

��
..x jHk/ � Lk/ j x

��
&Hk :

5 select9

We would like to build upon rank9 selection capabilities. To this purpose, we work back-
wards, starting from selection in a word, moving to selection in a sequence of words, and
finally getting to selection over the bit array. In rank9 we conceded a shift-based access to
non-aligned subwords, but in the case of select several accesses are needed (even in the opti-
mal, non-aligned data structures), so we will limit ourselves to access only correctly aligned
subwords of size d=2i (except, of course, for rank9 access).

The starting consideration for our select-in-a-word broadword algorithm is the observation
that at the end of Algorithm 1 we use just the most significant byte of a multiplication
that provides much more information—namely, the cumulative sums of the number of ones
contained in each byte. If we compare each of these numbers with the desired index r , we
can easily locate the byte containing the r-th one. With a typical broadword approach, we
then solve the problem in the relevant byte in a similar manner.

We are now ready to introduce Algorithm 2. In the first lines we follow exactly Al-
gorithm 1, building the bytewise cumulative sums s. Then, we compare in parallel each
cumulative sum with r : the number of positive results is exactly the index of the byte con-
taining the bit of rank r , so we extract it in b already multiplied by eight. To obtain the

6

bytewise rank `, we subtract from r the value found in the byte starting at bit b�8 (if b D 0,
` D r).

We now compute a word z that contains eight copies of the byte starting at position
b (the one containing the bit of rank r); however, from the j -th copy we just keep bit j .
We now compare each byte in parallel with zero, which make it possible to compute, with
a multiplication by L8, the rank of each bit. We compare the cumulative sums with eight
copies of `; again, the number of positive results is the index of the `-th one, which we return,
summed with b.

We note that, similarly to sideways addition, we need to compute the number of ones in
subwords of size dlog de. Now, however, we have another constraint: dlog de copies of each
sum must fit into a word, that is, dlog de2 � d . This constraint cannot be satisfied with d a
power of two unless d � 64.

Again, Algorithm 2 requiresO.log log d/ operations in the initial phase, and up to d D 256
the only modifications required are suitable changes to the constants. Moreover, the constant
operations significantly outnumber those of the initial phase. Finally, the algorithm contain
several multiplications by L8: they can be replaced by less than log d shifts and adds, as the
number of ones in L8 is very low.

Algorithm 2 Computes the index of the r-th one in x (r < 22dlog log de). If no such bit exists,
computes 72.

0 s D x � ..x & 0xAAAAAAAAAAAAAAAA/� 1/

1 s D .s & 0x3333333333333333/C ..s� 2/& 0x3333333333333333/
2 s D ..s C .s� 4//& 0x0F0F0F0F0F0F0F0F/ � L8

3 b D ..s �8 r � L8/� 7/ � L8� 53& 7

4 ` D r � ...s� 8/� b/& 0xFF/
5 s D ...x� b & 0xFF/ � L8 & 0x8040201008040201 >8 0/� 7/ � L8

6 b C ...s �8 ` � L8/� 7/ � L8� 56/

We now approach the problem of constant-time selection inside a block of rank9. The
idea, by now familiar to the reader, is to locate the right word using parallel comparisons.
More precisely, if s contains the subcount word and we have to locate the bit of rank r we
can just compute

o D ..s �u
9 r � L9/� 8/ � L9� 54& 7

to know the offset in the block of the word containing the bit, and

r � .s� .o � 1& 7/ � 9& 0x1FF/

to know the rank inside the word. Note that o � 1& 7 is 63 when o D 0, which implies that
no correction is performed if the bit belongs to the first word in the block.

Binary-search selection. At this point, we could follow the steps of [GGMN05] and just
perform a binary search over blocks, followed by the broadword block search we just described.
Moreover, we could add a simple, one-level inventory that would help locating more quickly
the region in which perform a binary search: we call this approach a hinted bsearch. In the
experimental part, however, we will see that while (hinted) binary searches have excellent
performances on evenly distributed arrays, they give worst results on uneven distributions.

Selecting in d
p
d words. In general, the approach we described provides selection in

p
d

words. We are now going to use the broadword approach to provide selection in practical
constant time inside d

p
d words.

