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Abstract. We consider the problem of classifying all positive-definite integer-valued quadratic
forms that represent all positive odd integers. Kaplansky considered this problem for ternary
forms, giving a list of 23 candidates, and proving that 19 of those represent all positive odds.
(Jagy later dealt with a 20th candidate.) Assuming that the remaining three forms represent
all positive odds, we prove that an arbitrary, positive-definite quadratic form represents all
positive odds if and only if it represents the odd numbers from 1 up to 451. This result is
analogous to Bhargava and Hanke’s celebrated 290-theorem. In addition, we prove that these
three remaining ternaries represent all positive odd integers, assuming the Generalized Riemann
Hypothesis.

This result is made possible by a new analytic method for bounding the cusp constants of
integer-valued quaternary quadratic forms Q with fundamental discriminant. This method is
based on the analytic properties of Rankin-Selberg L-functions, and we use it to prove that if
Q is a quaternary form with fundamental discriminant, the largest locally represented integer
n for which Q(~x) = n has no integer solutions is O(D2+ε).

1. Introduction and Statement of Results

The study of which integers are represented by a given quadratic form is an old one. In 1640,
Fermat stated his conjecture that every prime number p ≡ 1 (mod 4) can be written in the
form x2 + y2. In the next century, Euler proved Fermat’s conjecture and worked seriously on
related problems and generalizations. In 1770, Lagrange proved that every positive integer is
a sum of four squares. In 1798, Legendre classified the integers that could be represented as a
sum of three squares. This result is deeper and more difficult than either of the two-square or
four-square theorems.

Motivated by Lagrange’s result, it is natural to ask about the collection of quadratic forms that
represent all positive integers, or more generally to fix in advance a collection S of integers, and
ask about quadratic forms that represent all numbers in S. The first result in this direction is
due to Ramanujan [42], who in 1916 gave a list of 55 quadratic forms of the form

Q(x, y, z, w) = ax2 + by2 + cz2 + dw2,

and asserted that this list consisted precisely of the forms (of this prescribed shape) that
represent all positive integers. Dickson [12] confirmed Ramanujan’s statement (modulo the
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error that the form x2 +2y2 +5z2 +5w2 was included on Ramanujan’s list and represents every
positive integer except 15), and coined the term universal to describe quadratic forms that
represent all positive integers.

A positive-definite quadratic form Q is called integer-matrix if it can be written in the form

Q(~x) = ~xTM~x

where the entries of M are integers. This is equivalent to saying that if

Q(~x) =
n∑
i=1

n∑
j≥i

aijxixj,

then aij is even if i 6= j. A form Q is called integer-valued if the cross-terms aij are allowed to
be odd. In 1948, Willerding [52] classified universal integer-matrix quaternary forms, giving a
list of 178 such forms.

The following result classifying integer-matrix universal forms (in any number of variables) was
proven by Conway and Schneeberger in 1993 (see [45]).

Theorem (“The 15-Theorem”). A positive-definite integer-matrix quadratic form is universal
if and only if it represents the numbers

1, 2, 3, 5, 6, 7, 10, 14, and 15.

This theorem was elegantly reproven by Bhargava in 2000 (see [2]). Bhargava’s approach is to
work with integral lattices, and to classify escalator lattices - lattices that must be inside any
lattice whose corresponding quadratic form represents all positive integers. As a consequence,
Bhargava found that there are in fact 204 universal quaternary integer-matrix forms. Willerding
had missed 36 universal forms, listed one universal form twice, and listed nine forms which were
not universal.

Bhargava’s approach is quite general. Indeed, he has proven that for any infinite set S, there
is a finite subset S0 of S so that any positive-definite integral quadratic form represents all
numbers in S if it represents the numbers in S0. Here the notion of integral quadratic form can
mean either integer-matrix or integer-valued (and the set S0 depends on which notion is used).
Bhargava proves that if S is the set of odd numbers, then any integer-matrix form represents
everything in S if it represents everything in S0 = {1, 3, 5, 7, 11, 15, 33}. He also determines
S0 in the case that S is the set of prime numbers (again for integer-matrix forms); the largest
element of S0 is 73. (These results are stated in [32].)

While working on the 15-Theorem, Conway and Schneeberger were led to conjecture that every
integer-valued quadratic form that represents the positive integers between 1 and 290 must be
universal. Bhargava and Hanke’s celebrated 290-Theorem proves this conjecture (see [1]). Their
result is the following.
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Theorem (“The 290-Theorem”). If a positive-definite integer-valued quadratic form represents
the twenty-nine integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,

then it represents all positive integers.

They also show that every one of the twenty-nine integers above is necessary. Indeed, for every
integer t on this list, there is a positive-definite integer-valued quadratic form that represents
every positive integer except t. As a consequence of the 290-Theorem, they are able to prove
that there are exactly 6436 universal integer-valued quaternary quadratic forms.

A regular positive-definite quadratic form is a form Q(~x) with the property that if n is a
positive integer and Q(~x) = n is solvable in Zp for all primes p, then Q(~x) = n is solvable in Z.
Willerding and Bhargava make use of regular forms in their work on universal integer-matrix
forms.

In the work of Bhargava and Hanke, they switch to using the analytic theory of modular forms,
as they need to completely understand more than 6000 quaternary quadratic forms to prove the
290-Theorem. This technique is very general and requires extensive computer computations.

In this paper, we will consider the problem of determining a finite set S0 with the property
that a positive-definite integer-valued quadratic form represents every odd positive integer if
and only if it represents everything in S0. One difference between this problem and the case
when S is all positive integers is that there are ternary quadratic forms that represent all odd
integers, and it is necessary to classify these. In [30], Kaplansky considers this problem. He
proves that there are at most 23 such forms, and gives proofs that 19 of the 23 represent all
odd positive integers. He describes the remaining four as “plausible candidates” and indicates
that they represent every odd positive integer less than 214. In [26], Jagy proved that one of
Kaplansky’s candidates, x2 +3y2 +11z2 +xy+7yz, represents all positive odds. The remaining
three have yet to be treated.

Conjecture 1. Each of the ternary quadratic forms

x2 + 2y2 + 5z2 + xz

x2 + 3y2 + 6z2 + xy + 2yz

x2 + 3y2 + 7z2 + xy + xz

represents all positive odd integers.

Remark. There is (at present) no general algorithm for determining the integers represented
by a positive-definite ternary quadratic form Q. If n is a large positive integer, the number of
representations by Q is closely approximated by an expression involving the class number of an
imaginary quadratic field (depending on n, see Section 6 for more detail). Bounds for class
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numbers are closely tied to the question of whether a quadratic Dirichlet L-function can have a
Siegel zero, and this is one of the most notorious unsolved problems in number theory.

We can now state our first main result.

Theorem 2 (“The 451-Theorem”). Assume Conjecture 1. Then, a positive-definite, integer-
valued quadratic form represents all positive odd integers if and only if it represents the 46
integers

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 47,

51, 53, 57, 59, 77, 83, 85, 87, 89, 91, 93, 105, 119, 123, 133, 137,

143, 145, 187, 195, 203, 205, 209, 231, 319, 385, and 451.

As was the case for the 290-Theorem, all of the integers above are necessary.

Corollary 3. For every one of the 46 integers t on the list above, there is a positive-definite,
integer-valued quadratic form that represents every odd number except t.

We also have an analogue of results proven in [2] and [1] regarding what happens if the largest
number is omitted.

Corollary 4. Assume Conjecture 1. If a positive-definite, integer-valued quadratic form rep-
resents every positive odd number less than 451, it represents every odd number greater than
451.

As a consequence of the 451-Theorem, we can classify integer-valued quaternary forms that
represent all positive odd integers.

Corollary 5. Assume Conjecture 1. Suppose that Q is a positive-definite, integer-valued,
quaternary quadratic form that represents all positive odds. Then either:

(a) Q represents one of the 23 ternary quadratic forms which represents all positive odds, or

(b) Q is one of 21756 quaternary forms.

To prove the 451-Theorem, we must determine the positive, odd, squarefree integers represented
by 24888 quaternary quadratic forms Q. Any form that represents all positive odd numbers
must represent either one of Kaplansky’s ternaries, or one of these 24888 quaternary forms.
This makes the analysis of forms in five or more variables much simpler.

To analyze the quaternary forms, we use a combination of four methods. The first method
checks to see if a given quaternary represents any of the 23 ternaries listed by Kaplansky. If
so, it must represent all positive odds (assuming Conjecture 1).

The second method attempts to find, given the integer lattice L corresponding to Q, a ternary
sublattice L′ so that the quadratic form corresponding to L′ is regular, and the lattice L′ ⊕
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(L′)⊥ locally represents all positive odds. We make use of the classification of regular ternary
quadratic forms due to Jagy, Kaplansky, and Schiemann [27]. This is a version of the technique
used by Willerding and Bhargava.

The last two methods are analytic in nature. If Q is a positive-definite, integer-valued quater-
nary quadratic form, then

θQ(z) =
∞∑
n=0

rQ(n)qn ∈M2(Γ0(N), χ), q = e2πiz

is a modular form of weight 2. We can decompose θQ(z) as

θQ(z) = E(z) + C(z)

=
∞∑
n=0

aE(n)qn +
∞∑
n=1

aC(n)qn.

Theorem 5.7 of [20] gives the lower bound

aE(n) ≥ CEn
∏
p|n

χ(p)=−1

p− 1

p+ 1

for some some constant CE, depending on Q, provided n is squarefree and locally represented
by Q. We may decompose the form C(z) into a linear combination of newforms (and the images
of newforms under V (d)). It is known that the nth Fourier coefficient of a newform of weight 2
is bounded by d(n)n1/2 (first proven by Eichler, Shimura, and Igusa in the weight 2 case, and
Deligne in the general case), and so there is a constant CQ so that

|aC(n)| ≤ CQd(n)n1/2.

If we can compute or bound the constants CE and CQ, we can determine the squarefree integers
represented by Q via a finite computation.

One method we use is to compute the constant CQ explicitly, by computing the Fourier ex-
pansions of all newforms and expressing C(z) in terms of them. This method is the approach
taken by Bhargava and Hanke to all of the cases they consider in [1], and works very well when
the coefficient fields of the newforms are reasonably small.

However, in Bhargava and Hanke’s cases, the newforms in the decomposition have coefficients
in number fields of degree as high as 672. Jonathan Hanke reports that computations of CQ
take weeks of CPU time on current hardware. In our case, we must consider spaces that have
Galois conjugacy classes of newforms of size at least 1312, and for degrees as large as this, this
explicit, direct approach is impossible from a practical standpoint.

These large degree number fields only arise in cases when S2(Γ0(N), χ) is close to being irre-
ducible as a Hecke module. If the conductor of χ is not primitive, we have a decomposition of
S2(Γ0(N), χ) into old and new subspaces which are Hecke stable. For this reason, we develop
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a new method to bound the constant CQ without explicitly computing the newform decom-
position of C which applies when the discriminant of the quadratic form Q is a fundamental
discriminant.

Our method allows us to improve significantly the bounds given in the literature on the largest
integer n that is not represented by a form Q satisfying appropriate local conditions. For a
form Q(~x) = 1

2
~xTA~x, where A has integer entries and even diagonal entries, let D(Q) = detA

be the discriminant of Q, and let N(Q) be the level of Q. In [46], Schulze-Pillot proves the
following result.

Theorem. Suppose that Q is a positive-definite, integer-valued, quaternary quadratic form with
level N(Q). If n is a positive integer so that Q(~x) = n has primitive solutions in Zp for all
primes p, and

n� N(Q)14+ε,

then n is represented by Q.

Remark. We have given a simplified version of Schulze-Pillot’s result. The bound Schulze-
Pillot gives is completely explicit.

In [5], Browning and Dietmann use the circle method to study integer-matrix quadratic forms
Q(~x) = ~xTA~x. A pair (Q, k) (consisting of a quaternary quadratic form and a positive integer
k) satisfies the strong local solubility condition if for all primes p there is a vector ~x ∈ Z4 so
that

Q(~x) ≡ k (mod p1+2τp)

and p - A~x. Here τp is zero if p is odd and is one if p = 2. Their result about quaternary forms
is the following.

Theorem. Assume the notation above and let ‖Q‖ denote the largest entry in the Gram matrix
A of Q. Let k∗4(Q) be the largest positive integer k that satisfies the strong local solubility
condition but is not represented by Q. Then

k∗4(Q)� D(Q)2‖Q‖8+ε.

Remark. Depending on the quaternary form Q, the bound above is between D(Q)4+ε and
D(Q)10+ε. For a “generic” quaternary form with small coefficients, we have ‖Q‖ � D(Q)1/4

and the bound D(Q)4+ε.

Our next main result is a significant improvement on the result of Browning and Dietmann
in the two cases that D(Q) is a fundamental discriminant, or that N(Q) is a fundamental
discriminant and D(Q) = N(Q)3.

Theorem 6. Suppose that Q is a positive-definite integer-valued quaternary quadratic form
with fundamental discriminant D(Q). If n is locally represented by Q, but is not represented
by Q, then

n� D(Q)2+ε.
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If Q is a form whose level N(Q) is a fundamental discriminant and D(Q) = N(Q)3 and n is
locally represented by Q but not represented, then

n� D(Q)1+ε.

Remark. To compare our result with that of Browning and Dietmann we need some bound
on ‖Q‖. The best general bounds we can give in the two cases are ‖Q‖ � D(Q) and ‖Q‖ �
D(Q)1/3, respectively. Their result then yields the bounds n� D(Q)10+ε and n� D(Q)14/3+ε,
respectively.

Remark. In Theorem 6.3 of [20], bounds on the largest non-represented integer that is locally
represented and has a priori bounded divisibility by the anisotropic primes in terms of the
constant CQ. Our contribution is to give a strong bound on CQ as a function of D(Q) (in the
case that D(Q) is a fundamental discriminant).

Remark. Theorem 2 and Theorem 6 both rely on a formula for the Petersson norm of the
cusp form C(z). This can be translated into a bound on the cusp constant CQ provided lower
bounds on the Petersson norms of the newform constituents of C(z) are available. Theorem 6
is ineffective because of the possibility of a Siegel zero of arising from an L-function of a CM
newform g. However, for a given Q, all such g can be enumerated and the relevant L-values
computed numerically. This allows one to extract an explicit bound for the cusp constant CQ.

Our method is similar to the approach of Schulze-Pillot [46] and Fomenko (see [15] and [16]). We
obtain upper bounds on 〈C,C〉 and lower bounds on 〈gi, gi〉 using the theory of Rankin-Selberg
L-functions.

If gi =
∑∞

n=1 a(n)qn and gj =
∑∞

n=1 b(n)qn are two newforms in Sk(Γ0(N), χ) with

L(gi, s) :=
∞∑
n=1

a(n)

ns+
k−1
2

=
∏
p

(1− αpp−s)−1(1− βpp−s)−1,

L(gj, s) :=
∞∑
n=1

b(n)

ns+
k−1
2

=
∏
p

(1− γpp−s)−1(1− δpp−s)−1,

the Rankin-Selberg convolution L-function of gi and gj is

L(gi⊗gj, s) =
∏
p|N

Lp(gi⊗gj, s)
∏
p-N

(1−αpγpp−s)−1(1−αpδpp−s)−1(1−βpγpp−s)−1(1−βpδpp−s)−1.

Here Lp(gi⊗gj, s) is an appropriate local factor predicted by the local Langlands correspondence
(and worked out explicitly by Li in [36]). If gj = gi, then L(gi ⊗ gj, s) has a pole at s = 1 with
residue equal to an explicit factor times the Petersson norm of gi. If the factor Lp(gi⊗ gj, s) is
chosen appropriately, then L(gi⊗ gj, s) will have a meromorphic continuation to all of C (with
the only possible pole occurring when s = 1 and gj = gi) and a functional equation of the usual
type.
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In the appendix to [22], Goldfeld, Hoffstein, and Lieman show that L(gi ⊗ gi, s) has no Siegel
zero. We make effective the result of Goldfeld, Hoffstein and Lieman, and translate this into
an explicit lower bound for 〈gi, gi〉.
To give a bound on the Petersson norm of C, we need to extend our theory of Rankin-Selberg
L-functions to arbitrary elements of S2(Γ0(N), χ). If f, g ∈ S2(Γ0(N), χ) we decompose

f =
u∑
i=1

cigi, and g =
u∑
j=1

djgj

into linear combinations of newforms and define

L(f ⊗ g, s) =
u∑
i=1

u∑
j=1

cidjL(gi ⊗ gj, s).

However, the prediction for Lp(gi ⊗ gj, s) that comes from the local Langlands correspondence
makes it so the formula that takes a pair (f, g) and expresses L(f⊗g, s) in terms of the Fourier
coefficients of f and g is not, in general, bilinear. For this reason, there is no straightforward
way to use these Rankin-Selberg L-functions to compute 〈C,C〉.
However, we prove that bilinearity holds if when restricted to

S−2 (Γ0(N), χ) =

{
∞∑
n=1

a(n)qn ∈ S2(Γ0(N), χ) : a(n) = 0 if χ(n) = 1

}
.

Hence, for forms f ∈ S−2 (Γ0(N), χ), L(f ⊗ f, s) has an analytic continuation, functional equa-
tion, relation between Ress=1L(f ⊗ f, s) and the Petersson norm of f , and a Dirichlet series
representation that can be expressed in terms of the coefficients of f . For an arbitrary qua-
dratic form Q, the cuspidal part of its theta function C need not be in S−2 (Γ0(N), χ). The
assumption that Q = 1

2
~xTA~x where D(Q) = det(A) is a fundamental discriminant implies that

if Q∗ = 1
2
~xTNA−1~x, then θQ∗ = E∗ + C∗ and C∗ ∈ S−2 (Γ0(N), χ). Also, 〈C∗, C∗〉 = 1√

N
〈C,C〉.

Using the functional equation for L(C∗ ⊗ C∗, s), we are able to derive a formula for 〈C∗, C∗〉
(see Proposition 14). This formula is useful both theoretically (in the proof of Theorem 6) and
practically. As an added bonus, the Fourier coefficients of C∗ are faster to compute than those
of C, since the discriminant of the form Q∗ is much larger than that of Q.

The method described above gives a much faster algorithm for determining the integers repre-
sented by a quadratic form Q with fundamental discriminant. In particular, we can determine
the odd squarefree integers represented by a quadratic form Q with θQ ∈ M2(Γ0(6780), χ6780)
using 26 minutes of CPU time (see Example 5 of Section 5). This and subsequent CPU time
estimates refer to computations done by the author on a 3.2GHz Intel Xeon W3565 processor.

Finally, we return to Conjecture 1. For a ternary quadratic form Q, the analytic theory gives
a formula of the type

rQ(n) = ah(−bn) +B(n)
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provided n is squarefree and locally represented by Q. Here, h(−bn) is the class number of
Q(
√
−bn), and B(n) is the nth coefficient of a weight 3/2 cusp form, and the constants a, b,

and the form of B(n) depend on the image of n in Q×p /(Q×p )2 for primes p dividing the level of
Q.

Given the ineffective bound h(−bn)� n1/2−ε for all ε > 0, a bound of the shape |B(n)| � n1/2−δ

for some fixed δ > 0 is necessary to show that rQ(n) > 0 for large n. Waldspurger’s theorem
relates B(n) to the central L-values of quadratic twists of a fixed number of weight 2 modular
forms, and so a non-trivial bound on B(n) is equivalent to a sub-convexity estimate for these
central L-values. Estimates of this type were given by Parson [40] for coefficients of half-integer
weight forms of weight ≥ 5/2 and improved by Iwaniec [23]. Duke’s result in [14] handles the
weight 3/2 case and gives a bound with δ = 1/28. Bykovskii (see [8]) gave a bound with
δ = 1/16 valid for weights greater than or equal to 5/2, and Blomer and Harcos [3] obtain
δ = 1/16 for weight 3/2.

Given that the bound on the class number is ineffective, we follow the conditional approach
pioneered by Ono and Soundararajan [39], Kane [29], and simplified by Chandee [9].

Theorem 7. The Generalized Riemann Hypothesis implies Conjecture 1.

An outline of the paper is as follows. In Section 2 we will review necessary background about
quadratic forms and modular forms. In Section 3 we develop the theory of Rankin-Selberg
L-functions which we will use in Section 4 to prove Theorem 6. In Section 5 we will prove the
451-Theorem, and in Section 6 we will prove Theorem 7.

Acknowledgements. The author used the computer software package Magma [4] version 2.17-
10 extensively for the computations that prove the 451-Theorem. The author would also like
to thank Manjul Bhargava, Jonathan Hanke, David Hansen, Ben Kane, and Ken Ono for
helpful conversations. This work was completed over the course of five years at the Univer-
sity of Wisconsin-Madison, the University of Illinois at Urbana-Champaign, and Wake Forest
University. The author wishes to thank each of these institutions for their support of this
work. Finally, the author wishes to acknowledge helpful comments from Tim Browning and the
anonymous referees.

2. Background and notation

A quadratic form in r variables Q(~x) is integer-valued if it can be written in the form Q(~x) =
1
2
~xTA~x, where A is a symmetric r × r matrix with integer entries, and even diagonal entries.

The matrix A is called the Gram matrix of Q. The quadratic form Q is called positive-definite
if Q(~x) ≥ 0 for all ~x ∈ Rr with equality if and only if ~x = ~0. The discriminant of Q is the
determinant of A, and the level of Q is the smallest positive integer N so that NA−1 has integer
entries and even diagonal entries.
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Let H = {x+ iy : x, y ∈ R, y > 0} denote the upper half plane. If k and N are positive integers,
and χ is a Dirichlet character mod N , let Mk(Γ0(N), χ) denote the vector space of modular
forms (holomorphic on H and at the cusps) of weight k that transform according to

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for

[
a b
c d

]
∈ Γ0(N), the subgroup of SL2(Z) consisting of matrices whose bottom left entry is

a multiple of N . Let Sk(Γ0(N), χ) denote the subspace of cusp forms. If λ is an integer, let
Mλ+ 1

2
(Γ0(4N), χ) denote the vector space of holomorphic half-integer weight modular forms

that transform according to

g

(
az + b

cz + d

)
= χ(d)

(
c

d

)2λ+1

ε−1−2λ
d (cz + d)λ+ 1

2 g(z)

for all

[
a b
c d

]
∈ Γ0(4N). Here

(
c
d

)
is the usual Jacobi symbol if d is odd and positive and c 6= 0.

We define
(

0
±1

)
= 1 and (

c

d

)
=

{(
c
|d|

)
if d < 0 and c > 0,

−
(
c
|d|

)
if d < 0 and c < 0.

Finally εd is 1 if d ≡ 1 (mod 4) and i if d ≡ 3 (mod 4). Let Sλ+ 1
2
(Γ0(4N), χ) denote the

subspace of cusp forms.

For an integer-valued quadratic form Q, let rQ(n) = #{~x ∈ Zr : Q(~x) = n}. The theta series
of Q is the generating function

θQ(z) =
∞∑
n=0

rQ(n)qn, q = e2πiz.

When r is even, Theorem 10.9 of [24] shows that θQ(z) ∈ Mr/2(Γ0(N), χD), where D =

(−1)r/2 detA. If r is odd, Theorem 10.8 of [24] gives that θQ(z) ∈Mr/2(Γ0(2N), χ2 detA). Here

and throughout, χD denotes the Kronecker character of the field Q(
√
D). We may decompose

θQ(z) as
θQ(z) = E(z) + C(z)

where E(z) =
∑∞

n=0 aE(n)qn is an Eisenstein series, and C(z) =
∑∞

n=1 aC(n)qn is a cusp form.

If Q is an integer-valued positive definite quadratic form Q, one can associate to Q a lattice L
(and vice versa) as follows. We let L = Zr and define an inner product on L by

〈~x, ~y〉 =
1

2
(Q(~x+ ~y)−Q(~x)−Q(~y)) .

If ~x ∈ L, then 〈~x, ~x〉 = Q(~x) is an integer, however arbitrary inner products 〈x, y〉 with ~x, ~y ∈ L
need not be integral. Suppose that R is an integer-valued quadratic form in m ≤ r variables
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y1, y2, . . . , ym. Then Q represents R if there are linear forms L1, L2, . . . , Lr in the yi with integer
coefficients so that

Q(L1, L2, . . . , Lr) = R.

It is easy to see that this occurs if and only if there is a dimension m sublattice L′ ⊆ L so that
L′ is isometric to the lattice corresponding to R.

Let Zp be the ring of p-adic integers. We say that Q locally represents the non-negative integer
m if for all primes p there is a vector ~xp ∈ Zrp so that Q(~xp) = m. We say that m is represented
by Q if there is a vector ~x ∈ Zr with Q(~x) = m.

For a quadratic form Q, we let Gen(Q) denote the finite collection of quadratic forms R so that
R is equivalent to Q over Zp for all primes p. From the work of Siegel [50] it is known that we
can express the Eisenstein series E(z) as a weighted sum over the genus. In particular,

(1) E(z) =

∑
R∈Gen(Q)

θR(z)
#Aut(R)∑

R∈Gen(Q)
1

#Aut(R)

.

Moreover, the coefficients aE(m) of E(z) can be expressed as a product

aE(m) =
∏
p≤∞

βp(m)

of local densities βp(m). We will make use of the algorithms of Hanke [20] and the formulas of
Yang [53] for these local densities.

If Q is a quadratic form over Qp, Q is equivalent to a diagonal form

a1x
2
1 + a2x

2
2 + · · ·+ arx

2
r.

The discriminant of Q is defined to be
∏r

i=1 ai, and is well-defined up to a square in Q×p . We
define the ε-invariant of Q as in Serre [48] by

εp(Q) =
∏

1≤i<j≤r

(ai, aj)p,

where (a, b)p denotes the usual Hilbert symbol. Theorem 4.7 (pg. 39) of [48] proves that two
quadratic forms are equivalent over Qp if and only if they have the same rank r, the same
discriminant, and the same ε-invariant.

If Q is an integer-valued quadratic form and p is a prime, we say that Q is anisotropic at p if
whenever ~x ∈ Zrp and Q(~x) = 0, then ~x = 0. If the rank of Q is 3 or 4, Q has only finitely
many anisotropic primes, and if Q is anisotropic at p, then p|N . When r = 4, there is a unique
Qp equivalence class of forms that are anisotropic at p. Such forms have a square discriminant
in Q×p , and ε-invariant εp(Q) = −(−1,−1)p. If the rank of Q is greater than or equal to 5, Q
does not have any anisotropic primes.

We will briefly review the theory of integer weight newforms due to Atkin, Lehner, and Li. If
d is a positive integer, the map f(z)|V (d) = f(dz) sends Sk(Γ0(M), χ) to Sk(Γ0(Md), χ). For
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forms f, g ∈ Sk(Γ0(N), χ), define the Petersson inner product

〈f, g〉 =
3

π[SL2(Z) : Γ0(N)]

∫∫
H/Γ0(N)

f(x+ iy)g(x+ iy)yk
dx dy

y2
.

For each prime p, there is a Hecke operator T (p) : Sk(Γ0(N), χ)→ Sk(Γ0(N), χ) given by(
∞∑
n=1

a(n)qn

)
|T (p) =

∞∑
n=1

(
a(pn) + χ(p)pk−1a(n/p)

)
qn.

If p is a prime with gcd(N, p) = 1, then the adjoint of the Hecke operator T (p) under the
Petersson inner product is χ(p)T (p) (see Theorem 5.5.3 of [11]).

For N fixed, let Sold
k (Γ0(N), χ) be the subspace of Sk(Γ0(N), χ) generated by Sk(Γ0(M), χ)|V (d)

over all pairs (d,M) with dM |N , cond(χ)|M andM < N . Let Snew
k (Γ0(N), χ) be the orthogonal

complement of Sold
k (Γ0(N), χ) with respect to the Petersson inner product.

A newform is a form f ∈ Snew
k (Γ0(N), χ) that is a simultaneous eigenform of the operators

T (p) for all primes p, and normalized so that if f(z) =
∑∞

n=1 a(n)qn, then a(1) = 1. The space
Snew
k (Γ0(N), χ) is spanned by newforms. Deligne’s theorem gives the bound

|a(n)| ≤ d(n)n
k−1
2

on the nth Fourier coefficient of any newform, where d(n) is the number of divisors of n. (In
the case of k = 2, this result was first established by Eichler, Shimura, and Igusa.) The adjoint
formula for the Hecke operators shows that if f and g are two distinct newforms, then 〈f, g〉 = 0.
If cond(χ) denotes the conductor of the Dirichlet character χ and p is a prime with p|N , then
the pth coefficient of the newform f satisfies

(2) |a(p)| =


p
k−1
2 if cond(χ) - N/p

p
k
2
−1 if p2 - N and cond(χ)|N/p

0 if p2|N and cond(χ)|N/p.

(See Theorem 3 of [35].) Finally, define the operator WN : Snew
k (Γ0(N), χ) → Snew

k (Γ0(N), χ)
by

f |WN = N−k/2zk/2f

(
− 1

Nz

)
.

We have W 2
N = (−1)k.