7

The idea is very simple: since by broadword comparison we can quickly locate, in a list
of increasing integers, the first integer larger than a given integer x, given a sequence of

p
d

basic blocks, that we shall call an intermediate block, we can list the
p
d first-level count of

each block and perform selection by first locating the correct basic block, and then operating
as we previously described. Note that since we need just to store the difference of each first-
level count from the first one, we need very few bits (2 log d), so a constant number of words
will suffice. In our main example, we use two words to store eight 16-bit values containing
the first-level counts.

To get to d
p
d words (512, in our example) we repeat again the same trick, but now

we consider a sequence of
p
d intermediate blocks, called an upper block, and record thep

d first-level counts of the first basic block of each intermediate block. Using the parallel
comparison operator as we did in the first part of this section, and using suitable constants
(e.g., L16) we can find in constant time the intermediate block and, again in constant time,
the basic block containing the bit we are interested in.

We note that the cost of recording this information is very low: when d D 64 we need 16
bits for each basic block, which contains 512 bits.

Selecting over the whole bit array. Our interest in selecting over d
p
d words stems from

the fact that, by keeping track of the position of one each d
p
d bits in a primary inventory

space and allocating with care some secondary inventory, we can reduce in constant time our
problem to selection in d

p
d words.

More precisely, we record the position of each d
p
d -th bit. In our example, in the worst

case (density close to 1) this information requires 12:5% additional space. Then, we allocate
one word each ˛ words for a secondary inventory. Consider two bits that appear consecutively
in the primary inventory (in particular, their indices differ by d

p
d), and let p and q be their

positions. For the d
p
d bits inbetween we have at our disposal

qn.˛d/ � pn.˛d/

words. If this number is at least d
p
d , we can record the position of each bit. Otherwise, we

can describe the position of each bit in this range using

log.˛d2
p
d/ D log ˛ C

5

2
log d

bits, so as long as

log.˛d2
p
d/ D log ˛ C

5

2
log d �

d

2

we can still describe the position of each bit using the upper and lower half of each word
(note that, as we discussed, we are purposely avoiding to manipulate non-aligned subwords).
The process can continue if there is enough space to describe the position of all d

p
d bits:

depending on ˛, more or less subword sizes can be used.
For the case d D 64, ˛ D 4 is a particularly good value because it generates an equality

in the inequality

log aC
5

2
log d � 1 �

d

4
;

which means that we can get to the point where we are recording the positions of all d
p
d D

512 bits using 128 words of secondary storage. Since these 128 words correspond to 512 D
d
p
d words in our bit array, below this size we can use the broadword techniques described

in the previous paragraph.
All in all, select9 uses an underlying rank9 structure, plus additional data occupying at

most 37:5% of the original bit array. To rank a bit r , we first compute the positions p and
q of the bit r 0 D r � .r mod d

p
d/ and of the bit r 0 C d

p
d , respectively, using the primary

inventory. Then, we compute the span associated to r 0

s D .qnd/n˛ � .pnd/n˛;

8

which represent the number of words from the secondary inventory we can use for the d
p
d

bits after r 0. Finally, to locate the position of the bit of position r , we proceed as follows:

1. if s < 2, the bit can be located inside the basic block to which r 0 belongs;

2. if s < 16, the bit can be located using a two-word index collecting the first-level counts
of an intermediate block;

3. if s < 128, the bit can be located using an eighteen-word two-level index collecting
the first-level counts of an upper block, organised as we described above; note that by
storing the two indices consecutively, we effectively interleave the data, generating a
single cache miss for both reads;

4. if s < 256, we store explicitly the offset of each bit from r 0 (whose rank is known by
first-level counting) in 16 bits;

5. if s < 512, we store explicitly the offset of each bit in 32 bits;

6. otherwise, we have enough space to store explicitly all bit positions.

It is easy to check that the choice ˛ D 4 makes it possible to store any of the alternative
information required by the data structure.

In the worst case, select9 will generate four cache misses: one to access the primary
inventory, one to access the secondary inventory, one to locate the correct basic block, and
one to select inside a basic block. The only test required when performing selection is
comparing the value of s with the constants above.3

6 simple

The idea of broadword selection can be easily extended to a bit search algorithm that quickly
locates a bit in a bit array. Assuming we want to locate the bit of rank r in a sequence of
words, we simply have to load the first word into x and loop around the first three lines of
Algorithm 2: if r < s� 56, we exit the loop and proceed as usual. Otherwise, we load x
with the content of the next word, decrease r by s� 56 and iterate again.