If ε ∈ {±1}, define the subspace M ε
k(Γ0(N), χ) to be the set of forms

g(z) =
∞∑
n=0

b(n)qn ∈Mk(Γ0(N), χ)

with the property that b(n) = 0 if χ(n) = −ε, and let Sεk(Γ0(N), χ) = M ε
k(Γ0(N), χ) ∩

Sk(Γ0(N), χ). Since the adjoint of T (p) is χ(p)T (p), for a newform f(z) =
∑∞

n=1 a(n)qn we
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have a(n) = χ(n)a(n) if gcd(n,N) = 1. In the case when χ is quadratic, and cond(χ) = N ,
the old subspace is trivial, and

dimS+
k (Γ0(N), χ) = dimS−k (Γ0(N), χ) =

1

2
dimSk(Γ0(N), χ)

and the ε-subspace is spanned by {f + εf : f a newform }, where if f(z) =
∑∞

n=1 a(n)qn, then

f(z) =
∑∞

n=1 a(n)qn.

A newform f of weight k ≥ 2 is said to have complex multiplication (or CM) if there is Hecke
Grössencharacter ξ that corresponds to it. This means that there is an imaginary quadratic
field K = Q(

√
−D), a nonzero ideal Λ ⊆ OK , and a homomorphism ξ from the group of all

fractional ideals of OK relatively prime to Λ to C× so that

ξ(αOK) = αk−1 if α ≡ 1 (mod Λ),

and so that

f(z) =
∑
a⊆OK

ξ(a)qN(a),

where the sum if over all integral ideals a of OK and N(a) = #(OK/a) denotes the norm of a.
For more details about Hecke Grössencharacters, see Chapter 12 of [24].

3. Rankin-Selberg L-functions

IfQ is a positive-definite, quaternary, integer-valued quadratic form, then θQ(z) =
∑∞

n=0 rQ(n) ∈
M2(Γ0(N), χ) for some positive integer N , and Dirichlet character χ. Let θQ(z) = E(z) +C(z)
be the decomposition as the sum of an Eisenstein series and a cusp form, where

C(z) =
∞∑
n=1

aC(n)qn ∈ S2(Γ0(N), χ).

Lower bounds on the coefficients aE(n) of E(z) are given by Hanke in [20] when n is locally
represented by Q (provided n has a priori bounded divisibility by any anisotropic primes) and
are of the form aE(n)�Q n

1−ε. We may decompose

(3) C(z) =
∑
M |N

dimSnew
2 (Γ0(M),χ)∑
i=1

∑
d

cd,i,Mgi,M |V (d),

where the gi,M are newforms of level M . Applying Deligne’s bound, we have that the nth
Fourier coefficient of gi,M |V (d) is bounded by

d(n/d)
√
n/d ≤ 1√

d
d(n)
√
n.
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Since we are interested in representations of odd integers, we define Codd
Q to be

Codd
Q :=

∑
M |N

∑
i

∑
d odd

|cd,i,M |√
d

,

and we have that |aC(n)| ≤ Codd
Q d(n)n1/2 for all odd n.

Combining the lower bound on aE(n) with the upper bound on aC(n) shows that Q fails to rep-
resent only finitely many positive integers that are locally represented by Q, and have bounded
divisibility by any anisotropic primes. We are interested in determining the dependence on the
form Q of the constant Codd

Q , and the implied constant in the estimate for aE(n) �Q n1−ε.
These bounds we obtain will prove Theorem 6 and will be the basis of one of the methods we
use in Section 5 to prove the 451-Theorem.

For the remainder of this section, we assume that Q is a positive-definite, quaternary qua-
dratic form whose discriminant D is a fundamental discriminant. This implies that N = D,
and also that χ is a primitive Dirichlet character modulo N . Then the old subspace of
S2(Γ0(N), χ) is trivial, and the decomposition above simply becomes C(z) =

∑u
i=1 cigi(z),

where u = dimS2(Γ0(N), χ), and the gi(z) are newforms in S2(Γ0(N), χ). Taking the Peters-
son inner product of C with itself, and using that 〈gi, gj〉 = 0 if i 6= j implies that

〈C,C〉 =
u∑
i=1

|ci|2〈gi, gi〉.

Suppose that we have bounds A and B so that 〈C,C〉 ≤ A and 〈gi, gi〉 ≥ B for all i. Then, we
have

u∑
i=1

B|ci|2 ≤ A

and so

(4) Codd
Q =

u∑
i=1

|ci| ≤
√
u

√√√√ u∑
i=1

|ci|2 ≤
√
Au

B
,

which follows by the Cauchy-Schwarz inequality. Hence, a bound on Codd
Q follows from an

upper bound on 〈C,C〉 and a lower bound on 〈gi, gi〉. We will derive bounds on both of these
quantities using the theory of Rankin-Selberg L-functions.

Suppose that f(z) =
∑∞

n=1 a(n)qn and g(z) =
∑∞

n=1 b(n)qn are cusp forms of weight k. Rankin
[43] and Selberg [47] independently developed their convolution L-function

∞∑
n=1

a(n)b(n)

ns+k−1



QUADRATIC FORMS REPRESENTING ALL ODD INTEGERS 15

and studied its analytic properties. The most relevant property is that the residue of this L-
function at s = 1 is essentially the Petersson inner product 〈f, g〉. Some of the specific results
that we will require about Rankin-Selberg L-functions were worked out by Li in [36].

Theorem 8. Suppose that N is a fundamental discriminant, χ is a quadratic Dirichlet char-
acter with conductor N , and f, g ∈ S2(Γ0(N), χ) are newforms with L-functions

L(f, s) =
∏
p

(1− αpp−s)−1(1− βpp−s)−1

L(g, s) =
∏
p

(1− γpp−s)−1(1− δpp−s)−1.

For p|N , exactly one of the Euler factors of L(f, s) and L(g, s) is zero, and we make the
convention that βp = δp = 0. Then

L(f ⊗ g, s) =
∏
p|N

(1− αpγpp−s)−1(1− αpγpp−s)−1·

∏
p-N

(1− αpγpp−s)−1(1− αpδpp−s)−1(1− βpγpp−s)−1(1− βpδpp−s)−1,

L(Ad2f, s) =
∏
p

(1− α2
pχ(p)p−s)−1(1− p−s)−1(1− β2

pχ(p)p−s)−1.

These two L-functions are entire (with the possible exception of a pole at s = 1 for L(f ⊗ g, s))
and satisfy the functional equations

Λ(f ⊗ g, s) = N sπ−2sΓ
(s

2

)
Γ

(
s+ 1

2

)2

Γ

(
s+ 2

2

)
L(f ⊗ g, s),

Λ(f ⊗ g, s) = Λ(f ⊗ g, 1− s),

Λ(Ad2f, s) = N sπ−3s/2Γ

(
s+ 1

2

)2

Γ

(
s+ 2

2

)
L(Ad2f, s),

Λ(Ad2f, 1− s) = Λ(Ad2f, s).

We also have

Ress=1L(f ⊗ f, s) =
8π4

3

∏
p|N

1 +
1

p

 〈f, f〉.
Proof. The holomorphy and functional equations above follow from Theorem 2.2 of [36], and the
residue formula follows from Theorem 3.2 of [36]. In the notation of Li, M = M ′ = 1, M ′′ = N ,
and the set P is empty. The statements about L(Ad2f, s) follow from the observations that
L(Ad2f, s) = 1

ζ(s)
L(f⊗f, s), and that L(Ad2f, s) is also entire (by work of Gelbart and Jacquet

[17]). �
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Goldfeld, Hoffstein and Lieman (see the appendix to [22]) show that if f is not a CM form, then
L(Ad2f, s) cannot have any real zeroes close to s = 1. This in turn implies a lower bound on
L(Ad2f, 1). Their proof involves calculations with the symmetric fourth power L-function. We
make their bounds completely explicit and we start by computing the local factors at primes
dividing the level using the local Langlands correspondence.

A newform g corresponds to a cuspidal automorphic representation π of GL2(AQ) (see [6],
Chapter 7 for details). Such a representation can be factored as

π = ⊗p≤∞πp
where each πp is a representation of GL2(Qp). The local Langlands correspondence gives
a bijection between the set of smooth, irreducible representations of GLn(Qp) and degree n
complex representations of the Weil-Deligne group W ′

Qp . It was conjectured by Langlands in
1967, proven in odd residue characteristic for GL2 by Jacquet and Langlands in 1970, and
proven for GLn by Harris and Taylor [21]. For more details see Section 10.3 of [6], [34], and [7]
for a thorough discussion of the GL(2) case.

Known instances of automorphic lifting maps (including the adjoint square map r : GL2 → GL3

due to Gelbart and Jacquet [17], the Rankin-Selberg convolution r : GL2×GL2 → GL4 due to
Ramakrishnan [41], and the symmetric fourth power map r : GL2 → GL5 due to Kim [31]) are
constructions of automorphic representations

Π = r(π) = ⊗p≤∞Πp

where Πp is computed by mapping πp to a degree 2 complex representation ρp of W ′
Qp via

the local Langlands correspondence, computing r(ρp) and mapping back to the automorphic
side (again by the local Langlands correspondence). Since the local Langlands correspondence
preserves local L-functions and conductors, to compute these, it suffices to know the represen-
tations r(ρp).

Proposition 9. Suppose that N is a fundamental discriminant, χ is a Dirichlet character
with conductor N , and f is a newform without CM in S2(Γ0(N), χ) with L-function L(f, s) =∏

p(1− αpp−s)−1(1− βpp−s)−1. Define

L(Sym4f, s) =
∏
p

(1−α4
pp
−s)−1(1−α2

pχ(p)p−s)−1(1−p−s)−1(1−α−2
p χ(p)p−s)−1(1−α−4

p p−s)−1.

This L-function is entire and satisfies the function equation

Λ(Sym4f, s) = N sπ−5s/2Γ
(s

2

)
Γ

(
s+ 1

2

)
Γ

(
s+ 2

2

)2

Γ

(
s+ 3

2

)
L(Sym4f, s)

Λ(Sym4f, 1− s) = Λ(Sym4f, s).

Remark. In the case that f does have CM, L(Sym4f, s) has a pole at s = 1 and the proof of
Proposition 11 below breaks down. This is the source of ineffectivity in Theorem 6.
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Remark. One can obtain numerical confirmation of the result above by checking the stated
functional equations using the L-functions package (available in PARI/GP, Magma and Sage)
due to Tim Dokchitser (see [13]).

Proof. Let p be a prime dividing N and let π be the local representation of GL2(Qp) that
occurs as a constituent of f . Since the pth Fourier coefficient of f has absolute value p1/2 (by
(2)), π must be a principal series representation π(ε, χpε

−1), where ε is an unramified character
of Q×p and χp is the local component of the Dirichlet character χ at p. (This follows from a
comparison of the different options for the local L-functions described in Chapter 6, Sections
25 and 26 of [7].)

Applying the local Langlands correspondence, it follows that π corresponds to a representation
ρ of the Weil group that is a sum of two characters σ 7→ δ1 ⊕ δ2. The Weil group WQp
is the subgroup of Gal(Qp/Qp) consisting of all elements restricting to some power of the

Frobenius on Fp. It is a quotient of the Weil-Deligne group. The local Langlands correspondence

maps a character of Q×p to a charater of Gal(Qp/Qp) using the reciprocity law homomorphism

c : Gal(Qp/Qp) → Q×p of class field theory χ 7→ χ ◦ c. Hence, the representation of WQp
corresponding to π(ε, ψε−1) is ρ1 ⊕ ρ2, where ρ1 = ε ◦ c and ρ2 = χpε

−1 ◦ c. Therefore, if r is
the symmetric fourth power map r : GL2 → GL5, we have that

r(ρ1 ⊕ ρ2) = ρ4
1 ⊕ ρ3

1ρ2 ⊕ ρ2
1ρ

2
2 ⊕ ρ1ρ

3
2 ⊕ ρ4

2.

Since the L-function of a semisimple Weil-Deligne representation ρ : Gal(Qp/Qp)→ GL(V ) is
given by

det
(
1− p−sρ(Frobp)|V Ip

)
,

we have that for a character χ, L(χ, s) = (1−χ(Frobp)p
−s)−1 if χ is unramified and L(χ, s) = 1

if χ is ramified. The stated formula for the local factors follows from the observation that ρ3
1ρ2

and ρ1ρ
3
2 are ramified, while the other three characters are unramified. The characters ρ3

1ρ2

and ρ1ρ
3
2 have the same conductor as that of ρ2 (which is p if p > 2, and is either p2 or p3

if p = 2). A simple calculation shows that the product of the local signs over all primes p is
equal to 1. The global conductor is the product of the local conductors and is hence N2. The
gamma factors are known (see [10]). �

Now, we make effective the zero-free region due to Goldfeld, Hoffstein, and Lieman from the
appendix to [22]. (See Lemmas 2 and 3 of [44] for a version in the case that f has level one.)

Proposition 10. Suppose N is a fundamental discriminant, χ is a quadratic Dirichlet char-
acter with conductor N , and f ∈ S2(Γ0(N), χ) is a newform without complex multiplication. If
N ≥ 44, then L(Ad2f, s) has no real zeroes s with

s > 1− 5− 2
√

6

4 log(N)− 11
.
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Proof. Goldfeld, Hoffstein, and Lieman use the auxiliary degree 16 L-function

L(s) = ζ(s)2L(Ad2f, s)3L(Sym4f, s).

The gamma factor is

G(s) = N4sπ−16s/2Γ
(s

2

)3

Γ

(
s+ 1

2

)7

Γ

(
s+ 2

2

)5

Γ

(
s+ 3

2

)
,

and the completed L-function Λ(s) = G(s)L(s) has a meromorphic continuation to C and
satisfies the functional equation Λ(s) = Λ(1 − s). The function s2(1 − s)2Λ(s) is an entire
function of order 1, and so we let

s2(1− s)2Λ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ

be its Hadamard product expansion. Taking the logarithmic derivative gives

(5)
∑
ρ

1

s− ρ
+

1

ρ
=

2

s
+

2

s− 1
+
G′(s)

G(s)
+
L′(s)

L(s)
−B.

We take the real part of both sides. Part 3 of Proposition 5.7 of [25] gives that Re (B) =

−
∑

ρ Re
(

1
ρ

)
. The Dirichlet coefficients of −L′(s)/L(s) are non-negative, and this implies that

L′(s)/L(s) < 0 if s > 1 is real. Taking the real part of (5) gives that∑
ρ

Re

(
1

s− ρ

)
≤ 2

s
+

2

s− 1
+
G′(s)

G(s)
.

We have

G′(s)

G(s)
= 4 log(N)− 8 log(π) +

1

2
[3ψ(s/2) + 7ψ((s+ 1)/2) + 5ψ((s+ 2)/2) + ψ((s+ 3)/2)] ,

where ψ(s) = Γ′(s)
Γ(s)

. Since ψ(s) is an increasing function of s, we have that G′(s)
G(s)
≤ 4 log(N)−13

if s ≤ 1.11.

We set s = 1 + α where 0 ≤ α ≤ 0.05 will be chosen later. If β is a real zero of L(Ad2f, s),
then it is a triple zero of L(s), and this means that

3

α + 1− β
≤ 2

α + 1
+

2

α
+
G′(1 + α)

G(1 + α)
≤ 2

α
+ (4 log(N)− 11).

Choosing α optimally gives that 1 − β ≥ 5−2
√

6
4 log(N)−11

, provided the corresponding value of s is

less than 1.11. This occurs for N ≥ 44, and shows that

β ≤ 1− 5− 2
√

6

4 log(N)− 11
.

�
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We now translate the above result into a lower bound on L(Ad2f, 1) by a similar argument to
that in Lemma 3 of [44].

Proposition 11. Suppose that N is a fundamental disriminant, χ is a quadratic Dirichlet
character with conductor N , and f is a newform in S2(Γ0(N), χ) that does not have complex
multiplication. Then

L(Ad2f, 1) >
1

26 log(N)
.

Proof. We consider

L(f ⊗ f, s) =
∞∑
n=1

a(n)

ns
.

The pth Euler factor of L(f ⊗ f, s) for p - N is

(1− α2
pχ(p)p−s)−1(1− p−s)−2(1− α−2

p χ(p)p−s)−1 =
∞∑
r=0

1

prs

br/2c∑
k=0

(
r−k∑
l=k

(
√
χ(p)αp)

r−2l

)2

.

Each of the inner sums over l are real and so the coefficient of p−rs is non-negative for all r. Also,
when r is even, the term with l = r/2 contributes 1 and so the coefficient of p−rs is ≥ 1 when
r is even. Similar conclusions hold for p|N where the local factor is (1 − p−s)−2 =

∑∞
n=0

n+1
pns

.

It follows that a(n) ≥ 0 and a(n2) ≥ 1 hold for all positive integers n.

Let β = 1− 5−2
√

6
4 log(N)−11

and assume that N is large enough that β ≥ 3/4. Set x = NA, where we

let A be a parameter that we will choose optimally at the end of the argument. We consider

I =
1

2πi

∫ 2+i∞

2−i∞

L(f ⊗ f, s+ β)xs ds

s
∏10

k=2(s+ k)
.

We have that

1

2πi

∫ 2+i∞

2−i∞

xs ds

s
∏10

k=2(s+ k)
=

{
(x+9)(x−1)9

10!x10
, if x > 1

0, if x < 1.

Therefore,

I =
1

2πi

∫ 2+i∞

2−i∞

L(f ⊗ f, s+ β)

s
∏10

k=2(s+ k)
=
∑
n≤x

a(n)(x/n+ 9)(x/n− 1)9

10!nβ(x/n)10

≥ 1

10!

∑
n2≤x

(x/n2 + 9)(x/n2 − 1)9

n2(x/n2)10
.

Since the function g(z) = (z+9)(z−1)9

z10
is increasing for z > 1, the above expression is increasing

as a function of x. If x ≥ 3989, then I ≥ 1.6
10!

, and if x ≥ 330775, then I ≥ 1.64
10!

.
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Now, we move the contour to Re (s) = α, where α = −3/2− β. There are poles at s = 1− β,
s = 0, and s = −2. We get

I =
1

2πi

∫ α+i∞

α−i∞

L(f ⊗ f, s+ β)xs ds

s
∏10

k=2(s+ k)
+

L(Ad2f, 1)x1−β

(1− β)
∏10

k=2(1− β + k)

+
L(f ⊗ f, β)

10!
− L(f ⊗ f,−2 + β)x−2

2 · 8!
.

There are no zeroes of L(Ad2f, s) to the right of β and so L(Ad2f, β) ≥ 0. Since ζ(β) < 0,
it follows that L(f ⊗ f, β) ≤ 0. Since the sign of the functional equation of L(f ⊗ f, s) is
1, it follows that there are an even number of real zeroes in the interval (0, 1) and hence
L(f ⊗ f, 0) < 0. The only zeroes with s < 0 are trivial zeroes, and a simple zero occurs at
s = −1. Thus, L(f ⊗ f,−2 + β) > 0 and so

I − 1

2πi

∫ α+i∞

α−i∞

L(f ⊗ f, s+ β)xs ds

s
∏10

k=2(s+ k)
≤ L(Ad2f, 1)x1−β

(1− β)
∏10

k=2(1− β + k)

Now, we apply the functional equation for L(f ⊗ f, s). It gives that∣∣∣∣L(f ⊗ f,−3

2
+ it

)∣∣∣∣ =
N4

(4π)8
|1 + 2it|4|3 + 2it|3|5 + 2it|

∣∣∣∣L(f ⊗ f, 5

2
− it

)∣∣∣∣ .
We have that |L(f ⊗ f, 5

2
− it)| ≤ ζ(5/2)4. We use this to derive the bound

1

2π

∫ α+i∞

α−i∞

∣∣∣∣∣L(f ⊗ f, s+ β)xs

s
∏10

k=2(s+ k)

∣∣∣∣∣ ds
≤ N4+A(−3/2−β)ζ(5/2)4

217π9

∫ ∞
−∞

|1 + 2it|4|3 + 2it|3|5 + 2it|
| − 3/2− β − it|

∏10
k=2 |k − 3/2− β + it|

dt

≤ N4+A(−3/2−β)ζ(5/2)4

217π9

∫ ∞
−∞

|1 + 2it|4|3 + 2it|3|5 + 2it|
|1/4 + it||9/4 + it|

∏10
k=3 |k − 5/2 + it|

dt.

Numerical computation gives the bound∫ ∞
−∞

|1 + 2it|4|3 + 2it|3|5 + 2it|
|1/4 + it||9/4 + it|

∏10
k=3 |k − 5/2 + it|

dt ≤ 2.776686,

and this gives

1

2π

∫ α+i∞

α−i∞

∣∣∣∣∣L(f ⊗ f, s+ β)xs

s
∏10

k=2(s+ k)

∣∣∣∣∣ ds ≤ N4+A(−3/2−β) · 8.35176 · 10−3

10!

Out of this, we get the lower bound

L(Ad2f, 1) ≥ (1− β)

(
c

NA(1−β)
− d

N (5/2)A−4

)
,
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where c = 1.6 or 1.64 depending on whether 3989 ≤ x < 330775 or x ≥ 330775. If we choose
A = 8/5 we get

L(Ad2f, 1) ≥ 1

26 log(N)
.

For computational purposes, we use the optimal choice of A, namely

(6) A =
1

β + 3/2

[
4− log(1− β) + log(c)− log(d)− log(5/2)

log(N)

]
.

These bounds suffice when N ≥ 167. For each of the newforms of level ≤ 166 satisfying the
hypotheses, we compute their Fourier coefficients using Magma and verify the claimed bound
using Proposition 14 (whose proof does not depend on the present result). �

The above proposition implies a lower bound on the Petersson norm of a newform f . We now
turn to the problem of bounding from above the Petersson norm 〈C,C〉. We will give a formula
for 〈C,C〉 using the functional equation for Rankin-Selberg L-functions, and this formula will
be used in subsequent sections to prove the 451-Theorem and Theorem 6. First, we give a
Dirichlet series representation for the Rankin-Selberg L-function L(f ⊗ g, s).

Lemma 12. Let N be a fundamental discriminant and χ be a quadratic Dirichlet character
with conductor N . If f, g ∈ S2(Γ0(N), χ) are newforms with

f(z) =
∞∑
n=1

a(n)qn, and g(z) =
∞∑
n=1

b(n)qn,

then

L(f ⊗ g, s) =
∞∑
n=1

 ∑
m|n

n/m is a square

2ω(gcd(m,N))Re (a(m)b(m))

m

 1

ns
.

Here for a positive integer m, ω(m) denotes the number of distinct prime factors of m.

Proof. Equation (13.1) of [24] states that if

∞∑
n=1

c(n)

ns
=
∏
p

(1− αpp−s)−1(1− βpp−s)−1, and
∞∑
n=1

e(n)

ns
=
∏
p

(1− γpp−s)−1(1− δpp−s)−1,

then
∞∑
n=1

c(n)e(n)

ns
=
∏
p

(1− αpβpγpδpp−2s)∏
p

(1− αpγpp−s)−1(1− αpδpp−s)−1(1− βpγpp−s)−1(1− βpδpp−s)−1.
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If we take c(n) = a(n)/
√
n and e(n) = b(n)/

√
n, and L(f, s) =

∏
p(1− αpp−s)−1(1− βpp−s)−1

and L(g, s) =
∏

p(1− γpp−s)−1(1− δpp−s)−1, it follows that∏
p-N

(1− αpγpp−s)−1(1− αpδpp−s)−1(1− βpγpp−s)−1(1− βpδpp−s)−1

=
∏
p-N

(1− p−2s)−1
∑

n coprime to N

a(n)b(n)

ns+1
.

For p|N , we again make the convention that βp = δp = 0. Thus

(7) (1− αpγpp−s)−1 =
∞∑
k=0

a(pk)b(pk)

pk(s+1)
.

The local factor of L(f ⊗ g, s) at p is (1 − αpγpp−s)−1(1 − αpγpp−s)−1. Multiplying (7) by its
conjugate, we get

(1− αpγpp−s)−1(1− αpγpp−s)−1 =
∞∑
k=0

1

pk(s+1)

k∑
i=0

a(pi)b(pi)a(p)k−ib(p)k−i

= (1− p−2s)−1

(
1 + 2

∞∑
k=1

Re
(
a(pk)b(pk)

)
pk(s+1)

)
.

Taking the product of the local factors over all primes p gives us the desired formula. �

If C1 and C2 are arbitrary cusp forms in S2(Γ0(N), χ), we define L(C1⊗C2, s) as follows. Write

C1(z) =
u∑
i=1

cigi(z) and C2(z) =
u∑
j=1

djgj(z),

where the gi(z), 1 ≤ i ≤ u are the newforms. Then, let

L(C1 ⊗ C2, s) =
u∑
i=1

u∑
j=1

cidjL(gi ⊗ gj, s).

The formula from Lemma 12 is not, in general, bilinear, and so it cannot equal L(C1 ⊗ C2, s)
for all pairs C1, C2 ∈ S2(Γ0(N), χ). The next result is that the formula is valid, provided both
C1 and C2 are in S+

2 (Γ0(N), χ) or S−2 (Γ0(N), χ).

Lemma 13. Let N be a fundamental discriminant and χ be a quadratic Dirichlet character
with conductor N . Suppose that f, g ∈ Sε2(Γ0(N), χ) where ε ∈ {±1} and

f(z) =
∞∑
n=1

a(n)qn, g(z) =
∞∑
n=1

b(n)qn,
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with a(n), b(n) ∈ R for all n. Then

L(f ⊗ g, s) =
∞∑
n=1

 ∑
m|n

n/m is a square

2ω(gcd(m,N))a(m)b(m)

m

 1

ns
.

Moreover, if

Λ(f ⊗ g, s) = N sπ−2sΓ
(s

2

)
Γ

(
s+ 1

2

)2

Γ

(
s+ 2

2

)
L(f ⊗ g, s),

then Λ(f ⊗ g, s) = Λ(f ⊗ g, 1− s), and we have

Ress=1L(f ⊗ g, s) =
8π4

3

∏
p|N

1 +
1

p

 〈f, g〉.
Proof. All of the statements in the theorem are R-bilinear. For this reason, it suffices to prove
them on a collection of basis elements for Sε2(Γ0(N), χ)∩R[[q]]: those of the form h+h if ε = 1
and i(h− h) if ε = −1. Suppose that h1 and h2 are newforms with

h1(z) =
∞∑
n=1

a(n)qn, h2(z) =
∞∑
n=1

b(n)qn,

and set i1(z) = h1(z) + h1(z) and i2(z) = h2(z) + h2(z) in the case that ε = 1 and i1(z) =
i(h1(z) − h1(z)) and i2(z) = i(h2(z) − h2(z)) in the case that ε = −1. A straightforward
calculation shows that in both cases,

L(i1 ⊗ i2, s) = εL(h1 ⊗ h2, s) + L(h1 ⊗ h2, s) + L(h1 ⊗ h2, s) + εL(h1 ⊗ h2, s).

The formula in Lemma 12 shows that for newforms f and g, L(f ⊗ g, s) = L(f ⊗ g, s) and so
we have

L(i1 ⊗ i2, s) = 2εL(h1 ⊗ h2, s) + 2L(h1 ⊗ h2, s).

This equality proves all of the claimed results, with the exception of the Dirichlet series repre-
sentation for L(i1 ⊗ i2, s).
If ε = 1, we have that the numerator of a term in the inner sum of L(i1 ⊗ i2, s) is

2ω(gcd(n,N))
(

2Re (a(n)b(n)) + 2Re
(
a(n)b(n)

))
= 2ω(gcd(n,N))(a(n)b(n) + a(n)b(n)) + 2ω(gcd(n,N))(a(n)b(n) + a(n)b(n))

= 2ω(gcd(n,N))(a(n) + a(n))(b(n) + b(n)).
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If ε = −1, we have

2ω(gcd(n,N))
(
−2Re (a(n)b(n)) + 2Re

(
a(n)b(n)

))
= 2ω(gcd(n,N))(−a(n)b(n)− a(n)b(n)) + 2ω(gcd(n,N))(a(n)b(n) + a(n)b(n))

= 2ω(gcd(n,N))(ia(n)− ia(n))(ib(n)− ib(n)).

It follows that if i1(z) =
∑∞

n=1 c(n)qn and i2(z) =
∑∞

n=1 e(n)qn, then

L(i1 ⊗ i2, s) =
∞∑
n=1

 ∑
m|n

n/m is a square

2ω(gcd(m,N))c(m)e(m)

m

 1

ns
,

which completes the proof. �

Remark. If f ∈ S+
2 (Γ0(N), χ) and g ∈ S−2 (Γ0(N), χ) have real Fourier coefficients, one can

see from the definition that L(f ⊗ g, s) = 0, while the formula from Lemma 12 is typically
nonzero. This shows that one cannot use the formula in Lemma 12 in all cases.

Finally, we give a formula for 〈C,C〉 under the assumption that C ∈ Sε2(Γ0(N), χ). We follow
the approach in [13]. To state our result, let Kν(z) denote the usual K-Bessel function of order
ν.

Proposition 14. Let N be a fundamental discriminant and χ be a quadratic Dirichlet character
with conductor N . Suppose that C(z) =

∑∞
n=1 a(n)qn ∈ Sε2(Γ0(N), χ) for ε ∈ {±1}. Let

ψ(x) = − 6

π
xK1(4πx) + 24x2K0(4πx).

Then,

〈C,C〉 =
1

[SL2(Z) : Γ0(N)]

∞∑
n=1

2ω(gcd(n,N))a(n)2

n

∞∑
d=1

ψ

(
d

√
n

N

)
.