Armed with this tool, we implement simple, an almost naive but surprisingly efficient
select structure that does not depend on rank9. The structure is a two-level inventory similar
to the darray dense select structure described in [OS07], but it has been suitably modified
to have reduced access time an halved space occupancy in spite of 64-bit addressing.

We keep an inventory of ones at position multiples of dLm=ne, where L is a constant
limiting the size of the inventory (L D 8192 in our implementation). For each bit in the
inventory, we allocate a number of words (again, upper bounded by a constant M) depending
on the density. Inside, we record a 16-bit subinventory (if 16 bits are not enough, we use the
space to point at a spill buffer where we record each bit position individually). We use the
inventory and the subinventory to locate a position that is near the bit we intend to select,
and then we perform a linear broadword bit search. The experimental results about this
algorithm show that, in fact, it is the fastest, even in the presence of uneven bit distribution.
It also has the advantage of providing just selection with a very limited space usage.

The memory occupancy depend mainly by the bound M . Due to the speed of broadword
bit search, we have been able to halve it with respect to the value used in [OS07], without a
noticeable effect on performance. As a result, we have almost halved the space occupancy.

3We remark that we claimed in the introduction that our broadword algorithms contain no branching;
but there is no contradiction, as this part of select9 is not broadword.

9

7 Elias–Fano representation of monotone sequences
For sparse arrays, we provide a 64-bit implementation of the Elias–Fano representation of
monotone sequences [Eli74, Fan71], which is one of the earliest examples of a fully indexable
dictionary. We briefly recall the main idea, translated into the bit array scenario: we record
all bits positions, but while the lower ` D blog.n=m/c bits are recorded explicitly, the u D
dlog ne � blog.n=m/c upper bits are recorded in an array U of mC u n 2` bits as follows: if
the value of the upper u bits of the position of the i -th one is k, we set the bit in position
i C k. It is easy to recover the original value by selecting the i-th bit in U and subtracting i .
The space occupancy is bounded by 2mC m log.n=m/ bits [Eli74], which is almost optimal
as specifying a set of m elements out of n requires � m log.n=m/ bits when m� n.4

The only component we can improve is actually selection in U , which however is a very
well-behaved dense array, so we use a version of simple that is wired to density 1=2.

8 Experiments
We performed a number of experiments on a Linux-based system sporting a 64-bit Opteron
processor running at 2814:501MHz with 1MiB of first-level cache. The tests show that on
64-bit architectures broadword programming provides significant performance improvements.
We compiled using gcc 4.1.2 and options -O9.

The experimental setting for benchmarking operations that require few nanoseconds must
be set up carefully. We generate random bit arrays and store a million test positions. Dur-
ing the tests, the positions are read with a linear scan, producing a minimal interference;
generating random positions during the tests causes instead a significant perturbation of the
results, mainly due to the slowness of the modulo operator. The tests are repeated ten times
and averaged. We measure user time using the system function getrusage().

We provide results for dense (50%) and sparse (1%) arrays of different sizes5. In the
first case, however, we take care of experimenting over a highly uneven bit array (almost
empty in the first half, almost full in the second half). Test positions are generated so to
fall approximately half of the time in the dense part, and half of the time in the sparse part.
The results obtained using this method highlight serious limitations of some approaches (e.g.,
binary search) which are not evident in experiments involving uniform bit arrays. Our results
suggest that practical implementations of rank/select queries should be always tested against
uneven bit arrays (and possibly even more adversarial settings).

We chose to compare our structures against practical ones: the code for the BitRankF
structure proposed in [GGMN05] was provided by the authors. The authors of [OS07] pro-
vided code for their implementation of the Elias–Fano6 representation (darray7 and sarray),
and for the byte-oriented select structure described by Kim et al. in [KNKP05].8 All these
structures exploit byte or word alignment to increase speed, as previous experiments have
made clear [GGMN05] that non-aligned structures are extremely slow. Nonetheless, to let
the reader have a feeling about what happens using o.n/-space constant-time structures we

4Actually, we are somewhat wasting space, as the Elias–Fano representation can code sequences with du-
plicates, and in that case the lower bound is � m log eCm log.n=m/. As already suggested by Elias [Eli72],
it is easy to map bijectively a strictly increasing sequence of m elements upper bounded by n into a nonde-
creasing sequence of m elements upper bounded by n�m and apply the representation to the latter sequence,
but that would make ranking more difficult.