Proof. Define (as in [13], pg. 139) the function

Θ(t) =
∞∑
n=1

b(n)φ

(
nt

N

)
,

where b(n) is the nth Dirichlet coefficient of L(C ⊗ C, s), namely

b(n) =
∑
m|n

n
m

is a square

2ω(gcd(m,N))a(m)2

m
,
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and φ is the inverse Mellin transform of the gamma factor π−2sΓ
(
s
2

)
Γ
(
s+1

2

)2
Γ
(
s+2

2

)
. Then,

Θ(t) is the inverse Mellin transform of Λ(C ⊗C, s). Using the functional equation and shifting
the contour to the left gives the formula

(8) Θ

(
1

t

)
= tΘ(t) + r(t− 1)

where r = Ress=1Λ(C⊗C, s) = −Ress=0Λ(C⊗C, s). Differentiating (8) and setting t = 1 gives

−Θ(1)− 2Θ′(1) = r.

Equation (10.43.19) of [37] gives the Mellin transform∫ ∞
0

tµ−1Kν(t) dt = 2µ−2Γ

(
µ− ν

2

)
Γ

(
µ+ ν

2

)
.

Applying the Mellin inversion formula and using that

π−2sΓ
(s

2

)
Γ

(
s+ 1

2

)2

Γ

(
s+ 2

2

)
= (2π)1−2sΓ(s)Γ(s+ 1)

we obtain that
φ(t) = 8π2

√
tK1(4π

√
t).

Thus,

Θ(t) =
∞∑
n=1

8π2b(n)

√
nt

N
K1

(
4π

√
nt

N

)
, and Θ′(t) =

∞∑
n=1

8π2b(n)

(
−2πn

N
K0

(
4π

√
nt

N

))
.

Taking the two formulas above, rewriting b(n) as a sum over m and d with n = md2, and
switching the order of summation gives the desired formula. �

4. Proof of Theorem 6

In this section, we use the results from Section 3 to prove Theorem 6. Assume as in the previous
section that Q is a positive-definite integer-valued quaternary quadratic form with fundamental
discriminant D = D(Q) and Gram matrix A. In this case, the level N = N(Q) of Q will equal
D, and we will use D and N interchangeably in what follows.

Define the quadratic form Q∗ by Q∗(~x) = 1
2
~xTNA−1~x and let

θQ(z) =
∞∑
n=0

rQ(n)qn = E(z) + C(z), and

θQ∗(z) =
∞∑
n=0

rQ∗(n)qn = E∗(z) + C∗(z).

Here E(z), E∗(z) are the Eisenstein series and C(z), C∗(z) ∈ S2(Γ0(N), χ). We cannot imme-
diately apply the formulas from Section 3 to estimate 〈C,C〉 because it is not generally true
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that C(z) ∈ Sε2(Γ0(N), χ) for ε = 1 or ε = −1. However, the following result allows us to work
with C∗ instead.

Proposition 15. We have 〈C,C〉 = N〈C∗, C∗〉. Moreover, C∗ ∈ S−2 (Γ0(N), χ).

Proof. First, Proposition 10.1 of [24] (pg. 167) shows that

θQ|WN = −
√
NθQ∗ .

The projection of θQ onto the space of Eisenstein series (forms in M2(Γ0(N), χ) that are orthog-

onal to all cusp forms) is E(z). It follows that (−1/
√
N)E(z)|WN is the projection of θQ∗ onto

the Eisenstein subspace and so C|WN = −
√
NC∗. Finally, WN is an isometry with respect to

the Petersson inner product (by Proposition 5.5.2 on page 185 of [11]). It follows that

〈C,C〉 = 〈C|WN , C|WN〉 = N〈C∗, C∗〉.

This proves the first statement.

For the second statement, we will show that θQ∗ ∈ M−
2 (Γ0(N), χ). This implies that E∗ ∈

M−
2 (Γ0(N), χ), since it is a linear combination of the theta series in Gen(Q∗), and this in turn

implies that C∗ ∈ S−2 (Γ0(N), χ).

Proving that θQ∗ ∈ M−
2 (Γ0(N), χ) is a fun exercise using ε-invariants. Factor the Dirichlet

character χ as

χ =
∏
p|2N

χp,

where for each prime p, χp is a primitive Dirichlet character whose conductor is a power of p.
Since cond(χ) = N , we have that if p > 2, χp(m) =

(
m
p

)
. We will show that if p is an odd

prime dividing N , then εp(Q) equals χp(m), where m is any integer relatively prime to N that
is represented by Q∗, while for p = 2, ε2(Q) = −χ2(m).

From the relation ∏
p|2N

εp(Q) = 1,

we have that if m is represented by Q∗ and gcd(m,N) = 1, then

χ(m) =
∏
p|2N

χp(m) = −ε2(Q)
∏
p|N
p>2

εp(Q) = −1.

This proves that θQ∗ ∈M−
2 (Γ0(N), χ).

Suppose that p is an odd prime with p|N . Since χ is primitive, it follows that ordp(D) =
ordp(N) = 1. It follows that the local Jordan splitting of Q is one of the options listed in the
table.
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Form Determinant square-class ε
x2 + y2 + z2 + pw2 p 1
x2 + y2 + nz2 + npw2 p −1
x2 + y2 + z2 + npw2 np 1
x2 + y2 + nz2 + pw2 np −1

Here n represents an element of Z×p that is not a square.

If the local Jordan splitting of the form Q is ax2 + by2 + cz2 + dw2, where d is either p or np,
the local splitting of the form Q∗ is Na−1x2 +Nb−1y2 +Nc−1z2 +Nd−1w2. It follows that if m
is represented by Q∗ and m is coprime to p, then χp(m) = χp(Nd

−1). If N/p is a square mod
p, then the determinant square class of Q is p. It follows that Nd−1 is a square mod p if and
only if ε = 1. If N/p is not a square mod p, the determinant square class of Q is np and once
again Nd−1 is a square mod p if and only if ε = 1. This proves that χp(Nd

−1) = εp(Q) if p is
odd.

Over Z2 every integral quadratic form can be decomposed as a sum of diagonal terms, and

blocks of the form

[
0 1
1 0

]
, and

[
2 1
1 2

]
(see [28]). If the D = detA is odd, then its Jordan

splitting over Z2 cannot contain any diagonal components. Therefore its splitting must consist

of two blocks. In the case that D ≡ 1 (mod 8), the two blocks must be

[
0 1
1 0

]
, and in the

case when D ≡ 5 (mod 8), one block is

[
0 1
1 0

]
and the other is

[
2 1
1 2

]
. Over Q2, the blocks[

0 1
1 0

]
and

[
2 1
1 2

]
are equivalent to 2x2−2y2 and 2x2 + 6y2. This means that the local Jordan

splitting of A is either 
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , or


0 1 0 0
1 0 0 0
0 0 2 1
0 0 1 2

 .
These are equivalent to x2− y2 + z2−w2 and x2− y2 + z2 + 3w2 respectively, and both of these
have ε = −1.

When the level is a multiple of 4 but not a multiple of 8, one can see that the quadratic form
is equivalent over Z2 to either

2a 0 0 0
0 2b 0 0
0 0 0 1
0 0 1 0

 , or


2a 0 0 0
0 2b 0 0
0 0 2 1
0 0 1 2


where ab ≡ 1 (mod 4). A straightforward calculation shows that in this case ε ≡ a (mod 4).
The local splitting of Q∗ shows that the relevant part (mod 4) is N

4
ax2 + N

4
by2. Since N ≡ 0
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(mod 4) and N/4 ≡ 3 (mod 4), this shows that the 2-adic squareclass represented by Q∗ is
−ε2(Q).

When the level is a multiple of 8, the quadratic form is equivalent over Z2 to either
2a 0 0 0
0 4b 0 0
0 0 0 1
0 0 1 0

 , or


2a 0 0 0
0 4b 0 0
0 0 2 1
0 0 1 2

 .
The form Q∗ represents precisely two odd integers mod 8: (D/8)b−1 and (D/8)(b−1 + 2a−1). A
calculation of all 32 options and their ε-invariants reveals that the desired result is true in this
case as well. This concludes the proof. �

In order to bound the largest locally represented integer not represented by Q, we will require
upper and lower bounds on the Eisenstein series coefficients aE(n) and aE∗(n).

Lemma 16. For any ε > 0, we have

n1−ε

N1/2
� aE(n)� n1+ε

N1/2

if n is locally represented by Q, and

n1−ε

N3/2
� aE∗(n)� n1+ε

N3/2−ε ,

if n is locally represented by Q∗. The implied constants depend only on ε.

Remark. We use the above Lemma only for the proof of Theorem 6. For the proof of The-
orem 2, we use computer calculations with local densities to derive completely explicit bounds
that depend on the form Q.

Proof. We have the formula

aE(n) =
∏
p≤∞

βp(n).

In [53], formulas are given for the local densities βp(n) (in Yang’s notation, these are αp(n,
1
2
A)).

See in particular Theorem 3.1 for p > 2 and Theorem 4.1 for p = 2. We have βp(n) = 1 if p > 2
and p - n.

If p is odd and p - N , then Theorem 3.1 of [53] gives the bounds 1− 1
p
≤ βp(n) ≤ 1 + 1

p
. If p is

odd and p|N , we get the same bound for the form Q. For the form Q∗ we get 1− 1
p
≤ βp(n) ≤ 2

provided n is locally represented. Theorem 4.1 of [53] shows that there is an absolute upper
bound on β2(n) over all positive integers n and all forms Q and Q∗ with discriminants N and
N3, where N is a fundamental discriminant.
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Notice that neither Q nor Q∗ can be anisotropic at any prime. There is a unique Qp-equivalence
class of quaternary quadratic forms that is anisotropic at p, and such forms must have discrim-
inant a square. The discriminant of Q is N and the discriminant of Q∗ is N3, and neither of
these are squares in Qp if p|N . From this and the recursion formulas of Hanke [20] it follows
that there is an absolute lower bound on β2(n) over all quaternary forms Q with fundamental

discriminant that locally represent n, and similarly for Q∗. Finally, β∞(n) = π2n√
D

.

Putting these bounds together gives

n√
N

∏
p|n

(
1− 1

p

)
�aE(n)� n√

N

∏
p|n

(
1 +

1

p

)
n1−ε

N1/2
�aE(n)� n1+ε

N1/2
.

For Q∗ we have

n√
N3

∏
p|n

(
1− 1

p

)
�aE∗(n)� n√

N3

∏
p|n

(
1 +

1

p

)∏
p|N

2

n1−ε

N3/2
�aE∗(n)� n1+ε

N3/2−ε ,

since
∏

p|N 2 ≤ d(N)� N ε. �

Prior to stating and proving our bound on 〈C,C〉 we need a few more preliminary observations.
The first is related to bounding the sum

∞∑
d=1

ψ

(
d

√
n

N

)
.

Since

ψ(x) = − 6

π
xK1(4πx) + 24x2K0(4πx),

and K1(x) is positive, it follows that ψ(x) ≤ 24x2K0(4πx). Using formula (10.32.9) of [37], we
have the bound

(9) K0(x) =

∫ ∞
0

e−x cosh(t) dt ≤
∫ ∞

0

e−x(1+t2/2) dt =

√
π

2x
e−x.

It follows that ψ(x) is decreasing exponentially, and hence
∑∞

d=1 ψ(dx) is bounded if x � 1.
In addition,

ψ̂(y) = − 9y2

π2(4 + y2)5/2
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and the Poisson summation formula implies that

− 3

2π2
+ 2

∞∑
d=1

ψ(dx) = 2
∞∑
d=1

1

x
ψ̂(d/x),

which shows that
∑∞

d=1 ψ(dx)→ 3
4π2 as x→ 0.

Our next lemma is a bound on
∑

n≤x d(n)rQ∗(n)2 which will be useful in bounding 〈C,C〉.

Lemma 17. Assume the notation above. We have

∑
n≤x

d(n)rQ∗(n)2 �ε



x1/2+ε if x ≤ N1/2,
x1+ε

N1/4 if N1/2 ≤ x ≤ N5/6,
x3/2+ε

N2/3 if N5/6 ≤ x ≤ N11/12,
x2+ε

N9/8 if N11/12 ≤ x ≤ N,
x7/2+ε

N21/8 if x ≥ N.

Moreover, for n ≥ N11/12, we have rQ∗(n) ≤ n3/2

N9/8 .

Proof. We use that d(n)� nε to get∑
n≤x

d(n)rQ∗(n)2 � xε
∑
n≤x

rQ∗(n)2 � xε

(∑
n≤x

rQ∗(n)

)
·
(

max
n≤x

rQ∗(n)

)
.

First, we will bound
∑

n≤x rQ∗(n). Theorem 2.1.1 of Kitaoka’s book [33] shows that we may
write the Gram matrix of Q as

A = MTDM,

where M is an upper triangular matrix with ones on the diagonal, and D is a diagonal matrix
with entries a1, a2, a3, and a4 where ai/ai+1 ≤ 4/3 for i ≥ 1 and a1 ≥ 1. This implies that
a2 ≥ 3/4, a3 ≥ 9/16 and a4 ≥ 27/64. Since a1a2a3a4 = N , it follows that ai � N for all i.

Taking the inverse and multiplying by N gives

A∗ = NA−1 = M−1(ND−1)(M−1)T .

If we let a∗i = N/ai, then we have written

Q∗(x1, x2, x3, x4) = a∗1(x1+m12x2+m13x3+m14x4)2+a∗2(x2+m23x3+m24x4)2+a∗3(x3+m34x4)2+a∗4x
2
4.

We have that a∗i � N , a∗i � 1, and a∗1a
∗
2a
∗
3a
∗
4 = N3. From the centered equation above, it

follows that if Q∗(x1, x2, x3, x4) ≤ x, then xi is in an interval of length at most 2
√

x
a∗i

. Thus,

∑
n≤x

rQ∗(n) ≤
4∏
i=1

(
2

√
x

a∗i
+ 1

)
.
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Since N3 = a∗1a
∗
2a
∗
3a
∗
4, we have that aiaj � N and aiajak � N2. Expanding the product on

the right hand side gives that ∑
n≤x

rQ∗(n)�

{√
x x ≤ N
x2

N3/2 x ≥ N.

A very similar argument gives a bound on rQ∗(n). Assume without loss of generality that
a∗1 ≥ a∗2 ≥ a∗3 ≥ a∗4. In order for Q∗(x1, x2, x3, x4) to be equal to n, we can allow xi, 1 ≤ i ≤ 3

to range over an interval (depending on the values of the other xi) of length 2
√
n/a∗i . Given

the choices of x1, x2 and x3, the formula Q∗(x1, x2, x3, x4) = n is a quadratic equation in x4

and has at most two solutions. This proves that

rQ∗(n) ≤ 2
3∏
i=1

(
2

√
n

a∗i
+ 1

)
.

Choosing n ≤ x and expanding the product gives

max
n≤x

rQ∗(n)� x3/2

√
a∗1a

∗
2a
∗
3

+
x√
a∗2a

∗
3

+

√
x√
a∗3

+ 1.

The bounds on the ai imply that 1√
a∗1a
∗
2a
∗
3

� 1
N9/8 , 1√

a∗2a
∗
3

� 1
N2/3 , and 1√

a∗3
� 1

N1/4 . This yields

(10) max
n≤x

rQ∗(n)�


1 if x ≤ N1/2

x1/2

N1/4 if N1/2 ≤ x ≤ N5/6

x
N2/3 if N5/6 ≤ x ≤ N11/12

x3/2

N9/8 if x ≥ N11/12.

This yields the second stated result. Combining (10) with d(n)� xε for n ≤ x and
∑

n≤x rQ∗(n)�
max

(√
x, x2

N3/2

)
, yields the first stated result. �

Now, we bound the Petersson norm of C(z), the cuspidal part of θQ(z). This result is a
significant improvement over the result of Schulze-Pillot in [46], where it is proven that 〈C,C〉 �
N , assuming that N is square-free. This improvement has two sources: (i) the formula from
Proposition 14 has a factor of n in the denominator of the nth term, and (ii) Schulze-Pillot

uses a bound of the shape rQ∗(n)� n2
√
D

, which is much weaker than the result of Lemma 17.

Theorem 18. We have

〈C,C〉 � N

σ(N)
,

where σ(N) is the sum of the divisors of N .
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Remark. It follows that 〈C,C〉 is bounded. Theorem 18 is sharp in the case that θQ∗ represents
an integer n bounded independently of N . In this case, rQ∗(n) ≥ 1, aE∗(n) � 1

N3/2−ε and so

aC∗(n)� 1. The proof then shows that 〈C,C〉 � N
σ(N)

.

Proof. By Proposition 15, we have 〈C,C〉 = N〈C∗, C∗〉. Proposition 14 then implies that

〈C,C〉 =
N

[SL2(Z) : Γ0(N)]

∞∑
n=1

2ω(gcd(n,N))aC∗(n)2

n

∞∑
d=1

ψ

(
d

√
n

N

)
.

Since N is squarefree, [SL2(Z) : Γ0(N)] = σ(N). Since K0(x) ≤
√

π
2x
e−x, we have for x � 1

the estimate
∞∑
d=1

ψ(d
√
x)�

∞∑
d=1

d3/2x3/4e−4πd
√
x � x3/4e−4π

√
x.

We have rQ∗(n) = aE∗(n) + aC∗(n) and so |aC∗(n)| ≤ aE∗(n) + rQ∗(n). Observe that aC∗(n)2 ≤
2aE∗(n)2 +2rQ∗(n)2. We will first handle the terms rQ∗(n)2. Observing that 2ω(gcd(n,N)) ≤ d(n),
these terms are bounded by

(11)
N

σ(N)

∞∑
n=1

rQ∗(n)2d(n)

n

∞∑
d=1

ψ

(
d

√
n

N

)
.

We first consider the tail. For n ≥ N , we have rQ∗(n)� n3/2

N9/8 and d(n)� n1/8. This gives the
bound

∞∑
n=k

n1/8 · (n3/N9/4)

n
·
( n
N

)3/4

e−4π
√
n/N =

1

N1/8

∞∑
n=k

( n
N

)23/8

e−4π
√
n/N .

Breaking the sum into the pieces r2N ≤ n ≤ (r + 1)2N gives the bound

1

N1/8

∞∑
r=b
√

k
N
c

(2r + 1)N(r + 1)23/8e−4πr � N7/8

∞∑
r=b
√

k
N
c

r4e−4πr.

Let f(r) = r4e−4πr and note that for r ≥ 1, f(r + 1) ≤ (1/2)f(r). The sum is therefore

bounded by 2N7/8f(b
√

k
N
c). We choose k so that log(N) ≤ b

√
k
N
c ≤ log(N) + 1. The sum is

then � N7/8 log(N)4/N4π = O(N−11) and k � N log2(N).

Now, we handle the terms with n� N log2(N). Recall that
∑∞

d=1 ψ
(
d
√

n
N

)
is bounded. Thus,

we estimate

cN log2(N)∑
n=1

d(n)rQ∗(n)2

n
=

∫ ∞
1

1

t2

 ∑
n≤min(t,cN log2(N))

d(n)rQ∗(n)2

 dt.

We use Lemma 17 repeatedly. In the range 1 ≤ t ≤
√
N , we get

∫ √N
1

t1/2+ε

t2
dt which is bounded.

Indeed this is the main contribution to 〈C,C〉.
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The other ranges yield∫ N5/6

√
N

t1+ε

t2N1/4
dt+

∫ N11/12

N5/6

1

t1/2−εN2/3
dt+

∫ N

N11/12

tε

N9/8
dt+

∫ cN log2(N)

N

t3/2+ε

N21/8
dt

+

∫ ∞
cN log2(N)

(N log2(N)7/2+ε

t2N21/8
dt = O(N−1/4+5ε/6) +O(N−5/24+11/12ε) +O(N−1/8+ε)

+O(N−1/8+ε log5+2ε(N)) +O(N−1/8 log5+2ε(N)).

This shows that
∑cN log2(N)

n=1

d(n)rQ∗ (n)2

n
� 1.

Equation (1) shows that the Eisenstein series E∗(z) =
∑m

i=1 ciθRi(z), where the forms Ri are
the forms in the genus of Q∗ and

∑m
i=1 ci = 1. It is easy to see that

∑
n≤x d(n)aE∗(n)2 obeys

exactly the same bound as
∑

n≤x d(n)rQ∗(n)2 by applying Lemma 17 to bound
∑

n≤x rRi(n) and

maxn≤x rRi(n). The contribution from the terms involving aE∗(n)2 is therefore also bounded.
Hence,

∞∑
n=1

2ω(gcd(n,N))aC∗(n)2

n

∞∑
d=1

ψ

(
d

√
n

N

)
� 1

and this gives the overall bound of 〈C,C〉 � N
σ(N)

, as desired. �

Finally, we are ready to prove Theorem 6.

Proof of Theorem 6. Fix ε > 0. Write

θQ(z) =
∞∑
n=0

rQ(n)qn = E(z) + C(z),

where E(z) =
∑∞

n=0 aE(n)qn and C(z) =
∑∞

n=0 aC(n)qn. We have

|aC(n)| ≤ Codd
Q d(n)

√
n

where CQ ≤
√
〈C,C〉u
B

by (4). Here u = dimS2(Γ0(N), χ) and B is a lower bound for the

Petersson norm of a newform in S2(Γ0(N), χ). It follows from the work of Hoffstein and
Lockhart [22] that B � N−ε, although this bound is ineffective. From Theorem 18, we have
〈C,C〉 � N ε. Combining this with u� N gives that CQ � N1/2+ε/2.

Now, from Lemma 16, we have aE(n) � n1−ε/2
√
N

provided n is locally represented by Q. Com-

bining these estimates, we have that rQ(n) is positive if n is locally represented by Q and

n1−ε/2
√
N
� N1/2+ε/2d(n)

√
n.

Since d(n)� nε/2, any locally represented n satisfying n� N2+ε is represented.
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If f is a newform, then f |WN is also a newform. It follows from this fact and from Proposition 15
that CQ∗ = 1√

N
CQ. Therefore rQ∗(n) is positive if n is locally represented by Q∗ and

n1−ε/4

N3/2−ε/2 � n1/2+ε/4.

This implies that n1/2−ε/2 � N3/2−ε/2, which yields n� N3+ε. �

5. Proof of the 451-Theorem

If L is a lattice, we say that L is odd universal if every odd positive integer is the norm of a
vector ~x ∈ L. Such lattices (up to isometry) are in bijection with positive-definite integer-valued
quadratic forms Q (up to equivalence) that represent all positive odd integers.

We use the approach (and terminology) pioneered by Bhargava [2] and used in [1] to prove the
290-Theorem. An exception for a lattice L is an odd positive integer that does not occur as the
norm of a vector in L. If L is a lattice that is not odd universal, we define the truant of L to
be the smallest positive odd integer t that is the not the norm of a vector in L. An escalation
of L is a lattice L′ generated by L and a vector of norm t. We will study the escalations of
the dimension zero lattice, and call all such lattices generated by this process escalator lattices.
Finally, the 46 odd integers given in the statement of the 451-Theorem are called the critical
integers.

Note that if L is an odd universal lattice, then there is a sequence of escalator lattices

{0} = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊆ L

where Li+1 is an escalation of Li for 0 ≤ i ≤ n− 1, and Ln is odd universal.

We begin by escalating the zero-dimensional lattice by a vector of norm 1, and getting the
unique one-dimensional escalation with Gram matrix

[
2
]

and quadratic form x2. This lattice

has truant 3 and its escalations have Gram matrices of the form

[
2 a
a 6

]
. We have a = 2〈~x, ~y〉

where ~x and ~y are vectors of norms 1 and 3. By the Cauchy-Schwarz inequality, we have
|a| ≤ 2

√
3. Up to isometry, we get four Gram matrices:[

2 0
0 6

]
,

[
2 1
1 6

]
,

[
2 0
0 4

]
, and

[
2 1
1 2

]
.

These lattices have truants 5, 7, 5, and 5 respectively. Escalating these four two-dimensional
lattices gives rise to 73 three dimensional lattices. Twenty-three of these lattices correspond
to the 23 ternary quadratic forms given in [30]. Conjecture 1 states that these represent all
positive odds, and we assume Conjecture 1 for the rest of this section.

Escalating the 50 ternary lattices that are not odd universal gives rise to the 24312 basic four-
dimensional escalators. Of the 24312, 23513 represent every positive odd integer less than
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10000. Of the remaining 799, 795 locally represent all odd numbers, and hence represent all
but finitely many squarefree odds. The remaining four fail to locally represent all odd integers:

x2 + 3y2 + 5z2 + 7w2 − 3yw,

x2 + 3y2 + 5z2 + 6w2 − xw − 2yw + 5zw,

x2 + 3y2 + 5z2 + 11w2 − xw − 2yw, and

x2 + 3y2 + 7z2 + 9w2 + xy − xw.
The first three fail to represent integers of the form 5n, where n ≡ 3 or 7 (mod 10) and the last
fails to represent integers of the form 7n for n ≡ 3, 5, 13 (mod 14). To handle these four forms,
we compute auxiliary escalator lattices. The first three lattices have truant 15, and the fourth
has truant 21. The auxiliary escalator lattices are those new lattices obtained by escalating
x2 + 3y2 + 5z2 by 15 (there are 196) and x2 + xy+ 3y2 + 7z2 by 21 (there are 384). All of these
auxiliary lattices locally represent all odds, and every odd universal lattice contains a sublattice
isometric to one of the 23 odd universal ternaries, or one of the 24888 = 24312 + 196 + 384− 4
four-dimensional escalators (basic or auxiliary). It follows from this that there are only finitely
many escalator lattices. We now seek to determine precisely which squarefree positive odd
integers are represented by each of these 24888 quadratic forms. When we refer to a form by
number, it refers to the index of the form on the list of the 24888 in the file quatver.txt

(available at http://www.wfu.edu/∼rouseja/451/).

Method 1: Universal ternary sublattices.

If L is a quaternary lattice with a sublattice L′ that is one of the 23 odd universal lattices of
dimension 3, then the quadratic form corresponding to L represents all odd integers. Given
L it is straightforward to check if such a lattice L′ exists, as it must be spanned by vectors
of norm 1, 3, 5 and/or 7. If such a lattice exists, then the quadratic form corresponding to L
represents all positive odds. The method applies to 2342 of the 24888, and proves that each of
these are odd universal.

Example. Form 16451 has level 2072 and is the form with largest level to which this method
applies. It is given by

Q(x, y, z, w) = x2 + xy + xw + 3y2 + 7z2 + 7w2.

We have Q(x, y, 0,−z) = x2 +xy−xz+ 3y2 + z2, which is one of the forms given by Kaplansky
in [30]. The ternary form x2 +xy−xz+ 3y2 + z2 has genus of size 1 and represents all positive
odds. Hence Q represents all positive odds.

Method 2: Nicely embedded regular ternary sublattices.

Recall that a positive-definite quadratic form Q is called regular if every locally represented
integer m is represented by Q. In [27], Jagy, Kaplansky and Schiemann give a list of 913 ternary
quadratic forms. They prove that every regular ternary quadratic form appears on this list, and
that 891 of the forms on this list are in fact regular. Of these, 792 are in a genus of size 1, and
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are hence automatically regular (since the Hasse-Minkowski theorem implies that a number
that is locally represented is represented by some form in the genus). This paper unfortunately
does not contain proofs of regularity for the 99 forms but supplementary documentation is
available from Jagy upon request that supplies the necessary proofs. Recently, Bweong-Kweon
Oh proved [38] that 8 of the remaining 22 conjecturally regular ternaries are in fact regular.

We say that a quaternary lattice L has a nicely embedded regular ternary if there is a ternary
sublattice K whose corresponding quadratic forms is regular, with the property that the qua-
dratic form corresponding to K ⊕K⊥ locally represents all positive odds. We may write the
quadratic form corresponding to K ⊕K⊥ as

T (x, y, z) + dw2

where T (x, y, z) is one of the 891 regular ternaries. Our approach for determining the square-
free odd numbers not represented by T (x, y, z) + dw2 is then as follows. If n is an odd number,
find a representation for n in the form

T (x, y, z) + dw2 = n.

Since T is regular, there is then a residue class a + bZ containing n so that T (x, y, z) + dw2

represents all integers in a+ bZ greater than or equal to n.

To determine the odd integers represented by a quaternary with a nicely embedded regular
ternary, we first find a modulus M divisible by all the primes dividing the discriminant of T
so that for each a ∈ Z with gcd(a,M) = 1 either T locally represents everything in the residue
class a (mod M) or T does not locally represent any integer in the residue class a (mod M).

We then create a queue of residue classes to check, initially containing all a (mod M) that
T does not locally represent. Within each residue class, we check each number to see if it
is represented. If a number is represented with T (x, y, z) 6= 0, one can find a residue class
M ′ ≥ M so that any number in the residue class a (mod M ′) is represented. If M ′ = M , we
are finished with this residue class. If M ′ > M , the residue classes a + kM (mod M ′) with
k 6= 0 that contain squarefree integers are added to the queue. When all of the residue classes
have been checked, we are left with a list of odd numbers not represented by K ⊕ K⊥. It is
then necessary to check to see if Q represents these numbers.

Example. If Q = x2+y2+yz+2z2+7w2, then T = x2+y2+yz+2z2 is a nicely embedded regular
ternary. The form T represents all positive integers except those of the form n ≡ 21, 35, 42
(mod 49). We have

21 = 7 · 12 + 14, 35 = 7 · 22 + 7, , 42 = 7 · 22 + 14,

and since T represents every positive integer ≡ 7 or 14 (mod 49), Q represents all positive
integers.