5Note that we use the NIST-endorsed prefixes: Ki=210, Mi=220, etc.
6It should be noted that in [OS07] no mention is made of the work of Elias and Fano. Moreover, their bit

subdivision (using dlog.n=m/e lower bits) causes a larger space occupation.
7We have decreased the bound M in darray to reduce further space occupancy; we can do so with an

almost immaterial impact on performance due to the speed of broadword bit search.
8The authors of the latter paper, in spite of several communication attempts, did not provide code for

their structures.

10

Size select9 Hinted bsearch simple darray Kim Clark
1 Ki 62.50% 37.50% 25.00% 67.19% 86.72% 544073.24%
16 Ki 56.25% 37.50% 14.45% 28.81% 72.80% 34074.85%
256 Ki 56.13% 37.23% 13.79% 27.73% 71.57% 2184.99%
4 Mi 56.12% 37.25% 13.78% 27.56% 71.67% 192.81%
64 Mi 56.12% 37.25% 13.78% 27.56% 71.67% 68.30%
1 Gi 56.13% 37.25% 13.78% 27.56% 71.67% 60.52%

Table 1: Percentage of space occupied by various select structures in a densely (50%) pop-
ulated bit array. Note that the percentage shown for select9 and hinted bsearch includes
25% for rank9. The preposterous values shown for Clark’s structure are due to the very large
lookup table.

also provide results about Jacobson’s [Jac89] classic rank implementation and Clark’s [Cla98]
select implementation.910

Looking at Table 2, rank9 is the clear winner among ranking methods. For completeness,
we provide results for a variant that trades broadword programming for population counting
(“pc”), a standard table-based technique used in [GGMN05] that turns out to be slower.11
The situation for select is more varied, and also Table 3 and 4 should be taken into account.
Essentially, simple turns out to be the fastest and more space efficient data structure on
evenly distributed arrays. If constant time is required in spite of adversarial distribution,
select9 is highly competitive if paired with rank9.

The results for selection on sparse arrays are reported in Table 5 and 6. Our imple-
mentation of the Elias–Fano representation provides support for very large (64-bit) arrays
while keeping the excellent space occupancy of sarray (for lack of space we cannot report
results on ranking, which are however in the same line). Among implementations requiring
the original bit array, select9 has excellent performance even on very large arrays. Its space
occupancy is also very competitive if it used in conjunction with rank9, albeit simple has
also very good timings, and the lowest space occupancy.

9 Conclusions
We have introduced some new ideas about the application of broadword programming [Knu07]
to bit-level manipulations typical of succinct static data structures. We have also presented
exhaustive experimentation that compares our results with approaches existing in the liter-
ature, providing also some new, effective ideas for testing. Beside achieving 64-bit size, we
can at the same time significantly improve (sometimes both) speed and space occupancy.

For densely populated arrays, rank9 and simple are generally the best structures, both in
term of time, space, and addressability. If a more robust performance guarantee is required,

9The code for the latter was kindly provided by the authors of [GGMN05].
10We wish to thank one of the anonymous referees for pointing us at a series of papers about practical

rank/select structures [GRRR06, DRR07]. Unfortunately, at the time of this writing the authors distribute
publicly just a few header files and two binary libraries for an unspecified operating system, without any
source code or documentation.

11It is interesting to remark that testing in isolation broadword programming vs. popcounting for ranking
or selecting in a word we obtained opposite results. This happens because when testing popcounting in
isolation the whole processor cache and branch-prediction unit are servicing a single, small loop.

11

 1

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

ra
nk

 ti
m

e
(n

s)

bits

rank9
rank9 pc
BitRankF
darray

Kim
Jacobson

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

se
le

ct
 ti

m
e

(n
s)

bits

select9
select9 pc
Hinted search

simple
BitRankF
darray

Kim
Clark

Size rank9 (25%) rank9 pc BitRankF (37:5%) Kim (37:5%) darray (25%) Jac. (> 66:85%)
1Ki 8.2 9.7 10.3 14.0 13.1 97.8
16Ki 8.1 9.8 10.3 14.0 13.0 97.6
256Ki 8.3 9.9 10.6 14.0 13.3 98.5
4Mi 16.5 19.4 25.7 25.0 24.3 123.5
64Mi 81.9 103.7 110.3 115.0 112.8 245.1
1Gi 121.1 141.1 165.4 166.0 164.6 393.3