This method applies to 7470 of the quaternaries. Many of these quaternaries are escalations
of the regular ternary form x2 + xy + 3y2 + 4z2 with truant 77, and some of these escalations
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have very large level. For example, form 16367

Q(x, y, z, w) = x2 + xy + 3y2 + 4z2 + zw + 77w2

has level 13541, the largest of any of the 24888, and form 16350

Q(x, y, z, w) = x2 + xy + xw + 3y2 + 2yw + 4z2 − 2zw + 74w2

has θQ ∈ M2(Γ0(12900), χ129) and dimS2(Γ0(12900), χ129) = 2604 (the largest dimension of
S2(Γ0(N), χ) for any of the 24888). These forms would be very unpleasant to deal with using
other methods. Even though it is occasionally necessary to check a large number of residue
classes (as many as 142081), this method is quite efficient. None of the 7470 quaternaries
tested using this method require more than 30 minutes of computation time, and much of this
computation time is devoted to checking if Q represents numbers that are not represented by
K ⊕K⊥.

Method 3: Rankin-Selberg L-functions.

We apply this method for the 8733 quaternaries with fundamental discriminant to which meth-
ods 1 and 2 do not apply. We use all of the machinery developed in Section 3, although some
modifications are desirable.

Suppose that Q is a positive-definite, integer-valued quadratic form with fundamental discrim-
inant and level N . We use the following procedure to determine which squarefree integers Q
represents. First, we compute a lower bound on 〈g, g〉 for all non-CM newforms in S2(Γ0(N), χ)
using Proposition 11 (using the optimal choice of the parameter given in equation (6)). Since
the lower bound given on 〈g, g〉 in the proof of Theorem 6 is ineffective, it is necessary to
explicitly enumerate the CM forms in S2(Γ0(N), χ) and estimate from below their Petersson
norms. We do this by finding all negative fundamental discriminants ∆ that divide N and
all ideals of norm |N |/|∆| in the ring of integers of the field Q(

√
∆). All Hecke characters

with these moduli are constructed, and then Magma’s built-in routines for computing with
Hecke Grössencharacters are used to construct the CM forms g. Once this is done, we compute
enough terms of the Fourier expansion of g so that the lower bound we get on 〈g, g〉 from
Proposition 14 is at least as large as our bound on 〈g, g〉 for non-CM g.

We then compute the first 15N coefficients of θQ∗ . We pre-compute the local densities associated
to Q∗ and use these to compute the first 15N coefficient of E∗, and from this obtain C∗ =
θQ∗ −E∗. This data is plugged into Proposition 14. The parts of this formula with nd2 ≤ 15N
are explicitly computed. We bound the contribution from terms with n ≤ 15N and nd2 > 15N
by using (9), giving that∑

d>
√

15N/n

ψ

(
d

√
n

N

)
≤ 6

√
2n5/4

√
15NN3/4

∞∑
d=b
√

15N
m

+1c

d2e−4πd
√
n/N

=
6
√

2n5/4

√
15NN3/4

(
e−c(a−1) · (1 + e−c + 2a(ec − 1) + a2(ec − 1)2)

(ec − 1)3

)
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where a =
⌊√

15N
n

+ 1
⌋

and c = 4π
√
n/N . We increased the exponent on d in the infinite sum

from 3/2 to 2 to allow the series to be summed in closed form.

For the terms with n > 15N , we use that
∞∑
d=1

ψ

(
d

√
n

N

)
≤ 6
√

2
( n
N

)3/4
∞∑
d=1

d3/2e−4πd
√
n/N .

It is easy to see that
∑∞

d=1 d
3/2e−4πd

√
n/N ≤ 1.000012e−4π

√
n/N , and this gives a corresponding

bound on the infinite sum of values of ψ. To bound the other terms in the sum, we use that
|aC∗(n)| ≤ Codd

Q∗ d(n)
√
n and that d(n)2 ≤ 7.0609n3/4. Plugging all of this in, the terms for

n > 15N are bounded by

60 · 2ω(N)
(
Codd
Q∗

)2

N3/4

∞∑
n=15N+1

n3/2e−4π
√
n/N .

Observe that the sum above is at most(
1 +

1

15N

)3/2 ∫ ∞
15N

x3/2e−4π
√
x/N dx ≤ 2.85 · 10−20

(
1 +

1

15N

)3/2

N5/2.

At the end of this process, we obtain an inequality of the form

〈C∗, C∗〉 ≤ C1 + C2

(
Codd
Q∗

)2
.

We then have

Codd
Q∗ ≤

√
u〈C∗, C∗〉

B

where B is a lower bound on 〈gi, gi〉. Then we use that Codd
Q =

√
NCodd

Q∗ to bound Codd
Q .

We use a similar method to that of Bhargava and Hanke [1] for computing a lower bound on
the Eisenstein series contribution aE(n), based on part (b) of Theorem 5.7 of [20]. This requires
computing the local densities βp(n), which we do according to the procedure given in [20].

The end result is an explicit constant F (which we refer to as the F4-bound) so that if n is
squarefree and

F4(n) =

√
m

d(m)

∏
p-N,p|n
χ(p)=−1

p− 1

p+ 1
> F

then n is represented by the form Q. We then enumerate all squarefree integers n for which
F4(n) ≤ F and check that each of them is represented by Q. To do this, we use a split local
cover, a quadratic form

R(x, y, z) + dw2

that is represented by Q. If B is the largest number satisfying F4(n) ≤ F , we compute an

approximation of the theta series of R to precision C
√
B, where C is a constant (which is
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chosen to depend on the form R). Then, for each squarefree n with F4(n) ≤ F , we attempt
to find an integer w so that n− dw2 is represented by R. We choose the parameter C so that
every n > 5000 satisfies this, and we manually check that Q represents every odd number less
than 5000.

Example. Form number 10726 is

Q(x, y, z, w) = x2 + 3y2 + 3yz + 3yw + 5z2 + zw + 34w2,

and has discriminant N = D = 6780, a fundamental discriminant. The dimension of S2(Γ0(N), χ)
is 1360. This space has four Galois-orbits of newforms, of sizes 4, 4, 40, and 1312. The ex-
plicit method of computing the cusp constant that will be described in Method 4 below would be
impossible for this form.

Proposition 11 gives a lower bound

〈gi, gi〉 ≥ 0.00001019

for non-CM newforms gi. We explicitly compute that there are 48 newforms with CM in
gi ∈ S2(Γ0(N), χ) and the bound above is valid for them too. Combining Proposition 14 and
Proposition 15 with the bounds above, we find that

0.01066 ≤ 〈C,C〉 ≤ 0.01079

and from this, we derive that Codd
Q ≤ 1199.86. We have that

aE(n) ≥ 28

151
n
∏

p|n,p-N
χ(p)=−1

p− 1

p+ 1
.

From this, we see that n is represented by Q if F4(n) ≥ 6535. The computations run in Magma
to derive these bounds for Q took 3 minutes and 50 seconds.

A separate program (written in C) verifies that any squarefree number n satisfying F4(n) ≤ 6535
has at most 12 distinct prime factors, and is bounded by 8314659320208531. Of these numbers,
it was necessary to check 4701894614. This process took 22 minutes and 29 seconds and proves
that the form Q represents every positive odd integer.

Method 4: Explicit computation of the cusp constants.

This method is similar to Method 3, except that we do explicit linear algebra computations to
compute the constant Codd

Q . This method is the approach Bhargava and Hanke take for all of
the cases they consider in [1], and we apply this method to the 6343 forms Q where none of
the first three methods apply.

The following method is used to compute Codd
Q . If d is a divisor of N/cond(χ), we enumerate

representatives of the Galois orbits of newforms in S2(Γ0(N/d), χ), say g1, g2, . . . , gr. If the
Galois orbit of gi has size ki, we build a basis for Snew

2 (Γ0(N/d), χ) ∩Q[[q]] of the form

TrKi/Q(αjgi) for 1 ≤ i ≤ r, 0 ≤ j ≤ ki − 1,
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where Ki = Q(α) is the field generated by adjoining all the Fourier coefficients of gi to Q.
These are then used to build a basis for the image of

V (d) : S2(Γ0(N/d), χ)→ S2(Γ0(N), χ).

We do not compute all the coefficients of these forms. Instead we compute coefficients of the
form dn where gcd(n,N) = 1 by computing the pth coefficient of all the forms and using the
Hecke relations to compute the other coefficients. We repeat this process until the matrix of
Fourier expansions has full rank.

Once this basis is built, we solve the linear system (over Q) expressing the cuspidal part C of
θQ in terms of the basis. To solve this system, we work with one value of d at a time, and
only use coefficients of the form dn where gcd(n,N) = 1 to determine the contribution to C of
the image of V (d) : S2(Γ0(N/d), χ) → S2(Γ0(N), χ). Once we have the representation of C in
terms of the full basis for S2(Γ0(N), χ), we numerically approximate the embeddings of the αj

and use these to compute Codd
Q .

Example. Form 22145 is

Q(x, y, z, w) = x2 − xz + 2y2 + yz − 2yw + 5z2 + zw + 29w2.

For this Q, θQ ∈ M2(Γ0(4200), χ168). The dimension of S2(Γ0(4200), χ168) is 936. There are
19 Galois conjugacy classes of newforms of levels 168, 840, and 4200, the largest of which has
size 160.

The d = 1 space has dimension 752, and we need to compute the pth coefficient of all newforms
of level dividing 4200 for p ≤ 197. Once these are computed, it is straightforward to find bases
for the d = 5 and d = 25 spaces (of dimensions 156 and 28, respectively). Solving the linear
system gives that Codd

Q ≈ 31.0537. For odd squarefree n, we have

aE(n) ≥ 28

117
n
∏

p|n,p-N
χ(p)=−1

p− 1

p+ 1
.

This shows that if n is a squarefree odd integer and F4(n) > 131.0575, then n is represented
by Q. The bound on F4 is quite small, and it is only necessary to test 638080 integers. How-
ever, computing the bound on F4 required almost a day of computation, due to the difficulty of
computing the constant Codd

Q . The result is that Q represents all positive odd integers.

Proof of the 451-Theorem. Assume Conjecture 1. The computations show that every one of
the 24888 forms considered locally represents all positive odd integers, and in each case we
are able to determine precisely the list of squarefree odd exceptions for each form. Moreover,
every odd universal lattice contains one of the 23 odd universal ternary escalators, or one of
the 24888. Of the 24888, there are 23519 that represent all positive odds, and 1359 that have
exceptions. Of these 1359, there are 15 forms that have an exception which is not a critical
integer. (These are forms 1044, 8988, 9011, 9016, 11761, 16366, 16372 17798, 24290, 24311,
24328, 24435, 24463, 24504, and 24817.) It is necessary to check that each escalation of these
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forms represents all non-critical positive odds. The most time-consuming form to deal with is
form 16366,

Q(x, y, z, w) = x2 + xy + 3y2 + 4z2 + 77w2

which has truant 143, and fails to represent 187, 231, 385, 451, 627, 935, 1111, 1419, 1903, and
2387. We compute all escalations of it (which requires consideration of more than 10 million
Gram matrices), and find among its escalations forms that have truants 187, 231, 385, and 451,
but not 627, 935, 1111, 1419, 1903 or 2387. This concludes the proof that every positive-definite
quadratic form representing the 46 critical integers represents all positive odd integers. �

Remark. The program and log files used to prove the 451-Theorem are available at
http://www.wfu.edu/∼rouseja/451.

We will now show that each critical integer is necessary.

Proof of Corollary 3. Each of the critical integers occurs as the truant for some form Q (see
Appendix A). Using the same trick as in [1], if Q(~x) is any form with truant t, consider the
form

Q′ = Q(~x) + (t+ 1)y2 + (t+ 1)z2 + (t+ 1)w2 + (t+ 1)v2 + (2t+ 1)u2.

This form fails to represent t. However, since every positive integer is expressible as a sum
of four squares, if Q represents the odd number a, then every number ≡ a (mod t + 1) is
represented by Q′. This accounts for all odd numbers except those ≡ t (mod t + 1). Taking
Q = 0 and u = 1, we see that Q′ represents all numbers ≡ t (mod t+ 1) that are greater than
or equal to 2t + 1. Hence, t is the unique positive odd integer which is not represented by
Q′. �

As an application of the 451-Theorem, we will prove Corollary 4.

Proof of Corollary 4. If Q is a quadratic form with corresponding lattice L that represents
every positive odd integer less than 451, then L contains as a sublattice one of the 24888 we
considered above. Of these, only forms 1048, 16327, 16334, 16336 and 16366 have 451 as an
exception. Each of these has a nicely embedded regular ternary, and the application of method
2 shows that each of these represents all odd positive integers n that are not multiples of 112,
with a finite and explicit set of exceptions. For forms 1048, 16334, 16336 and 16366 it is easy
to see that all multiples of 112 are represented.

Each of 1048, 16334 and 16336 have truant 143 and no exceptions larger than 451. For form
16366, we computed all escalations in the course of proving the 451-Theorem and found that
none of them have squarefree exceptions greater than 451.

However, form 16327
Q(x, y, z, w) = x2 + xy + 3y2 + 4z2 + 66w2

is anisotropic at 11. The form Q represents all squarefree odd integers that are not multiples of
112 except 319 and 451. A computer calculation shows that rQ(121n) = rQ(n) for all positive
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integers n and hence, the odd integers not represented by Q are those of the form 319 · 112k

and 451 · 112k. It is therefore necessary to compute all escalations of Q by 319, find those that
fail to represent 451, and check that each of these represents 451 · 112 = 54571. We find 21
five-dimensional escalations that fail to represent 451 and each of these represents 54571. �

As an application of the 451-Theorem we will classify those quaternary forms that represent
all odd positive integers.

Proof of Corollary 5. The successive minima of quaternary escalator lattices are bounded by
1, 3, 7, and 77. We enumerate all Minkowski-reduced lattices with successive minima less than
or equal to these, apply the 451-Theorem to determine which represent all positive odds, and
determine those that represent one of the odd universal ternary forms. A list of the 21756
forms that were found is available on the website mentioned above. �

6. Conditional proof of Conjecture 1

We begin by recalling the theory of modular forms of half-integer weight. If λ is a positive inte-
ger, let Sλ+ 1

2
(Γ0(4N), χ) denote the vector space of cusp forms of weight λ+ 1

2
on Γ0(4N) with

character χ. We denote by by T (p2) the usual index p2 Hecke operator on Sλ+1/2(Γ0(4N), χ).
Next, we recall the Shimura lifting.

Theorem ([49]). Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sλ+1/2(Γ0(4N), χ). For each squarefree
integer t, let

St(f(z)) =
∞∑
n=1

∑
d|n

χ(d)

(
(−1)λt

d

)
dλ−1a(t(n/d)2)

 qn.

Then, St(f(z)) ∈M2λ(Γ0(2N), χ2). It is a cusp form if λ > 1 and if λ = 1 it is a cusp form if

f(z) is orthogonal to all cusp forms
∑∞

n=1 ψ(n)nqn
2

where ψ is an odd Dirichlet character.