Size select9 select9 pc Hinted bsearch simple BitRankF darray Kim Clark
1Ki 45.0 60.0 34.5 41.3 82.3 44.0 47.5 166.4
16Ki 45.3 63.2 37.8 35.8 103.4 44.0 48.2 179.8
256Ki 45.3 63.8 38.2 36.1 121.4 44.0 50.0 195.7
4Mi 58.8 76.6 49.6 42.6 144.4 56.0 98.4 223.0
64Mi 245.7 263.7 213.6 145.0 344.6 185.0 320.2 485.1
1Gi 367.5 383.1 316.5 230.2 978.2 323.0 557.5 599.1

Table 2: Nanoseconds per rank and select operations in densely populated (50%) bit arrays
of increasing size. The space usage of rank structures is shown on their label; the space
shown for Jacobson’s structure is for the 1Gi array (for smaller sizes, it grows significantly,
as it happens for Clark’s structure in Table 1: at size 264, it is still 37:5%; it becomes space-
competitive with rank9 beyond 2100 bits). As noted in [GGMN05], once out of the cache
access time increase linearly due to the memory-address resolution process.

12

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

se
le

ct
 ti

m
e

(n
s)

bits

select9
Hinted search

simple
BitRankF
darray

Kim
Clark

Size select9 Hinted bsearch simple BitRankF darray Kim Clark
1 Ki 45.2 36.2 38.2 71.0 44.0 47.4 247.6
16 Ki 51.3 45.5 120.5 102.0 148.0 47.9 122.4
256 Ki 33.8 51.6 20.7 121.0 52.0 48.0 158.9
4 Mi 35.0 62.6 28.1 143.9 34.0 73.9 341.1
64 Mi 161.3 224.3 101.7 343.9 119.0 295.1 301.8
1 Gi 209.7 366.5 144.8 988.4 195.0 510.9 434.9

Table 3: Nanoseconds per select operation in a densely (50%) populated bit array of increasing
size with uneven bit distribution: almost all bits in the first half are zeroes, and almost all
bits in the second half are ones. The “switch” effect typical of structures that change their
strategy depending on the density is very visible. Note the poor performance on large arrays
of methods based on binary search.

Size select9 Hinted bsearch simple darray Kim Clark
1 Ki 56.25% 37.50% 25.00% 67.19% 94.53% 544073.24%
16 Ki 56.25% 37.50% 14.45% 28.81% 83.06% 34074.85%
256 Ki 56.20% 37.38% 63.96% 40.25% 80.93% 2184.99%
4 Mi 56.19% 37.37% 45.17% 43.23% 80.80% 192.81%
64 Mi 56.19% 37.38% 45.95% 43.61% 80.76% 68.30%
1 Gi 56.19% 37.38% 45.94% 43.60% 80.77% 60.52%

Table 4: Percentage of space occupied by various select structures in a densely (50%) popu-
lated uneven bit array (see Table 3).

13

 10

 100

 1000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

se
le

ct
 ti

m
e

(n
s)

bits

Elias-Fano
select9
simple

BitRankF
sarray

Kim
Clark

Size Elias–Fano select9 simple BitRankF sarray Kim Clark
1 Ki 33.6 45.1 24.5 61.3 25.9 47.8 432.1
16 Ki 44.2 56.8 26.7 98.8 45.9 48.0 92.7
256 Ki 45.6 11.8 27.4 120.3 47.8 48.0 138.8
4 Mi 45.6 10.3 30.7 143.7 47.9 74.3 487.4
64 Mi 52.5 17.0 79.4 346.1 55.2 258.4 180.2
1 Gi 157.7 52.9 160.2 969.7 199.2 554.9 322.6

Table 5: Nanoseconds per select operation in bit arrays of increasing size with sparse (1%)
bit population.