One can show using the definition that if p is a prime and p - 4tN , then St(f |T (p2)) =
St(f)|T (p). In [51], Waldspurger relates the Fourier coefficients of a half-integer weight Hecke
eigenform f with the central critical L-values of the twists of the integer weight newform F
with the same Hecke eigenvalues. If we have a newform F (z) =

∑∞
n=1 b(n)qn ∈ Snew

2 (Γ0(N)),
and χ is a quadratic Dirichlet character, we define F ⊗ χ to be the unique newform whose nth
Fourier coefficient is b(n)χ(n) if gcd(n,N · cond(χ)) = 1.

Theorem ([51], Corollaire 2, p. 379). Suppose that f ∈ Sλ+1/2(Γ0(N), χ) is a half-integer
weight modular form and f |T (p2) = λ(p)f for all p - N with Fourier expansion f(z) =∑∞

n=1 a(n)qn. If F (z) ∈ S2λ(Γ0(N), χ2) is an integer weight newform with F (z)|T (p) = λ(p)g

for all p - N and n1 and n2 are two squarefree positive integers with n1/n2 ∈
(
Q×p
)2

for all p|N ,
then

a(n1)2L(F ⊗ χ−1χn2(−1)λ , 1/2)χ(n2/n1)n
λ−1/2
2 = a(n2)2L(F ⊗ χ−1χn1(−1)λ , 1/2)n

λ−1/2
1 .
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If Q is a positive-definite, integer-valued ternary quadratic form, then θQ(z) =
∑∞

n=0 rQ(n)qn ∈
M3/2(Γ0(4N), χ). We may then decompose θQ(z) = E(z) + C(z) where E(z) is a half-integer
weight Cohen-Eisenstein series, and C(z) is a cusp form. We have E(z) =

∑∞
n=0 aE(n)qn, where

if n ≥ 1 is squarefree, then

aE(n) =
24h(−nM)

Mw(−nM)

∏
p|2N

βp(n) ·
1− (1/p)χ(p)

(
n
p

)
1− 1/p2

.

Here M is a rational number which depends on n (mod 8N2) with the property that nM
is a fundamental discriminant. Here h(−nM) is the class number of the ring of integers in
Q(
√
−nM) and w(−nM) is half the number of roots of unity in Q(

√
−nM). From Siegel’s

work, we have the ineffective lower bound h(−D) � D1/2−ε, but the strongest effective lower
bound we have is due to the work of Goldfeld [18], Gross and Zagier [19] and has the form
h(−D)� log(D)1−ε. For this reason, there is no general method to determine unconditionally
the integers represented by a positive-definite ternary quadratic form.

We may decompose the cusp form contribution as a linear combination of half-integer weight
Hecke eigenforms C(z) =

∑
i cifi(z). Each fi(z) either has the form

∑
ψ(n)nqdn

2
, in which

case its nonzero Fourier coefficients are supported on a single square-class, or Waldspurger’s
theorem applies, and gives that if

fi(z) =
∞∑
n=1

b(n)qn,

then

|b(n)| = dn1/4|L(Fi ⊗ χbn, 1/2)|

for some constants b and d which depend on the Qp-square classes of n (provided we can find
a value of n in the Qp-square classes so that the coefficient of fi and the central L-value of the
corresponding twist of Fi are nonzero). The best currently known subconvexity estimate for
|L(Fi ⊗ χbn, 1/2)| is due to Blomer and Harcos ([3], Corollary 2) and gives that

|b(n)| � n7/16+ε.

However, the Generalized Riemann Hypothesis implies that |b(n)| � n1/4+ε. In [39], Ono and
Soundararajan pioneered a method to conditionally determine the integers represented by a
ternary quadratic form and used it to prove that Ramanujan’s form x2 + y2 + 10z2 represents
every odd number greater than 2719. This method was generalized by Kane [29] and refined
by Chandee [9]. We prove Conjecture 1 by using Theorem 2.1 and Proposition 4.1 of [9] (which
assume the Generalized Riemann Hypothesis) to bound |L(Fi ⊗ χbn, 1/2)| and

L(1, χnM) =
πh(−nM)√
nMw(−nM)

.
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Proof of Theorem 7. For Q = x2 + 2y2 + 5z2 + xz, we have

θQ(z) = 1 + 2q + 2q2 + 4q3 + 2q4 + 4q5 + · · ·

=
∞∑
n=0

rQ(n)qn ∈M3/2(Γ0(152), χ152).

The genus of Q has size 2, and the other form is R = x2 + y2 + 13z2 − xy − xz + yz. We have

E =
3

5
θQ +

2

5
θR = 1 +

18

5
q +

6

5
q2 +

24

5
q3 +

18

5
q4 +

12

5
q5 + · · ·

C = θQ − E = −8

5
q +

4

5
q2 − 4

5
q3 − 8

5
q4 +

8

5
q5 + · · · .

The Shimura lift S3 : S3/2(Γ0(152), χ152) → M2(Γ0(76)) is injective, and S3(C) is a constant
times the newform

F1(z) = q + q2 − q3 + q4 − 4q5 − q6 + · · · ∈ S2(Γ0(38)),

which corresponds to the elliptic curve

E1 : y2 + xy + y = x3 + x2 + 1.

For each pair (n1, n2) ∈ (Q×2 /
(
Q×2
)2

)× (Q×19/
(
Q×19

)2
) with ord2(n1) = 0, we compute constants

a, b, and d so that if n is a squarefree integer with n/n1 ∈
(
Q×2
)2

and n/n2 ∈
(
Q×19

)2
, we have

rQ(n) = ah(−bn)± dn1/4
√
L(F1 ⊗ χ−152n, 1/2).

For n1 = n2 = 1, we have a = 3/5, b = 152, and d ≈ 0.9150328989. This shows that if
rQ(n) = 0, then √

L(F1 ⊗ χ−152n, 1/2)

L(1, χ−152n)
≥ 2.573276n1/4.

On the other hand, computations using Chandee’s theorems give that√
L(F1 ⊗ χ−152n, 1/2)

L(1, χ−152n)
≤ 13.848476 · n0.1239756.

Comparing these two results, we see that if n is a 2-adic and a 19-adic square, then rQ(n) > 0 if
n ≥ 630654, assuming the Generalized Riemann Hypothesis. We obtain the same bounds on the
other squareclasses (n1, n2) where ord19(n2) = 0. On the squareclasses where n2 = 19, we obtain
smaller bounds. Finally, it is possible to prove that C vanishes identically on squareclasses
where n2 = 38. To check that every odd number less than this bound is represented, we
compute the theta series of S = x2 + xz + 5z2 up to q630654. For each odd number n ≤ 630654,
we check if n − 2y2 is represented by S for some y ≤

√
n/2. This computation takes 2.79

seconds.

For Q = x2 + 3y2 + 6z2 + xy + 2yz, the genus again has size 2, and θQ ∈ M3/2(Γ0(248), χ248).
We find that S1 : S3/2(Γ0(248), χ248) → M2(Γ0(124)) is injective. If C is the cuspidal part of
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θQ, then S1(C) is some constant times the newform F2 ∈ S2(Γ0(62)) that corresponds to the
elliptic curve

E2 : y2 + xy + y = x3 − x2 − x+ 1

with conductor 62. Again for each pair (n1, n2) ∈ Q×2 /(Q×2 )2 ×Q×31/(Q×31)2, we find a, b, and d
so that

rQ(n) = ah(−bn)± dn1/4
√
L(F2 ⊗ χ−248n, 1/2).

For (n1, n2) = 1, we have a = 3/8, b = 248, and d ≈ 0.6630028204. If rQ(n) = 0, we get that√
L(F2 ⊗ χ−248n, 1/2)

L(1, χ−248n)
≥ 2.835253n1/4

and using Chandee’s theorems we get√
L(F2 ⊗ χ−248n, 1/2)

L(1, χ−248n)
≤ 14.492987 · n0.1239756.

This proves that if n ≥ 419230 and n is a 2-adic and 31-adic square, then rQ(n) > 0 (assuming
GRH). We obtain equal or smaller bounds on the other square classes. To check up to this
bound, we use that

4Q = (2x+ y)2 + 11y2 + 8yz + 24z2.

If 4n is represented by w2 +11y2 +8yz+24z2, then w ≡ y (mod 2) and hence if we set x = w−y
2

,
we get that n = x2 + 3y2 + 6z2 + xy + 2yz. Hence n is represented by Q if and only if 4n is
represented by w2 + 11y2 + 8yz+ 24z2. We compute the theta series for S = 11y2 + 8yz+ 24z2

up to q1680000. Then, for each number m ≡ 4 (mod 8) between 4 and 1680000, we check that
m− w2 is represented by S for some w. We find that this is true, and the computation takes
2.53 seconds.

Finally, for the form Q = x2 + 3y2 + 7z2 + xy + xz, we have θQ ∈M3/2(Γ0(296), χ296). We use
the maps S1 : S3/2(Γ0(296), χ296) → M2(Γ0(148)) and S5 : S3/2(Γ0(296), χ296) → M2(Γ0(148)).
We find that neither are injective, but that the intersection of their kernels is zero. If C is the
cuspidal part of θQ, then C is a linear combination of two eigenforms whose Shimura lifts are
the two newforms

F+
3 = q + q2 +

−1 +
√

5

2
q3 + q4 +

1− 3
√

5

2
q5 + · · ·

F−3 = q + q2 +
−1−

√
5

2
q3 + q4 +

1 + 3
√

5

2
q5 + · · ·

of level 74. For each pair (n1, n2) ∈ Q×2 /(Q×2 )2 ×Q×37/(Q×37)2, we find constants a, b, d1 and d2

so that

rQ(n) = ah(−bn)± d1n
1/4
√
L(F+

3 ⊗ χ−296n, 1/2)± d2n
1/4
√
L(F−3 ⊗ χ−296n, 1/2).
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For n1 = n2 = 1, we have a = 6/19, b = −296, d1 ≈ 0.2092923830 and d2 ≈ 0.5342698872.
Hence, if rQ(n) = 0, we have

d1

√
L(F+

3 ⊗ χ−296n, 1/2)

L(1, χ−296n)
+ d2

√
L(F−3 ⊗ χ−296n, 1/2)

L(1, χ−296n)
≥ 1.729392n1/4.

Applying Chandee’s theorems, we get

√
L(F+

3 ⊗ χ−296n, 1/2)

L(1, χ−296n)
≤ 13.678621n0.1239756, and√

L(F−3 ⊗ χ−296n, 1/2)

L(1, χ−296n)
≤ 15.592398n0.1239756.

It follows that if rQ(n) = 0, then n ≤ 2727720, assuming GRH. We find equal or smaller bounds
on the other square classes. To check up to this bound, we use that

4Q = (2x+ y + z)2 + 11y2 − 2yz + 27z2.

If 4n is represented by w2 + 11y2 − 2yz + 27z2, then w ≡ 11y2 − 2yz + 27z2 (mod 2), which

implies that w ≡ y+ z (mod 2). Setting x = w−(y+z)
2

, we obtain n = x2 + 3y2 + 7z2 + xy+ xz.
Thus, n is represented by Q if and only if 4n is represented by w2 + 11y2 − 2yz + 27z2. We
compute the theta series of S = 11y2 − 2yz + 27z2 up to q10912000, and check that for every
number m ≡ 4 (mod 8) less than 10912000, m − w2 is represented by S for some integer w.
We find that this is true, and the computation takes 16.76 seconds.

This completes the proof of Theorem 7, assuming the Generalized Riemann Hypothesis. �
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Appendix A. Table of quadratic forms with given truants

Form Truant
∅ 1
x2 3
x2 + 2y2 5
x2 + 3y2 + xy 7
x2 + 3y2 + 4z2 + yz 11
x2 + 3y2 + 6z2 + xy + yz 13
x2 + y2 + 3z2 15
x2 + 2y2 + 3z2 + xy + xz + 2yz 17
x2 + 3y2 + 7z2 + xy + yz 19
x2 + 3y2 + 3z2 + xy + xz + 2yz 21
x2 + 2y2 + 3z2 + yz 23
x2 + 3y2 + 3z2 + xy 29
x2 + 2y2 + 4z2 + yz 31
x2 + 3y2 + 4z2 + 10w2 + 2yw 33
x2 + 3y2 + 5z2 + 3yz 35
x2 + 2y2 + 5z2 + 12w2 + xz + xw + yz + 3zw 37
x2 + 3y2 + 5z2 + 13w2 + xy + xz + yz 39
x2 + 3y2 + 4z2 + xz + 2yz 41
x2 + 3y2 + 5z2 + 15w2 + xw + yz + 2yw + 2zw 47
x2 + 3y2 + 4z2 + 15w2 + xw + 3yz + zw 51
x2 + 3y2 + 5z2 + 21w2 + xz + 2yz + yw + 4zw 53
x2 + 3y2 + 7z2 + 9w2 + xy + 2yw 57
x2 + 3y2 + 5z2 + 16w2 + yz + 2yw + 3zw 59
x2 + y2 + 3z2 + yz 77
x2 + 3y2 + 5z2 + 21w2 + 3yz 83
x2 + 3y2 + 5z2 + 23w2 + xw + 3yz + 4zw 85
x2 + 3y2 + 5z2 + 9w2 + xz + 3yw 87
x2 + 3y2 + 5z2 + 27w2 + xz + 2yz + yw + 2zw 89
x2 + 3y2 + 7z2 + 9w2 + 21v2 + xy + yw + 7zv 91
x2 + 2y2 + 4z2 + 28w2 + yz + zw 93
x2 + 3y2 + 4z2 + 11w2 + xw + 2zw 105
x2 + 3y2 + 5z2 + 31w2 + 3yz + 3yw 119
x2 + 3y2 + 4z2 + 9w2 + 3yw 123
x2 + 3y2 + 7z2 + 19w2 + 57v2 + xy + yz + 17wv 133
x2 + 3y2 + 5z2 + 26w2 + xw + 3yz + 3zw 137
x2 + y2 + 3z2 + 47w2 + xw + yz 143
x2 + 3y2 + 3z2 + 29w2 + xy + 2yz 145
x2 + 3y2 + 3z2 + 20w2 + xy + 3zw 187
x2 + 3y2 + 6z2 + 13w2 + xy + yz 195
x2 + 2y2 + 4z2 + 29w2 + 58v2 + xz + yz 203
x2 + 3y2 + 4z2 + 41w2 + xz + 2yz 205
x2 + y2 + 3z2 + 36w2 + xw + yz 209
x2 + 3y2 + 4z2 + 77w2 + 143v2 + xy + 15wv 231
x2 + 3y2 + 4z2 + 33w2 + xy 319
x2 + 3y2 + 4z2 + 77w2 + 143v2 + xy + 22wv 385
x2 + 3y2 + 4z2 + 77w2 + 143v2 + xy + 33wv 451
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