Select Elias–Fano select9 simple sarray Kim Clark
1 Ki 84.77% 56.25% 25.00% 98.44% 45.31% 544073.24%
16 Ki 13.94% 50.39% 10.55% 15.33% 26.12% 34074.85%
256 Ki 9.45% 50.15% 9.01% 9.81% 22.65% 2184.99%
4 Mi 9.37% 50.13% 9.01% 9.64% 22.55% 192.81%
64 Mi 9.38% 50.13% 9.01% 9.64% 22.52% 68.30%
1 Gi 9.37% 50.13% 9.01% 9.63% 22.50% 60.52%

Table 6: Percentage of space occupied by various select structures in bit arrays of increasing
size with sparse (1%) bit population. Note that the percentage shown for select9 includes
25% for rank9. Elias–Fano and sarray do not require the original bit array (which con-
tributes an additional 100% to the other structures).

14

select9 provide the fastest practical constant-time operations. For sparsely populated ar-
rays, the Elias–Fano representation of monotone sequences, supported by dense broadword
selection, provides good speed and nearly optimal space occupancy.

We wish to thank one of the anonymous referees for pointing us to Elias’s paper [Eli74],
which in turn led us to Fano’s memorandum [Fan71].

References
[Cla98] David Richard Clark. Compact Pat Trees. PhD thesis, University of Waterloo,

Waterloo, Ont., Canada, 1998.

[Dij82] Edsger W. Dijkstra. Why numbering should start at zero, 1982. EWD 831.

[DRR07] O’Neil Delpratt, Naila Rahman, and Rajeev Raman. Compressed prefix sums. In
Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek, Christoph Meinel,
Harald Sack, and Frantisek Plasil, editors, Proc. SOFSEM 2007: Theory and
Practice of Computer Science, 33rd Conference on Current Trends in Theory
and Practice of Computer Science, number 4362 in Lecture Notes in Computer
Science, pages 235–247. Springer–Verlag, 2007.

[Eli72] Peter Elias. On binary representations of monotone sequences. In Proc. Sixth
Princeton Conference on Information Sciences and Systems, pages 54–57, Dep.
of Electrical Engineering, Princeton U., Princeton, N. J., 1972.

[Eli74] Peter Elias. Efficient storage and retrieval by content and address of static files.
J. Assoc. Comput. Mach., 21(2):246–260, 1974.

[Fan71] Robert M. Fano. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, Project MAC, MIT,
Cambridge, Mass., n.d., 1971.

[FD99] Randall J. Fisher and Henry G. Dietz. Compiling for SIMD within a register.
In Siddhartha Chatterjee, Jan Prins, Larry Carter, Jeanne Ferrante, Zhiyuan Li,
David C. Sehr, and Pen-Chung Yew, editors, Languages and Compilers for Par-
allel Computing, (11th LCPC’98), number 1656 in Lecture Notes in Computer
Science, pages 290–304. Springer–Verlag, 1999.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. J. Comput. System Sci., 47(3):424–436, 1993.

[GGMN05] R. Gonzàlez, S. Grabowski, V. Mäkinen, and G. Navarro. Practical implemen-
tation of rank and select queries. In Poster Proceedings Volume of 4th Workshop
on Efficient and Experimental Algorithms (WEA’05), pages 27–38. CTI Press
and Ellinika Grammata, 2005.

[Gol06] Alexander Golynski. Optimal lower bounds for rank and select indexes. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture
Notes in Computer Science, pages 370–381. Springer, 2006.

[GRRR06] R.F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal represen-
tation for balanced parentheses. Theoretical Computer Science, 368(3):231–246,
2006.

15

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Sympo-
sium on Foundations of Computer Science (FOCS ’89), pages 549–554, Research
Triangle Park, North Carolina, 1989. IEEE Computer Society Press.

[KNKP05] Dong Kyue Kim, Joong Chae Na, Ji Eun Kim, and Kunsoo Park. Efficient imple-
mentation of rank and select functions for succinct representation. In Sotiris E.
Nikoletseas, editor, Proc. of the Experimental and Efficient Algorithms, 4th In-
ternationalWorkshop, volume 3503 of Lecture Notes in Computer Science, pages
315–327. Springer, 2005.

[Knu07] Donald E. Knuth. The Art of Computer Programming. Pre-Fascicle 1A. Draft
of Section 7.1.3: Bitwise Tricks and Techniques. Addison–Wesley, 2007.

[Lam75] Leslie Lamport. Multiple byte processing with full-word instructions. Commu-
nications of the ACM, 18(8):471–475, 1975.

[OS07] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc. of the Workshop on Algorithm Engineering and
Experiments, ALENEX 2007. SIAM, 2007.

16

